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Nonadiabatic neutrino oscillations reexamined
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Employing the Feynman procedure of ordered exponential operators and the stationary phase method
to evaluate the multiple integrals involved, we calculate the level-crossing probability and analyze the
role of a resonance in the evolution of a two-level neutrino system. We compare this procedure with

more conventional ones, such as Landau's method and the ansatz of Kuo and Pantaleone and Petcov.
We verify that our results reproduce the correct extreme nonadiabatic limit and give the standard solu-

tions in the adiabatic regime for any arbitrary matter density distributions. We discuss in particular the
case of solar neutrino propagation using the standard solar model predictions for the matter distribution
in the Sun.

PACS number(s): 14.60.Pq, 96.60.Kx

I. INTRODUCTION where 8(t) is such that

Neutrinos propagating through matter oscillate in a
different way than neutrinos propagating in vacuum
[1—4]. This is because interactions in a medium modify
the dispersion relations of particles traveling through. In
quantum-mechanical language, a different dispersion re-
lation signifies a different Hamiltonian of the system,
which gives a different time evolution equation for the
corresponding physical system.

Probably the most interesting consequence of the prop-
agation in matter is the possibility of large neutrino mix-
ing occurring when neutrinos cross a resonance region.
Such an effect can be better appreciated observing the
neutrino evolution equations in matter, which, for the
two generation case, after neglecting irrelevant overall
phases, can be written as [2]

d
1

dt vp

sin2L9

sin28 cos28 — 2GFN, (t)

v, (t)=v, (t) cos8(t) —v„(t)sin8(t),

v2(t) =v, (t)sin8(t)+ v„(t) cos8(t),
(2)

(1)
h=mz —m, is the squared mass difference of the vacu-
um mass eigenstates, 0 is the neutrino mixing angle in
vacuum, and &2GFN, (t) is the consequence of electron
neutrino coherent forward scattering from electrons in
matter, the number density of which at the region
reached by neutrinos at instant t is N, (t). The physical
eigenstates in matter, v, and v2, are obtained from the
current eigenstates v, and v„ through a convenient two-
dimensional rotation which diagonalizes the 2 X 2 evolu-
tion matrix appearing in Eq. (1). Such a rotation can be
parametrized by the mixing angle in matter 0 and one
can write

sin 28(t)= sin 28

2E~2GFN, (t)

hm

2

—cos28 +sin 20

(3)

6 sjn20 d
y —=— —lnN, (t)E cos20 dt

(4)

When y»1, the propagation is adiabatic everywhere.
Nevertheless, if y is of order 1 or smaller, off-diagonal
and diagonal elements can be comparable and transitions
between vl and v2 or vice versa can occur.

We are typically interested in calculating quantities

Thus 6I is substantially modified by the neutrino coherent
scattering from the medium. If N, (t)~0, 8~8 and we

recover vacuum expressions. When the brackets in the
denominator of Eq. (3) vanish, a resonance occurs,
8~m/4 and the mixing between fiavor eigenstates is
maximal. Finally, when N, ( t ) is extremely large,
8~m /2.

It is well known that any physical information about
the system of evolution equations (1) can be easily ob-
tained if the following condition is satisfied: the difference
of off-diagonal elements of the evolution matrix written
in the matter physical eigenstate basis (v„vz) are negligi-
ble compared with the difference of diagonal elements of
this same matrix. In this case, matter mass eigenstates
propagate without mixing and one has the so-called adia-
batic propagation. It can be verified [4] that this adiaba-
ticity condition is hardest to satisfy at the resonance
point. That is why one defines the adiabaticity parameter

y [1],on which the evolution equations crucially depend,
as the ratio between off-diagonal and diagonal entries of
the matter mass eigenstates evolution matrix at the reso-
nance point:
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such as the averaged probability of finding an electronic
neutrino at an instant t, if it was created at an instant to
as a given combination of v, and v2 [5],

P(v, ~v, ;t, to}=,'[1—+(1—2P}cos28(to) cos28(t)], (5)

where one has introduced the level-crossing probability
of one matter mass eigenstate to be converted into anoth-
er in the vicinity of a resonance region,

and t and t+ refer to two far-away points on either side
of the resonance, localized in regions where the propaga-
tion is adiabatic. Note that unitarity guarantees that P is
also the crossing probability for the v2~v& transition.
One expects that for y &&1, no level crossing occurs; i.e.,
the propagation is completely adiabatic and, consequent-
ly, P =0. In this particular case, one easily obtains all
the relevant information about the evolution of the physi-
cal system just using adiabatic equations, such as Eq. (5)
when P =0. Nevertheless, if y is of order 1 or smaller,
P@0and one has to calculate it.

The purpose of this paper is to discuss an alternative
way to calculate the level-crossing probability P. We use
the Feynman procedure of ordered exponential operators
[6—8] and the stationary phase method [9] to evaluate the
multiple integrals involved, to write a solution for the
system of equations (1) valid for any parametrization of
the matter density distribution N, . We compare the ob-
tained result for P with more conventional ones, such as
the level-crossing probability from Landau's method and
from the ansatz of Kuo and Pantaleone and Petcov to
verify a rather accurate coincidence for a large range of
the relevant physical parameters.

II. CONVENTIONAL METHODS
OF CALCULATING P

The usual procedure to obtain the level-crossing proba-
bility P consists in solving exactly the wave equations de-
rived from Eq. (1). One uses the Savor eigenstates v, and

v„ to write two coupled first-order differential equations.
It is possible then to decouple this system of equations el-
iminating one of the flavor eigenstates from these equa-
tions and obtaining a single second-order diFerential
equation involving only the resulting flavor eigenstate.

Having the solution of the second-order equation, one
can calculate, for instance, the electron neutrino survival
probability. After making asymptotic approximations
around the production and detection points and discard-
ing nonclassical oscillating terms, the result, compared
with Eq. (5), shows an expression for the level-crossing
probabihty P.

Nevertheless, exact, analytic solutions of this second-
order differential equation are not easy to find in its most
general form. It has been found that they exist for only a

I

few functional forms of the matter density distribution:
the linear [5,10—13], exponential [14—17], hyperbolic
tangent [18], and 1/r density distributions [19]. These
density distributions are not always those that appear in
nature. We can quote some examples. Supernova density
distributions approach a 1/r form, which cannot be sat-
isfactorily described by any of the above distributions.
For the solar case, an exponential function can fit the
matter density distribution predicted by the standard so-
lar model [20,21] for a large range of the radial distance.
But for the inner 15% of this distance, as well as for re-
gions close to the solar surface this exponential fit does
not work well.

The difficulty for obtaining general exact solutions of
the evolution equation has motivated the search for alter-
native methods of calculating the level-crossing probabili-
ty. In fact, nonadiabatic transition probability between
two states was calculated some time ago [11—13] in the
context of atomic physics. What is now called Landau's
method was applied to the neutrino case [5,10,12,19] to
obtain a simple expression for P:

P = exp( yF), — (7)

where the quantity F depends on how N, (t) varies near
resonance. However, this equation gives only the leading
exponential piece of the level-crossing probability, the
dominant part for large y. In the opposite case, when y
is close to zero and the transition is extremely nonadia-
batic, there may be other contributions to P. In fact, in
Ref. [19],the extreme nonadiabatic limit for P was evalu-
ated:

limP= cos 8. (g)

III. THE FKYNMAN PROCEDURE
OF ORDERED EXPONENTIAL OPERATORS

To obtain the level-crossing probability P, the wave
equations (1) have to be solved. We use the Feynman
procedure of ordered exponential operators [6—8] to
write a formula solution for any parametrization of the
evolution matrix elements (1); in particular, for any arbi-
trary matter density distribution. Using Eqs. (6) and (2),
it is easy to calculate the relevant level-crossing ampli-
tude of probability around a resonance:

Obviously, this indicates that, at least in this limit case,
Landau's expression (7}fails. The same author developed
then an ansatz for P based on Landau's formula that
avoids this problem [19,22]:

P= exp( yF) exp( ——yF/si—n 8)
(9)

1 —exp( —yF/sin 8)

For y greater than order sin 8 this expression for P is
dominated by the first term in the numerator which coin-
cides with Landau's expression, Eq. (7}.

(v2(t+ )iv, (t ) ) = A~(v, ~v, }sin8(t+ }cos8(t ) —Az(v„~v, )sin8(t+ }sin8(t )

+ Az (v, ~v„)cos8(t+ ) cos8(t ) —Az (v„~v„)cos8(t+ )sin8(t ), (10)
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where the subscript R indicates transitions around reso-
nance.

In order to evaluate the level-crossing probability P we
have to calculate the amplitudes of probability appearing
in Eq. (10). Therefore, we want to obtain a solution of
the system of equations (1) in a time interval [t,t+ ] us-

ing an arbitrary boundary condition (v, (t },v„(t )).
Let us assume that electron and muon neutrino states are
described by a two-component column spinor

P(t) =(v, (t),v„(t)) .

In order to simplify our expressions we will introduce a
new spinor g(t) related to P(t) through the convenient
phase transformation

P(t)= exp ——f dt' cos28 —&2G N (t')
2 2E F e

X(I—o 3) p(t),

where we have introduced the basis of the Pauli matrix
(I,o, ), i =1,2, 3. Since we are interested in transition
amplitudes around the resonance, and the quantity

(b, IZE cos28 &2GFN,—)

is negligible in this region [see Eq. (3)], the phase factor
relating g to p reduces to just an irrelevant phase factor.
Consequently, al1 the relevant information about the
physical system we are interested in is totally given by
g(t) It can be. shown, substituting Eq. (11) into (1), that A (v ~v )= i 2n. —d'p(t)

R

' 1/2

sin26

Note that this stationary phase condition coincides with
the resonance condition for which the mixing angle in
matter 8, given by Eq. (3), is maximal. The major contri-
bution to the value of the integrals appearing in Eq. (14)
arises from the vicinity of the resonance point, i.e., the
point where condition (15) is satisfied. This is the main
result of the method of stationary phase and this is why
we believe the Feynman procedure of ordered exponen-
tial operators together with the stationary phase method
is indicated to analyze what happens around the reso-
nance, even if the propagation in this region is in the
nonadiabatic regime, which is, according to our previous
discussion, difficult to analyze through other procedures.

Assuming that the condition (15) for the existence of a
stationary phase is satisfied, i.e., there exists a resonance,
we can write expressions for the amplitudes of the proba-
bility which enter in Eq. (10). Thus the amplitude of
probability A R ( v, ~v„) in a resonance region is simply
given by the upper o8'-diagonal term of the 2X2 matrix
of the Eq. (14) calculated through the stationary phase
method [9]. The other relevant amplitudes Az (v, ~v, ),

Az(v„~v, ), and A&(v„—+v„) are given, respectively, by
the upper diagonal, lower off-diagonal, and lower diago-
nal elements of the same matrix.

Let us now calculate the first-order contribution of
these amplitudes. If we want to evaluate the v, ~v„
transition, terms accompanying o + in Eq. (14) have to be
considered and we can write

i—g(t)= sin28(e'~'"o +e ' "o )g(t) .
. d

(12)

o.+ and o. are the lowering and raising operators and
X exp ip(t~)+i (16)

p(t)= f dt' cos28 &2GFN, (—t') (13)

%e can now apply the Feynman procedure to write a
formal solution for Eq. (12):

E+ I

g(t+ ) =Exp i f dt—. ' sin28(e'~" 'o
4E

+e 't'" 'o )+

Xg(t ), (14)

where Exp indicates an expansional defined as a sum of
multiple ordered integrals [6—8).

If we now assume that p(t) is large, as is the case for a
large range of values of the physica1 interesting matter
distributions N, (t), the integrand in Eq. (14) oscillates
very quickly leading to vanishing contributions to the in-
tegration unless some stationary phase tz can be found in
the interval of integration t (t~ & t+. The value of the
stationary phase is obtained through the relation [9]

A~(v, ~v„)= i 2g(1 —g +—( —( + )

X exp ip(tz )+i (17)

where

vr d p(t)
dt

—1 1/2

sin20 .
4E

(18)

We have applied the stationary phase method [9] to
evaluate the relevant integral. Observe that this result is
only valid if condition (15) is satisfied somewhere along
the neutrino trajectory; otherwise AR (v, ~v„) is negligi-

bly small.
Equation (16) is just a first-order approximation. It can

be improved by analyzing the upper order terms in the
expansion of the (14}. It is not difficult to verify that con-
tributions to v, ~v„ transitions come from terms of or-
der odd in this expansion. Since we are assuming that we
have only one stationary phase, the expansion in all or-
ders can be calculated and we obtain

—p(t) =0 c s2o8=&2G N,F(tz ) .
I =fR 2E

{15) For g (1, the series appearing in Eq. (17) is conver-
gent [23] and the whole amplitude can be written as
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Aa (v, ~v ) = —i exp i p(ttt )+i2gRe@ I+g2R4 (19)

In a completely analogous way we evaluate the opposite
v„~v, transition amplitude

A„(v ~v, )= i— exp ip(—ttt ) i-2g
p e 1+~2 a (20)

as well as the survival amplitudes of probability, given
now by terms of even order in the expansional:

A„(v, ~v, )= Aa(v„~v„)=
1+g2

(21)

Note that the electron and muon neutrino survival ampli-
tudes are equal to each other while v, ~v„and v„~v,
transitions differ by one phase factor.

Finally we can put Eqs. (19)—(21) into (10) and (6) to
obtain the final expression for the level-crossing probabil-
ity:

We observe from Fig. 1 that our expression (22) and
(23) for P coincides with the conventional expression (9)
for small values of y, i.e., in the extreme nonadiabatic re-
gime. For y of order 1, three cases have to be con-
sidered. For a large range of values of 8 (8 of order or
smaller than 0.2}, this agreement is rather accurate every-
where. For 0=0.5, a disagreement becomes appreciable
in the region where y is around 1. Finally, for a maximal
neutrino mixing angle in vacuum, 8~+/4, both expres-
sions (9) and (22) coincide again and are approximately
equal to —,

' independently of y. Obviously, this is not an

interesting physical case and is usually discarded.
It should be noticed that the conventional expression

(9}differs from the numerically calculated values of P [16]
in regions where y =1 and 8 is large (8=0.4—0.6). We
believe, furthermore, that our expression (22) does not
have a strong dependence with 8. Thus we expect the
same accuracy of our expression for small or large 8.
Our main limitation comes from the lack of an expression
for P if g =(n I16)y ) 1. Nevertheless, this is exactly the

2
P= sin [8(t+ ) 8(t )]-

I+/
22+ [ cos [8(t+ ) 8(t )]—

(1+(2)2
0.5— e=0.01

+ cos [8(t+ )+8(t }]], (22)
~ ~ ~ ~ ~ ~ III ~ I I ~ ~ ~ ~II0 ~ I ~ I ~ ~ I ~ I ~

where we have again neglected oscillating terms. Suppos-
ing that the neutrino production and detection positions
are far above and below the resonance region, respective-
ly, it is natural to consider

8(t ) =~I2 and 8(t+ ) =8 . (23)

2 r. (24)

Furthermore, since the second derivative ofp(t}, Eq. (13),
is essentially the first derivative of the matter density dis-
tribution N, (t), we compare Eqs. (4) and (18) to conclude,
after evaluating the involved quantities at the resonance
point through Eq. (15), that

0.5-

~ 0.5
~~
'I

p
o 1

CL

CO

I ps
O
O

8~0.03

8=0.08

~ I I ~ I ~ I~ I ~ I I ~ ~ I ~ ~ I I I ~ I ~ ~ ~ II I

8=0.2

N (t) =2.4X 102&e
—t~(o.o9 ~i««d~~) cm

—3
e 7 (25)

which is in good agreement with the standard solar mod-
el predictions for the matter density distribution inside
the Sun, except for regions close to the solar center or to
the solar surface and implies that F appearing in Eq. (9) isF= 1 —tan 8 [14—17].

Interesting enough, we observe that in the extreme nona-
diabatic limit, when y =(16Irr)g ~0, we recover from
Eqs. (22) and (23) the correct limit for P presented in Eq.
(8), differently from what happens with Landau's expres-
sion (7). Without any ansatz, we have obtained the
correct nonadiabatic limit.

This result is shown in Fig. 1 where we compare our
expression for P, Eq. (22), with the usually accepted ex-
pression for this same quantity, Eq. (9). We assume an
electron density distribution decreasing exponentially
along the neutrino trajectory [20,21],

05— e=o.5

~ I I I ~ III ~ ~ I I I ~ III0 ~ I ~ ~ III' '""I I ~ I ~ IIIII I I I ~ ~ IIII I I ~
' '''"t ' ' ' ''"s

0.5
8=@/4

o -5
10 10 10 10 10

Adiabaticity parameter y

~ a ~ ~ ~

16

FIG. l. Comparison of our expression for the level-crossing
probability P, Eq. (22) (solid line), with the usually accepted ex-
pression for this same quantity, Eq. (9) (dashed line), as a func-
tion of the adiabaticity parameter y, Eq. (4), for various values
of the vacuum mixing angle 8 aud for $2=(e./16)y(1. We
have assumed that the electron number density varies exponen-
tially according to Eq. (25) aud taken 8(t )=m/2, 8(t+)=8.
Note that for the limit case when g~w/4, both curves coincide
presenting a constant value 2, independently of y.
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beginning of the adiabatic regime and we know that in
this region P goes quickly to zero.

IV. CQNCLUSIQN

Using the Feynman procedure of ordered exponential
operators and the stationary phase method to solve the
multiple integrals involved, we have analyzed the role of
the resonance in a nonadiabatic neutrino propagation in a
concise and general way. We have obtained an expres-
sion, Eq. (22), for the level-crossing probability valid for

y of order or smaller than 1, which reproduces the
correct extreme nonadiabatic limit and coincides with the
conventional expression for P, Eq. (9), for a large range of
the involved parameters.
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