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Induced charge of neutrinos in a medium
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Neutrinos can polarize a medium due to their weak interaction. This can manifest itself as an
efFective induced charge of the neutrino. We show how it is related to the Debye screening length in
a plasma, first using the results of the one-loop calculation of the neutrino electromagnetic vertex
and then in general to all orders in e and to leading order in the Fermi coupling. We also discuss
how the results are modified if the neutrinos have mass -ither Dirac- or Majorana-type.

PACS number(s): 14.60.Lm, 11.10.Wx, 13.10.+q

I. INTRODUCTION

The properties of neutrinos that propagate through a
medium have been the subject of great interest in the
recent literature. This has been motivated by the attrac-
tive suggestion that the solar neutrino problem [1] can be
solved by the resonant oscillation mechanism [2], which
hinges on the characteristics of the neutrino propagation
in a background medium [3]. Inspired by its potentially
important effects, the neutrino interactions in a material
environment have also been studied in some detail [4—12].
Of primary interest along these lines is the study of the
electromagnetic interactions of neutrinos in a medium. A
classic problem in this field is the decay of a plasmon into
vg pairs [13], which has received considerable attention
recently [8,11,14]. It has also been pointed out that the
rate of decay of a massive neutrino into a lighter neutrino
and a photon increases tremendously [9,10] in matter, as
a consequence of the fact that the Glashow-Iliopoulos-
Maiani (GIM) mechanism is not operative in a medium
with electrons but no muons or taons.

The study of the electromagnetic interactions of neu-
trinos in a medium, as well as the results and conclusions
mentioned above, are based on the one-loop calculation
of the effective electromagnetic vertex of the neutrino,
which has been performed to the leading order in the
Fermi constant [8] using the methods of "quantum sta-
tistical field theory. " The implications of this calcula-
tion have been only partially explored. In this article, we
show that the results of Ref. [8] imply that the neutrino
acquires a small effective charge in a medium. This point
was realized by Oraevsky and Semikoz [6] using methods
of plasma physics before the calculation of the vvp ver-

tex was performed. On the other hand, our method is
entirely different, hopefully easier to follow for a particle
physicist, and it brings out some interesting points which
are not easy to see in the method used by Oraevsky and
Semikoz [6]. In addition, we also calculate the induced
charge for neutrinos which are massive, distinguishing
between the cases of Dirac and Majorana masses.

The plan of the paper is as follows. In Sec. II we estab-
lish notation and the definition of the induced charge that
is used in the rest of the paper, and show why the neu-
trino can acquire an induced charge in the medium but
not in the vacuum. Then, using field-theoretic methods,
we will show that the neutrino electromagnetic vertex is
related to the photon self-energy in the medium and, in
particular, the neutrino induced charge is related to the
Debye screening length in a plasma. This relation is de-
rived to one-loop order in Sec. III, and then in Sec. IV
we show that it is valid to all orders in e (and to first
order in the Fermi coupling). In Sec. V we use this rela-
tion to find an expression for the induced charge of the
neutrino, and in Sec. VI we show that the magnitude of
the induced charge depends on whether the neutrinos are
massless or massive and, in the latter case, on whether
the mass is Dirac- or Majorana-type. Finally, using the
results of Ref. [8], we will estimate the induced charge in
some particular backgrounds.

II. ELECTROMAGNETIC VERTEX OF THE
NEUTRINO AND THE DEFINITION OF THE

INDUCED CHARGE

%'e begin by understanding the reason why the neu-
trino can acquire an induced charge in the medium but
not in the vacuum. The off-shell electromagnetic vertex
function I'p is defined in such a way that, for on-shell
neutrinos, the vvp amplitude is given by

More often, this is called the "finite temperature field the-
ory, " but the name is misleading because the methods are
also applicable at zero temperature with a finite density of
particles in the background. where

(2 1)
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(2 2) (k'
I p(0) I k) = u(k') I'p(0, q) u(k), (2 9)

is the momentum carried by the photon. In general, I'p
depends on k and k' or, equivalently, on k and q. For
neutrinos in a medium I'p depends also on the param-
eters characterizing the medium. For homogeneous and
isotropic media, to which we will restrict ourselves, there
is only one such parameter, viz. , the velocity four-vector
of the background medium v".

There are two important consequences of the fact that
the external (neutrino) lines in the Feynman diagram for
the vvp amplitude are neutral. First, I'p satisfies

1
e,(r = u(k)I'p(0, q -+ 0)u(k),2E

(2.10)

which is the basic equation to interpret our results, but
it can be cast in an elegant way. Introducing the spinor
projection matrix

where the notation I'&(qP, q) has been used to indicate
explicitly that we are considering the dependence of I'
separately on the frequency and wavelength of the pho-
ton. Thus we obtain

qpr" =0 (2 3) S(k)—:u(k) (Su(k) = 2(1+ Aps)g, (2.11)

1 1

(p+q)2 —m q +2p q+ (p —m )
' (2.4)

where m is the mass of the internal line. However, since
p2 g m for any internal line, no singularity is produced
for q" -+ 0.

From the two properties of I'p just discussed, we obtain

I'p(q" = 0) = 0, (2.5)

which implies that the particle associated with the ex-
ternal line does not acquire a charge in any order of per-
turbation theory. To see this explicitly, we will consider
the matrix element of the charge operator between two
neutrino states with momenta:

k" = (E, k), k'" = (E,k') . (2.6)

We use states with the same energy, because then

q—:k —k' = (O, q) (2.7)

with q = k —k', which corresponds to the static limit.
Denoting by p(z) the charge density operator, the efFec-
tive charge is defined by the equation

e.e(k'(k) = f d'e(k'(p(e)(k)

(2m) '~ ~'& (q) (k'
I p(o) I k) (2.8)

On the other hand,

for all values of q. It is important to realize that for neu-
trinos Eq. (2.3) holds for arbitrary values of q, and not
just when k and k' are on shell. If the fermion lines in the
diagram were to correspond to a charged particle (e.g. ,
the electron), then the analogous relation in that case in-
volves terms in the right-hand side involving the inverse
propagators corresponding to the external fermions. In
that case Eq. (2.3) does not hold for arbitratry values of
q, but only when both k and k' are on shell.

The other important consequence of the fact that the
external lines are neutral is that I'p is well defined in the
limit q" -+ 0. The reason is that the photon vertex must
be connected to a pair of internal lines of the diagram. If
one of these lines is assigned the loop momentum p which
is integrated over, the other line will carry a momentum

p 6 q. The propagator of this second line will involve the
factor

where the last step is valid for massless Weyl spinors with
A = +1 being the helicity, we can rewrite Eq. (2.10) as

e g = tr [I'p(0, q ~ 0)S(k)],2E
1

4E
tr [I', (O, q -+ O) (1+Aq, )f],

(2.12)

(2.13)

where again the second step is valid for massless Weyl
spinors.

Since I'p has a well-defined limit as qP ~ 0, we can
make a Taylor expansion around q = 0:

I'() ——G() + q Gg + 0 ((q ) ),
r = H, + q'H, + o((q')'), (2.14)

where all the coefBcients are independent of q . Then
from Eq. (2.3) it is easy to deduce that, in the limit
q' ~0,

lp ——q H) +o(q )
r = q'H, + o((q')') . (2.15)

Hq ——const x q
q 2 (2.16)

In such a case, the constant appearing in this equation
is the value of I'o in the limit q = 0, q ~ 0. Thus,
&om the definition of the efFective charge in Eq. (2.13),
it follows that e & is nonvanishing.

In what follows, we will show that this is exactly what
happens, first explicitly by using the one-loop calculation
of the neutrino electromagnetic vertex and then by a gen-

Since Hq has a well defined limit as q ~ 0, it follows that
I'p ——0 in this limit, and f'rom Eq. (2.13) we see that ef"l
is zero in the vacuum.

In the medium, Eq. (2.3) continues to hold for any
value of q, and the relations in Eq. (2.15) are also valid,
but Hq no longer has a well-defined limit as q ~ 0. There
are several ways to understand why this is so. One of
them is to notice that in the case of the medium, some
of the internal lines to which the photon is attached are
on shell because they correspond to particles that are in
the background. Thus, the singularities that are avoided
in the case of the vacuum because the photon is attached
only to internal ofF-shell lines, reappear here. Therefore,
nothing prevents Hq to develop a singularity as q ~ 0 of
the form
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eral Geld-theoretic argument, which extends the one-loop
result to all orders in e. This will be done by showing that
I'g is related to the photon self-energy «rq~(q). Further,
in the limit that we are considering, «Tp~(q = O, q —+ 0)
is related to the Debye screening length, which allows us
to establish the relation between the latter quantity and
the neutrino induced charge.

FIG. 2. The diagrams of Fig. 1 in the limit of in6nitely
heavy W and Z masses.

III. ONE-LOOP RESULT

VVe are interested in the regime where the neutrino mo-
menta are small compared to the masses of the R' and Z
bosons. Therefore, we can neglect the momentum depen-
dence in the W and Z propagators, which is justi6ed if we

are performing a calculation to the leading order in the
Fermi constant GF. In this approximation, the diagrams
contributing to the electromagnetic vertex then appear
at the one-loop level, and are shown in Fig. 1. Since the
momentum dependence of the weak gauge bosons are ne-

glected, these two diagrams can be represented by the
single diagram of Fig. 2 with a four-fermion vertex. Let
us denote the four-fermion interaction by

d4p
«&~~(q) = (-«e)'(-1)

(2«r)'
tr

x [Vi «S» (p) Vp «S» (p —q)] .

(3.3)

Therefore, Eq (3..2) can be written in the form

I'p = — p~(1 —p )(A«rj, p+ B«r„).
2c

(3 4)

where we have defined

tion from A in Eq. (3.2) is intimately related to the
vacuum polarization of the photon which, at one-loop,
arises from the diagram in Fig. 3 and is given by

l:I„",
' l = —~2G» [vp~Lv] [fop(A+ Bgs) f] (3.1)

where L = 2(1 —ps) is the projection operator for left
chirality, and f stands for the electron field. We can then
write the amplitude of Fig. 2 as

i«r„= (-ie) (-1) d p tr
(2«r) 4

xh «S (p)~.~ «S (p q)]-
(3 5)

—«I'p = (—ie)(—iG» V2)(—1)p~L
d4p

x tr [pp iS» (p)pp(A+ Bps)
2«r 4

xiSF(p —q) ], (3 2)

where i SF(p) denotes the propagator of the background
particles with momentum p, and e is the charge of the
electron. In complicated systems, this propagator may
be complicated, and the integration over the momentum

p may have unusual measure as well, but we do not need
these explicitly for what follows.

Now the interesting observation is that the contribu-

The term proportional to x& does not contribute to
I 0. The reason is that the trace contains a factor of p5,
and therefore can be nonzero only if there are at least four
other p matrices present. Since the terms in a fermion
propagator have at most one p matrix, the trace involves

tr(pspqp~p pp) = 4iep~ j«. After the p integration this
can yield only a term proportional to ~g~ pq v~, which
does not contribute to the zeroth component of I'p.

IV. GENERALIZATION TO HIGHER ORDERS

The above result, based on the one-loop calculation of
the photon self-energy and the neutrino vertex function,
can be generalized as follows. The photon self-energy is
de6ned in general by

eee = (—ie) J d ze' (T(jt ~j ( )j4( z)')e0

= (
—je) d ze ' ' (TU0 Ije(0)j (z)), (4.1)

where jp is the electron current density

FIG. l. One-loop diagrams for the efFective electromag-
netic vertex of neutrinos which contribute in the limit that
the four-momenta of the W and the Z lines are neglected.

FIG. 3. One-loop diagram for the vacuum polarization of
the photon.
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i~ = fy~f, (4.2) with

U(' =exp
~

i d ZZ,-„'
(.

(4.3)

(4 4)

On the other hand, the neutrino vertex function of Eq.
(2.1) is defined by

4 —A: 'I(."

Tz(y, y') = ef deed ye '"' e'"'"x T ezy~ 1 d z01„",' '1 z(y)jz(0)y(z)
41

(4.5)

where

+(total) +(weak) +(em)
int int int (4.6)

I

should be replaced by 8,„'t + 8,„'t' ",but this
would not change Eq. (4.12).

The subscript a in Eq. (4.5) is used to indicate that
Fp is obtained from the above formula by amputating
the propagators corresponding to the external neutrino

lines. It is convenient to rewrite Z,„t', given in Eq.
(3.1), in the form

V. EXPRESSION FOR THE INDUCED CHARGE

The relation between the induced charge and the De-
bye screening length is obtained as follows. As already
argued, the zeroth-component of I'p is given by

where

(weak) 5&2GFi—l,w~il. %i+ ~op (4.7)
I'()(O, q ~ 0) = — PP[1 —P ]mpp(o, q m 0). (5.1)

28

ip —= fviv'f

To 6rst order in GF,

(4 8) The most general form of mpp is [15]

&Ap = TrTRAp + &LQAp + TTPPAp 1 (5.2)

I'p ——e d xd yd ze '"' e'" '"

x TU' vy jp ovxiZ t' z
a

(4.9)

which, using Eq. (4.7) and amputating the external neu-
trino lines, reduces to

where

with

RAp = gAp QAp1

VPVp
Qip —=

V

pp — e J4pdypq vcx P

(5.3)

(5.4)

(5.5)

rg = ieGy v 2' —L

x
~

d ze ' *(TU1' 1jz(0)je('z))

+ dze '' TU(' jp0 j z (4.10)

eqp
gAp = gAp-

q

VP = ggpV )

Q= V(q v) —q

(5.6)

(5.7)

(5.8)

Deaning
In the rest frame of the medium, with v" = (1,0, 0, 0),
the above de6nitions give

——(
—je) f d ze z (TUy jz(z')j'(0)),

= (—je) f d ze 'e'* (TU ' jz(0)j (z)), (411)

Qpp(o, q) = vpvp,

Rpp(0, q) = R'p(0, q) = Rp (0, q) = 0, '

Ppp(0 q) = Pp(0 q) = Pp (o, q) = 0, '

(5.9)
(5.10)

(5.11)

we Anally obtain the relation

r, = — &p(i —&')(x~„,+e „',).
28

(4.i2)

This expression is the same as Eq. (3.4), except that
now it is clear that it is valid in all orders of the elec-
tromagnetic interactions. Since vr& is a pseudotensorAp
that depends only on q and v, it must be proportional to
Gap pq v~, and therefore it does not contribute to Fo in
the rest frame of the medium. If one includes the effects
of strong interaction as well, the various occurences of

Trpp(04 q) = 7TI, (0 q)
~„(o,q) = ~,,(o, q) = o.

Eq. (5.1) then yields

(5.12)

(5.i3)

(Gy A')r.(o, q -+ o) = —
~ l zp(1 —»)~, (0, q ~ 0).

2e p

(5.14)

where we have indicated explicitly the fact that we are
evaluating R, Q, and P in the static limit, q = 0. From
Eq. (5.2) we then obtain
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Using the definition of the Debye screening length,

r& ——~1,(0, q ~ 0), (5.15)

we finally obtain, for the induced neutrino charge by the
use of Eq. (2.13),

eI„sl ——— (1 —A),
+2erD

(5.16)

where, as stated before, A is the helicity of the neutrino.
Thus, it is clear that only the left-handed neutrinos have
an induced charge. The induced charge for the right
handed neutrinos vanish since they have no weak interac-
tions. If they interact via some other weaker interaction,
then of course they also acquire an induced charge, but
the magnitude of that will be further suppressed. Also,
note that e,.„& oc e, since rD oc e which follows from
Eq. (5.15).

VI. GENERALIZATION TO MASSIVE
NEUTRINOS

S(k) = u(k) 8 u(k) = —,'(f+ m)(1+ Aq'f), (6.1)

The generalization of our previous results to massive
neutrinos is straightforward, although there are several
important differences. The effective charge is defined by
Eq. (2.13), but the expression for the spinor projection
operator S(k), as well as the expressison for I o, differ
from the previous case. The spinor projection operator
S(k) is given, for massive particles, by

B. Majorana case

For (massive) Majorana neutrinos we again have to use
the spinor projection operator appropriate for massive
particles, given in Eq. (6.1). However, the formula for
I'~ is modified as follows. Going back to Eq. (4.9), it is

important to recognize that each one of the neutrino field
operators v(y) and v(y) can be contracted with either
one of the same field operators that come from the factor

. The reason is that for a Majorana neutrino the
field operator is self-conjugate and therefore v(y) can be
contracted with not only v(y) but also with itself. The
net result of adding these two possible contractions is
that the expression for I'q given in Eq. (4.12) is replaced
by [16]

I'~ l = — (—2p~p')(Avrgp + Bar„) .
2e

(6.4)

Substituting this formula and the projection operator
given above for the massive case, into Eq. (2.12) we then
obtain the effective charge for Majorana neutrinos:

(v )e. v 2Gs A 4~k~

er~~ E (6 5)

We notice the following features: (i) the positive and neg-
ative helicity states have opposite effective charge; (ii) in
the massless limit the result for the negative helicity state
is the same one obtained in the massless Dirac case and
in the Weyl case, while the positive helicity state has the
opposite value of the charge. This is not surprising since
the right-handed component of the Majorana neutrino is
just the CPT conjugate of the left-handed one.

where 8" is the spin polarization vector which, for helicity
states, is given by VII. NUMERICAL ESTIMATES

s" = —(fkf, Ek/[k() . (6.2)

Therefore, although Eq. (2.12) remains valid for massive
neutrinos, Eq. (2.13) does not. To proceed, we consider
the cases of Dirac and Majorana neutrinos separately.

A. Dirac case

For Dirac neutrinos, Fp remains to be given by Eq.
(4.12) and the effective charge by Eq. (2.12). The for-
mula for the effective charge of Dirac neutrinos is now
obtained by substituting Eq. (6.1) in Eq. (2.12), yield-
lIlg

( o) GpA ( Aikido

&) (6.3)

Specializing this formula to the case of massless neutri-
nos we recover Eq. (5.16), as it should be. In the opposite
limit of nonrelativistic neutrinos, we see that both helic-
ity states have the same effective charge, which is equal
to half the value of the charge of the left-handed neutrino
in the massless case.

2sin 0~ + 2A=
12 slIl 0~—

for v„
foI v&& v& .

(7.1)

For massless v„our result exactly reproduces the results
of Oraevsky and Semikoz [6]. Our formulas can be used
to obtain the induced charges for the v„and v as we11,

even if they are massive particles.
One curious thing to note is the fact that the in-

duced charge of the v, is different from that of v„or v
since the v 's interact with the electrons of the medium
via both charge and neutral currents. Thus, if neutri-
nos mix, when they oscillate during their propagation
through a medium, the induced charges also oscillate.
Using siIl 0~ ——0.23, we see that

In order to obtain numerical estimates, we note that
since ~k~/E ( 1, the magnitude of the induced charge is
maximum if the neutrino is massless. Thus, in this sec-
tion, we use Eq. (5.16), which is valid for massless neu-

trinos. We see that we need to know two things in order
to obtain a numerical estimate for the induced charge of
the neutrino, viz. , A and rD. The first is easy, and is

given by the standard model of electroweak interactions.
In fact, one obtains
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e'"'
1Dd 24

e.(v„)
1Ild

(7 2)

e."' = —2x10 x
~

(1cm) '
(7.3)

It therefore seems that this oscillation of charges should
be a fantastic phenomenon, judging by the fact that the
ratio of the induced charges is large, and also is negative.
However, that is not the case because the magnitude of
the induced charge appears to be extremely small. In
fact, putting numbers in Eq. (5.16), one obtains

where n, is the electron number density . In order for the
induced neutrino charge to be detectable in experiments,
the values of T and n must be such that the resulting
Debye radius is small enough. While this is not the case
for any known plasma, the methods presented here may
prove useful in applications to similar situations where
more exciting results may be obtained.

Note added in proof Aft. er this work was submitted for
publication, we were made aware of a paper by Altherr
and Kainulainen [17] where the one-loop electromagnetic
vertex of neutrinos has been calculated in a medium. The
calculation agrees with that of Ref. [8]. These authors
specifically noted that an induced charge appears in the
medium. No effort was made to make contact with the
Debye radius.

To proceed, we need the value of rD for the background.
This can be obtained either from the results of Ref. [8] or
from standard texts on plasma physics. For a background
consisting of nonrelativistic electrons at temperature T,
the Debye radius is given by

ACKNOWLEDGMENTS

The work of P.B.P. was supported by a grant &om the
Department of Energy.

(7 4)

Formulas appearing in books on plasma physics usually
have a factor 4' in the denominator on the right-hand side
since their de6nition of electric charge is different.
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