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Eikonal diagrams in multiparton semihard interactions
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We study the set of eikonal diagrams, derived from perturbative QCD, at the lowest order in the cou-
pling constant and with vacuum quantum number exchange, in the three-body interaction of a high-
energy parton with two target partons. The contribution to the semihard component of the inelastic
cross section is worked out by evaluating the leading behavior of all the dominant cut diagrams. The
different cut amplitudes are shown to be proportional to one another, with the same weights of the cut-
ting rules which have been derived in the context of multi-Pomeron exchange. As a consequence of the
dominant configuration in the loop integrals, corresponding to the projectile parton on shell between
successive interactions, the process is represented by the simplest probabilistic picture, where the three-
body interaction is factorized as the product of two-body interaction probabilities.

PACS number(s): 13.85.Hd, 11.80.La, 12.38.Bx, 12.40.Nn

I. INTRODUCTION

Multiple interactions in the case of two-body parton
scattering, for s —+~, t/s~O, with s and t the usual
Mandelstam variables, have been systematically investi-
gated both for an Abelian theory of interaction [1] and in

QCD [2]. In the Abelian theory, the set of multiple in-
teractions, which are obtained from the s-channel unitari-
zation, corresponds to the eikonal diagrams. At a given
order in the coupling constant g, the eikonal diagrams
differ with one another only by the ordering of the ex-
changed quanta and the eikonal approximation is imple-
mented by taking the leading behavior of the sum of all
the diagrams. While each single eikonal diagram with
loop integrals is proportional to a power of lns, as a result
of the loop integrations on the longitudinal variables, the
sum of all the eikonal diagrams at a given order in the
coupling constant does not contain any lns. The leading
behavior of each single diagram is canceled by a destruc-
tive interference between different terms, in such a way
that, after summing all the terms, at a given order in the
coupling constant, only a subleading contribution,
without any power of lns, is left.

In the non-Abelian case, each diagram is characterized
by a different color matrix, so that different diagrams
cannot be added any more as isospin scalars. In order to
study the non-Abelian case, one needs to introduce, at
each order in the coupling constant, a set of isospin fac-
tors which acts as a base for decomposing all isospin fac-
tors of the Feynman diagrams at the same order. To that
purpose the box-isospin factors have been introduced [3].
Using the Jacobi identity for the structure constants and
the commutation rules of the generators of the algebra,
one can express each isospin factor, at a given order in g,
as a sum of box-isospin factors up to the same order in g.
Increasing the perturbative order, the decomposition in-
creases rapidly in complexity. The case of the sixth order
is extensively discussed in Ref. [4] and the graphical rep-
resentation of the corresponding box-isospin factors is
shown in Fig. 1. A calculation through the tenth pertur-

bative order, for the vector-meson vector-meson elastic-
scattering amplitude, is presented in Ref. [3], while, in
Ref. [5], the analysis is generalized (up to the eighth per-
turbative order) to the three- and four-body parton in-
teraction. The perturbative analysis shows a remarkable
pattern of regularity. The decomposition of all isospin
factors, in terms of box-isospin factors, allows one to ex-
press the space-time part multiplying each box-isospin
factor as an expansion in powers of g and lns. All the
coefficients of the expansion conspire to replace the t-
channel gluons of the Feynman diagram, at the lowest or-
der in g and with a color factor equal to the box-isospin
factor, with Reggeized gluons [4,6], namely, by modifying
each of the gluon propagators by a factor s 'q', where q is
the momentum of the corresponding gluon.

Within the Reggeized gluon scheme, which arises from
the perturbative analysis, the relevant quantities to be
considered are the sets of Feynman diagrams contribut-
ing to the same box-isospin diagram. One may distin-
guish two different kinds of box-isospin diagrams: (a)
those without interactions among the exchanged lines,
such as graphs 1, 2, and 4 in Fig. 1, and (b) those with in-
teractions among the exchanged lines, such as graph 3 in
Fig. 1.

In case (a), the lowest-order term in g of the space-time
factor is given by the sum of all the space-time factors of
the eikonal diagrams at the same order; namely, it is the
same as the contribution obtained by exchanging elemen-
tary vector mesons within an Abelian theory of interac-
tion. On may also notice that, in case (b), every lowest-
order term in g contains a power of lns which grows with
the number of horizontal lines.

FIG. 1. Box-isospin diagrams up to order g' for the two-
body interaction.
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A feature of gluon Reggeization, which we would like
to emphasize, is that, at a given order in g and for each
box-isospin diagram, one needs to consider a whole set of
Feynman diagrams, whose space-time parts have to be
added coherently. The resulting behavior is very
different from the behavior of each single diagram. The
lowest-order term of the space-time part of each box-
isospin diagram of the (a) kind is precisely analogous to
the Abelian theory and, correspondingly, although each
single diagram grows as a power of lns, the sum does not
contain any more factors proportional to lns. While
color factors can be reorganized in such a way that only a
few of them multiply a space-time part with a leading
behavior, a major point about Reggeization is that terms,
leading at the lowest order, become subleading after tak-
ing into account higher-order corrections, so that only
terms with the exchange of vacuum quantum numbers
finally dominate. As a consequence, in the framework of
Reggeized gluons, one does not learn about dominant
terms in the amplitude by simply selecting Feynman dia-
grams with the criterion of the 1eading behavior at high
energy. One should rather focus on the exchange of quan-
tum numbers and sum the contributions obtained by pro-
jecting all the different Feynman diagrams which contrib-
ute to the given exchange of the quantum numbers.
Moreover, because of interferences between different
terms, taking into account the diagrams with a leading
behavior only while performing the sum is not a con-
sistent procedure.

On the other hand, the different attitude of selecting
the QCD diagrams instead, with the leading behavior at
large s, and limiting the analysis to the corresponding
color factors, is often used to discuss higher-order ex-
changes, in interactions involving many partons [leading
logarithmic approximation (LLA) QCD [7]]. The same
criterion is used in Ref. [8] (Sec. 3.3) to select the "inside"
topology in order to discuss the different cuts of double
ladder exchange diagrams, with the purpose of proving
the validity of the Abramovskii-Gribov-Kancheli (AGK)
cutting rules [9] in QCD.

Since the physical picture of the interaction is consid-
erably different in the two approaches, we find it useful to
reconsider, within the optics of gluon Reggeization, the
relations among the different cuts of a definite QCD am-
plitude. We examine, therefore, a case which belongs to
the category of the class of diagrams studied in Refs.
[3—5] allowing, nevertheless, a comparison with the
analysis performed in Ref. [8]. Most of the arguments,
which have been produced in Ref. [8], are based, in fact,
on considerations involving only the first step of the
ladder. We are therefore allowed to analyze the simplest
case of three-body parton interaction, where the ex-
changed ladders are replaced with box diagrams. As a
consequence, the least order in the coupling constant to
be considered is eight. In Fig. 2 all Feynman diagrams,
at the eighth order in g, with the projectile exchanging
two gluons with each of the two targets and with the ex-
clusion of terms containing the three or four gluon ver-
tex, are represented. In Fig. 2, and in Fig. 3 as well, the
projectile is represented by the horizontal line in the mid-
dle of each graph, the target partons are the two horizon-
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FIG. 2. The set of three-body eikona1 diagrams under con-
sideration.

FIG. 3. Isospin diagram associated with the set of diagrams
in Fig. 2.

tal lines in the top and the bottom, and the four remain-
ing lines are the exchanged gluons. The set of diagrams
in Fig. 2 is the complete set of diagrams which contrib-
ute, at the lowest order in g, to the box-isospin diagram
of the (a) kind, with the quantum number exchange of
two gluons in each of the t channels. At the eighth order
in g, the base for the isospin factors is not unique [10].
Any of the color factors of the 24 diagrams in Fig. 2 may
be used to represent this base isospin diagram. Since the
color factor, which is selected with the argument of the
diagrams leading at high energy, corresponds to the "in-
side" topology, we choose, as an isospin factor associated
with the diagrams in Fig. 2, the diagram in Fig. 3.

We limit our analysis to the isospin term represented in
Fig. 3, which is only one of the components in the much
structured three-body amplitude. The term, which we
have selected is, however, simple enough to allow a rath-
er detailed analysis. In fact we take into account all the
relevant subleading contributions both to the term in the
amplitude, which we have selected, and also to all the
corresponding different cuts of the amplitude. The role
played by the subleading terms is, in this way, fully ex-
plicit. Our analysis shows that, because of destructive in-
terferences between different diagrams, next to leading
terms in lns are of the same importance as the leading
ones.
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An interesting property of the sum of the space-time
parts of the diagrams of the set in Fig. 2 is that it is gauge
independent, at least in the case of the three quark in-
teraction. The reason is that the set of diagrams in Fig. 2
is a complete set of diagrams, in electrodynamics, with a
given quantum number exchange and at a given order in
the coupling constant. The term under investigation, in
the three-body parton amplitude, has, moreover, a close
connection with the eikonal models of high-energy ha-
dronic and nuclear interactions [11]. In addition, as will
result by studying the cuts of the amplitude, it is directly
related with the semihard rescattering of a high-energy
parton, which is expected to be a very frequent process in
nuclear collisions at the energies of future colliders [12].

The paper is organized in three parts. In the first we
analyze the amplitude for the three-body interaction cor-
responding to the box-isospin diagram in Fig. 3, whose
space-time part is given by the set of diagrams in Fig. 2.
In the second part of the paper we consider the cut am-
plitude and we work out all the leading contributions to
the inelastic cross section. The last part is devoted to a
final discussion and to a few concluding remarks.

II. AMPLITUDE

This section is divided in two subsections. In Sec. II A
we make a detailed study of the behavior for large s and
fixed t of the space-time factors of all the diagrams in Fig.
2. In Sec. II B we discuss the color decomposition of the
color factors.

A. Space-time factors

In Fig. 4 one of the diagrams in the set under con-
sideration is shown and the kinematical variables are ex-
plicitly indicated. The momentum of the projectile par-
ton is p+ and the momenta of the two target partons are
(k, —Q) and (k2+Q) . The plus and minus signs are
the light-cone frame components which we choose in
such a way that the projectile is characterized by values
of the plus momentum component of order Vs while the
same holds for the minus momentum components of the
target. The typical values of (k, )+, (k2)+, (k, —Q)+,
(k2+Q)+, and p are of order m /&s, where m is a
typical value for the hadron mass, which also gives the
size to the transverse momenta of the external lines. In
order to make a meaningful perturbative calculation, we

introduce the lower cutoff q,
'" for the transverse momen-

ta of the exchanged parton lines q&, q2, q, +Q, q2
—Q, in

such a way that q, '"»m and &s »q, '". As results
from the detailed analysis reported in the following para-
graphs, the values for virtuality and transverse momenta,
in the dominant loop configurations, are of order q,

'" in
the case of the quantities of interest for the present
analysis. As a consequence we neglect the virtualities
and transverse momenta of the external lines while per-
forming the loop integrations and we treat the lines with
momenta p, k„k~, k, —

Q, and kz+Q as partons Ilying
in the direction of the parent hadron keeping different
from zero only the components p+, (k, ). , (k2)
(k, —Q), and (kz+Q), which we take as positive
quantities. One may notice that while the target bound-
state forces the plus and transverse components of the
corresponding target parton momenta to be small, it al-
lows variations of order &s for the minus components.
As a consequence, values for Q of order &s are allowed

by the forces which keep the partons in the hadron.
Since configurations where the target partons exchange a
sizable longitudinal component Q are not damped by
the parton wave function, we do not have a genuine for-
ward amplitude and Q is one of the variables, in addi-
tion to the loop variables, to be integrated over when
analyzing the semihard interaction. On the other hand,
the semihard interaction, namely, the loop integrals,
represented in the set of diagrams in Fig. 2, has a much
stronger dependence on Q than the bound state. In
fact, as will be seen later, it forces Q to be of order

(q, '") /&s. The transverse momenta are constrained by
the hadronic bound state to be of order m &&q,

'" and, as
a consequence, they must be balanced in the semihard in-
teraction; therefore, with respect to the transverse mo-
menta, we have a forward amplitude.

In analogy with Refs. [3,4], we write the space-time
factors of the diagrams in Fig. 2 in the Feynman gauge.
As discussed in Appendix A, to look for the leading con-
tribution we are allowed to neglect the variation of the
current couplings at the vertices as a function of the loop
variables in such a way that the loop integrals involve the
denominators of the propagators only. Moreover, we
take into account that the dominant loop configurations
are the ones where the transverse components are small
with respect to the c.m. energy [13]. As a consequence,
to work out the leading contribution, we treat the trans-
verse components of q, and q2 as small quantities with

respect to &'s.
All the denominators of the propagators in the set of

diagrams in Fig. 2 are numbered below:

p, -V -q,

p

p. -q,

{k) +q,

FIG. 4. One of the graphs in Fig. 2 with the kinematical vari-
ables explicitly indicated.

a, : (q2 —Q) =a~(Pz P& )s —
q z, +i E, —

a, : {k, +q, )'=a, (P, +P„)s—q', , +i E,

a3.'(qp) =cx2p2$ qp(+lE,
a', : (k2+Q q2 } = —a~(Pk P—,+Pg)s —

q2, +i e-,

a4.. (q, +Q}'=a,(P, +Pg)s —q„+ie,
a, : {k,+q, ) =a, (P, +P„)s—q'„+i@,
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a6 (ql ) alpls 'q 1t+2= — 2

a': (k —
Q

—q, ) = —a, (P» —P, —Pg)s —q(t+ie,

a7. (p —qz+Q) =(a —a2)( P2—+P&)s —
q22, +is,

as: (p —q, —q2) = (a —a, —a2)( —p, p2—)s

q] + l 6

a9. (p —
q&) =(a —a&)( —p&)s —q„+is,

a7. (p —
q&

—Q) =(a —a&)( —P, —P&)s —q„+i@,
a9: (p —q~) =(a—a~)( p2)s——q~t+i e,
as. (p+Q) =aP&s+ie,
as': (p —Q) =a( —Pg)s+iE,

where the infinite momentum frame components of the
four-momenta have been defined as

p —=+s (a, 0,0),
k, 2

—=v's (0,p», 0),

Q =&s (O,Pg, O),

q1,2 s (a1,2 p1,2 qt1, 2/

and q, is defi~e as q, =q„+q„.
One can observe that one may obtain the different to-

pologies in the first column in Fig. 2 starting from the
last diagram, the one numbered 21, whose momenta are
explicitly indicated in Fig. 4, and making the following
replacements: a 7

—+a7 to obtain diagram 9, a 7 ~a7 fol-
lowed by a9~a9 to obtain 17, a9~a9 to obtain 13,
a8~a 8 and a7 —+a7 for 1 and a8~a 8' together with

a9~a9 to obtain 5. Moreover, one can observe that the
set of diagrams in the second column is obtained from the
one in the first with the replacement a5 ~a '„ the third
column is obtained replacing a2 with a2, and the last one
with the substitution a2~a2 followed by as~a ~.

To extract the leading contributions we proceed by
analyzing the behavior, for large s and fixed q„of the in-
tegral of the denominators of the propagators in the two
central loops with respect to the longitudinal variables
a&, a2, P&, P2, and P&. The integration limits on P& are
obtained from the positivity requirement for (k, —Q)
and (k2+Q) . In the following, however, we limit our-
selves to consider the region in p& where p&+p» and

2

P»
—

P& are finite quantities for q, /s~O. The leading
I

contribution is obtained integrating on a&, a2, p„pz, and

p& the denominators of the propagators and making the
limits q, &

/s ~0 and q,2/s O.

An important point, as far as the integration region
providing the leading contribution is concerned, has to be
made. Let us consider the sum of the three diagrams in
Fig. 5, which can be considered as a prototype for the
whole set. The corresponding integration on the longitu-
dinal variables can be schematically expressed as

FIG. 5. The three graphs corresponding to Eq. (1).

1 1 1 1 1 1

~]~2~3 ~7 Q8Q9 ~8~9 a8a9 ~4~5~6

The integrations on p& and pz give the limits for the in-
tegrations on a& and a2. we need to recognize the region
in the a&, and a2 integrations that provides the dominant
term in 1/s. The region a;=q„/s contributes to the
dominant term since six of the denominators in Eq. (1),
a„a2, a3, a4, a5, and a6, are of order q, rather than s.2

One can notice that, in the case of diagram III in Fig. 5,
corresponding to the last term in the sum in Eq. (1), the
region a, =q, /s, a —az=q, /s gives a contribution of the
same order since the denominators a4, a5, a6, a7, a8, and
a 9 are of order q, in this case. All different ways of com-
pensating the powers of s in the denominators in Eq. (1)
give subleading contributions. The two configurations do
not give a contribution of the same order to the ampli-
tude, as can be realized when the current structure of the
numerators in the propagators is taken into account. In
the case a; =q„./s, neglecting the terms with q„one ob-
tains, for the convective current factors, of each of the
three diagrams in Fig. 5

2p (2kz+Q)=a(2P» +P&)s, 2p 2k2=2aP» s,
2p. (2k, —Q)=a(2P» —P&)s, 2p.2k, =2aP» s .
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For all three diagrams the leading term in the numerators
is given by

a (2/3k, +/3g )(2/3k /3g )2/3k 2/3k, s

In the second case a smaller power of s is obtained from
the numerators because of the smallness of the (p —

qz )+
component. For a&=q, /s and a —a2=q, /s the current2 2

couplings associated with the p line in diagram III of Fig.
5 are

p (2k, +g)=a(Pk +/3g/2)s,

O(q, &s ), 0(q, v's ), and p 2kz=a/3k s. As a conse-

quence, this case is suppressed by at least one power of s
with respect to the previous one.

When considering the cut diagrams the leading contri-
bution is analogously obtained from the region a; =q, /s,
as we have explicitly verified. We proceed considering
separately all 24 diagrams in Fig. 2, limiting the analysis
to the dominant integration region. The set of 24 dia-
grams can be divided in three different subsets with the
different topologies of the first diagrams in Fig. 5. Dia-
gram I is the prototype for the first eight diagrams in Fig.
2, diagram II is the prototype for the diagrams 9—16, and
diagram III is the prototype for the last 17—24. We call
JM, ; the integrations on a„az, /3&, Pz, and /3(z of the
denominators corresponding to the ith diagram in Fig. 2.
Each one of the eight diagrams of the kind of diagram I
in Fig. 5 gives a negligible contribution in the limit under
consideration. In fact, let us evaluate explicitly AL&. The

I

leading term corresponding to the three denominators as-
sociated with the projectile is

1 1 1

QzQ sg9
J

a3s3 (
—/3z+/3&+is)(/3& +is)( —P, +i e)

(2)

A discussion on some subleading terms is presented in
Appendix B. The integrations also involve the denomina-
tors of the exchanged partons a„a3, a4, and a6. The
dependence of a2 and a5 on the contrary can be neglected
when considering the dominant integration region. The
integration on P, can be done taking the residuum of the
pole 1/a9, which gives /3, =0 and forces the condition
a, & 0. Analogously, the integral on Pz gives /3z=/3& with
o,2 & 0. All the poles which are left for the integration on

P(z are

a, =az/3&s —
qz, +ie,2

a4 =a,/3(zs
—

q „+ie,2

a 8
=a/3&s +i e,

and one can notice that the conditions e, & 0 and e2 & 0
force all singularities on the same size in the complex P(z
plane. One obtains, therefore, zero; in fact, this is a par-
ticular case where the Amati-Fubini-Stanghellini (AFS)
cancellation [14] applies. A similar argument holds for
all the first eight diagrams in Fig. 2.

Each one of the diagrams of set II gives a contribution
of order lns. Let us consider explicitly the case of dia-
gram II in Fig. 5. The leading term corresponding to the
three denominators associated with the projectile is

a7a8a9

1 1

a s ( /3z+/3Q+ ie)(——P) Pz+i E)( —/3—, +i E)
(3)

The integrations on P„Pz, and P& also involve the verti-
cal propagators with denominators a, , a3, a4, and a6. To
obtain a result different from zero from the integrations
on P, and Pz one needs to have a, )0 and az & 0. The in-

tegration on P(z is done by taking the residuum of the
pole 1/a, . The integration on /3z is done with the pole
1/a8 and the integration on /3& is done with the pole
1/a6. The integral on the longitudinal variables a, and
a2 is therefore expressed as

—(2mi)3 aiazda, daz

a&) 0

(4)

The same expression is obtained for A, &2, JM, 3, and AL, 6.
The integration domain in a, and o.2 is different, howev-
er:

A». Ia, &O, a, &OJ,

A1.„:I a, )0,az )0j,
JR,6.Ia, &O, az &OI

When considering A, 0, A, », A, 4, and A, » one obtains

(27ri) a)azda)daz

and the corresponding integration domains are

At, o: I a, &O, az &OJ,

Af „:Ia,)O, az &OJ,

JR,4:Ia, &O, az) OJ,

.4t„:Ia,&O, az&OJ .
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A closer look at the integrals in Eqs. (4) and (5) shows

that they both give rise to a lns factor which is originated
from the integration region a& ~ az 0.

The last eight diagrams in Fig. 2 are leading; namely,
I

they are of order (lns) . Let us consider diagram III in

Fig. 5: The leading term corresponding to the three
denominators associated with the projectile is

a7a8a9

1 1

a s ( Pz+—PQ+ie)( —Pi Pz—+ie)( P—2+i')

To integrate on pi, pz, and pQ one needs to consider also
the vertical propagators with denominators a&, a3, a4,
and a6. As in the previous cases, to obtain a result
different from zero from the integrations on p, and pz,
one needs to have a& & 0 and a2 & 0. One may integrate
on pQ with the pole I/a„on p, with the pole I/as and

on pz with the pole 1/a3. At i7 is then given by

—(2@i)3 azdaidaz

a s ~i&o (qz, ) (azq„+a,qz, ) asaz
a2) 0

The same expression is obtained for Atzo, with the in-

tegration domain, however, replaced by a, &0 and az & 0.
Atzl and At24 give

—(2~i)3 aidaidaz

with the integration limits

Atz, .ta, &O, az) 0),
At24. Ia, &O, a, &OI .

For At» and At, 9 one obtains

—(2ni)3 azdaidaz

—(2~i) 1 i daidaz

3s3(q2)2(q2)2J

in the region ~a, ~~0, ~a2~~0, with the constraints on

the signs of a& and a2 just mentioned. The sign of the
leading log in every At is obtained by looking to the cor-
responding different cuts, in the a, -a2 plane, representing
the integration limits, for small ~a, ~

and ~az~, of the in-

tegral in Eq. (11). The leading term, at large s, for Ati7,
Atzo, Atz, , and Atz4 is expressed as

(
—2mi) 2

3 2 2 2 2a pk pk (ql ) (q2

while for At, s, At», Atzz, and At23 one obtains the same
with opposite sign. One may notice that, although each
single term is of order (lns), when summing two terms
with contiguous integration regions, such as Atzz+At24,
corresponding to

ta, (O, az&OI U Ia, &O, az &OI =—tai &OI,

one obtains a leading behavior which is of order lns rath-
er than (lns) . In the case just mentioned, the lns factor is
obtained as a result of the integration limit for a&. The
integration on a2 no longer produces a lns since, in the
integrand I/az, the configurations with az small and neg-
ative compensate the ones with a2 small and positive.

with

At„:(a,&O, a, &OI,

At„:Ia,)O, a, &Oj .

Finally Atzz and Atz3 give

—(2~i)
(10)

with

Iai & 0 az& Oj

At23 fa, &O, az&OJ

In all cases a factor (lns) is obtained: in Eqs. (7) and (9)
from the region ~a, ~

&( ~az~ ~0, while in Eqs. (8) and (10)
from the region ~az~ && ~a, ~~O. As a consequence, the
leading behavior for all the diagrams of set III is obtained
from the same integral:

B. Color decomposition

The lowest-order contribution to the isospin diagram
in Fig. 3 is selected by looking at the quantum numbers.
The projectile parton exchanges four gluons and each of
the target partons exchanges two gluons; moreover, the
lowest order in the coupling constant g is 8. The set in
Fig. 2 is the complete set of diagrams satisfying these
conditions. The color factors in the set of diagrams in
Fig. 2, however, also contain the exchanges of a color oc-
tet in one and also in both t. channels. The purpose of the
present paragraph is to gain a better understanding of the
color structure of the amplitude corresponding to the set
of diagrams in Fig. 2. More precisely, we would like to
recover, in this three-body interaction case, a collocation
for the logs obtained from the single Feynman diagrams
in Fig. 2, which is consistent with the general features en-
countered when discussing gluon Reggeizaton in the
two-body interaction.

We need to analyze the 16 diagrams of subsets II and
III, corresponding to diagrams 9-24 in Fig. 2. Diagrams
1 —8 in Fig. 2, corresponding to subset I, give a negligible
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FIG. 6. Graphical representation of the commutation rela-
tions. The signs of the second addendum are the consequence of
the convention for the ordering of the color indices in the triple
gluon vertex (clockwise for plus).

lo

15

l2

T,7=G, +G3 —Gz,

T18 —61+63 Gz 68

T19 61+63 Gz+G6 )

Tzp G, + G3 —Gz —G8+ G6 —G,4,
Tz1=G

Tzz —61 —Gs,

Tz3 =G1+6

Tz4=6, —Gs+G7 —613 .

(12)

The eight relations in Eq. (12) can be inverted and the
amplitude I„,corresponding to the set of diagrams III
in Fig. 5 can be expressed as a sum of terms with color
factors 6:

24 20

M„,—G, g Af, +(G, —G2) g, At, +G6(At, 9+At20)
i =17i =17

contribution in the high-energy limit. There are 16 color
factors T, , i =9, . . . , 24, which are identified by the to-
pology of the 16 diagrams of interest. On the other hand,
we are interested in identifying the components of the
color factors which correspond to the exchange of a sin-

gle gluon in each of the t channels. To that purpose we
use the graphical representation [4] of the commutation
relations, for the color matrices representing the cou-
plings with the exchanged gluons, as shown in Fig. 6.
The 16 color factors T;, i =9, . . . , 24 are then expressed
as linear combinations of the 16 color factors 6, ,
i =1, . . . , 16, shown in Fig. 7. %e consider the two
different subsets II and III separately. Let us start with
the diagrams in subset III which are characterized by a
(lns ) factor:

FIG. 7. The color factors G;, i =1, . . . , 16 in Eqs. (12) and
(14).

T9 =G1+G3+ G4,

T1p =61 + G3 +G4 G10

T11 = G1 + G3 +G4+ G9

T1z =G1+63+64+ 69 61p G1s

613=G1 —G

T,4=6, —Gz —G,z,
T1s =61 Gz+6»

T16 =61 —Gz +G» —G12 —616 .

(14)

It is interesting to notice that, while each of the space-
time factors At is separately of order (1ns), the sum of
different At's can be of order lns, or it can be a constant,
due to the different signs going with the logs in the
different terms. The behavior of the space-time factors in
Eq. (13) is obtained as discussed in the previous para-
graph. The result is the following: there is no lns in the
space-time factor multiplying G, and 63 —Gz, on the
contrary Gs, G6, G7, and G8 multiply a space-time factor
of order ins and, obviously, G» and G, 4 multiply a (1ns) .
One may further notice that, if one considers the simplest
case where the colors of the two target partons are
summed independently, one trivially obtains that Gs, 66,
67 68 6 13 and G 1„are all zero. The sum 63 —Gz is
also zero, even if G3 and Gz are separately different from
zero. 6, , which is precisely the color factor in Fig. 3, is
the only color factor which remains finite.

A similar decomposition can be done for the color fac-
tors of the diagrams in set II:

G5(~22+~24) +G7(~23+~24
—G

11 (At1s+ At 20 ) G13At 24 G14At 20 (13)
The corresponding amplitude M» is therefore expressed
BS

16 12 16

M11 —G1 g At;+(G3+G4) g At; —G2 g Af;+69(At„+A, t,2) —G10(At10+At12)
i=9 i=9 i =13

+G „(At,5+At, 6) —G, (At2, 4+At, ) 6G, 5At, 2
G—,6At, 6 . —
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There are no more space-time factors of order lns in Eq.
(15), with the obvious exception of JRiz and JN, i6, which

multiply 6» and G&6, respectively. When surnrning on
the two colors of the target partons independently, in or-
der to remove all color factors which contain the ex-
change of a single gluon in at least one of the two t chan-
nels, 69, G,o, 6», 6,2, G», and G&6 are trivially zero.
63 and G2 are opposite in sign, while the leading terms in
the corresponding space-time factors are equal. 6, and

64 are the only color factors which contribute.
As a summary, the amplitude corresponding to the

sum of the Feynman diagrams in Fig. 2 can be written,
or ~0o / ~0 Min+Mii, with Mni a Mn

pressed, as in Eqs. (13) and (15), by means of a sum of
terms with the color factors 6;, i =1, . . . , 16, shown in

Fig. 7. Two color factors 6&3 and 6&4 multiply a term of
order (1ns) . Gis and G~4, using the rules for the isospin
diagrams discussed in the case of the two-body interac-
tion [3,4], are readily shown to contain both the base-
isospin diagram of order g, which corresponds to the ex-
change of one gluon in each of the two t channels, and
the base-isospin diagram of order g with one gluon in
each of the two t channels and one horizontal line. The
(g lns) in the space-time factor is therefore understood
as a contribution to the Reggeization of the two gluons
exchanged in the lowest-order g base-isospin diagram in
the first case. In the second case the (g lns)lns factor is
associated with both the Reggeization of one of the two
t-channel gluons and to the presence of the horizontal
line in the base-isospin diagrams of the (b) kind, which, in
analogy with the case of the two-body interaction, are ex-
pected to contain at least a lns factor. 65, 66, G7, G8,
6», and 6&6 multiply space-time factors of order lns.
They all contain the exchange of a color octet in at least
one of the two t channels. The corresponding amplitude
contains both corrections of order g lns to base-isospin

diagrams of order g, associated with the eikonal dia-
grams of the same order, and further isospin diagrams of
order g of the (b) kind. All terms with logs can find an
interpretation consistent with the analysis of the two-
body interaction, and, at this order, contain octet quan-
tum number exchanges. To project out the case of in-
terest, which is characterized by vacuum quantum num-
ber exchange, we sum the colors of the two target partons
independently. All exchanges of color octets are then
zero. The color factors which are selected in this way are
G„G2, G3, and G4. G2 and G3 multiply a space-time
factor that is suppressed as a power of (qt '") /s with
respect to the leading term. G, and 64 are the only color
factors with the exchange of vacuum quantum numbers

multiplying a space-time factor which is not suppressed.
64, corresponding to the exchange of two gluons by the
projectile parton, does receive contributions by a whole
set of further Feynman diagrams, in addition to the set of
diagrams in Fig. 2. Those diagrams are typical of QCD
because they reflect directly the non-Abelian properties
of the gauge group; they are not studied in the present
paper. 6&, which is the isospin diagram already shown in
Fig. 3, receives contributions of order g, by the set of
Feynman diagrams in Fig. 2 only.

III. CUT AMPLITUDE

In this part of the paper we study the cuts of the term
in the three-body amplitude characterized by the color
factor 6&, which corresponds, with respect to the space-
time structure, to the set of Feynman diagrams in Fig. 2.
Although some cut diagrams are zero, in the limit of in-
terest, we find it convenient to include them in the discus-
sion also. The reason is that the evaluation of the sum of
all the eikonal diagrams, contributing to the same cut
amplitude, is simpler than the evaluation of each single
cut diagram separately. This section is organized in three
different subsections, in accordance with the three
different kinds of cuts to be considered.

A. Two box cuts

1. Casea

a2=a2(p2+pk )s —
q2, =0,

as =ai(Pi+P„~ )s —
q i, =0,

as=(a —a, —az)( —Pi —Pz)s —
q, =0;

'(16)

the condition of positivity for the energies of the cut par-
ton lines is

a2+ p2+ p» 0,
a, +p, +pk ~0, (17)

a a, a2 P, ——P2~—0;—
and the denominators to be integrated can be written as

ai: (q2
—Q)'= —a2(Pk +P(i)s,

b)

FIG. 8. The three different ways of cutting a graph that give
a result difFerent from zero.

In this subsection we analyze all cuts where both in-
teractions of the projectile with the target partons are in-
volved. We start with the observation that the mass shell
constraint on the external lines, together with the re-
quirernent q, ~ q, '", greatly reduces the number of possi-
ble cuts. In fact, for example, the case in the diagram of
Fig. 4, where the lines with momenta qi+Q and

p+ —
Q —q, are cut, is not allowed. In fact, in this case,

the invariant mass of p is forced to be of order
q, & q, '")&m, which is the scale for the virtuality of all
the external lines. All allowed cuts, where both target
partons are involved, are of the three different kinds
shown in Fig. 8.

As a first case we consider the cuts of the kind in Fig.
8(a) (case a), where the lines identified by a2, as, and as
are cut. Only the four cut diagrams in Fig. 9 contribute.
The mass shell conditions for the cut lines are
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a3: (q2) = —a2pk s,
a4: (qi+Q)'= —ai(Pk, —Pg»

a6 (ql ) alpk s

a7: (p —q2+ Q) = a( P2—+Pg )s —az(Pk +Pg )s

+EE,

a9: (p —
q i

)'= —ap, s a i
p—k s +i e,

a7: (p —q, —Q) = —a(P, +Pg)s a, (P—k
—Pg)s

+1&,

ao. (p —q~) = —ap2s agk —s+ie .

1 1 1

~ f +3+4+6 +7 Q 7

1 1+ 5(a2)5(as)5(as) .
Q9 g9

(18)

The following expression represents the integration of in-
terest, on the longitudinal variables a„az, p„p2, and pg,
corresponding to the four graphs in Fig. 9:

FIG. 9. The graphs corresponding to Eq. (18).

The leading term is obtained when a, =q, /s. The
solution of interest for the mass shell conditions, Eq. (16),
is then

2

(P+Pk )s

2
q'2i

(
—P+Pk )s

'

8= —
q, /as,

where terms of higher order in q, /s have been neglected,

pl =p+ B /2, p2 = p+ B/—2, and both p+/3k and
—p+pk are finite quantities in the limit q, /s ~0. The

integrations on a, , a2, and 8 are done with the help of
the 5 functions and Eq. (18) reduces to

dP dPg «k, +P)(Pk, P)—
p. ,p.,a(q,', )'(q,', )"' p. , pg p., +-pg

Pk, +Pg
a(/3+Pg )s +q, /2 q, 2

—+ie
k2

, Pk,
—

Pg—a(P+Pg )s +q, /2 —q„+is
k, +

1 1

—aPs+q, /2 q„[Pk /(Pk —+P)]+is a/3s+q, /2 qt2[Pk /(P„——P)]+iE
(20)

The integration limits for Pg are a consequence of the
constraint of positivity for (k, —Q) and (kz+Q); the
limits for /3 come from the condition of positivity of the
cut parton lines, Eq. (17). The leading contribution is
readily obtained after noticing that the contribution to
the integral from the region where (p+pg) is finite is

suppressed as a power of q, /s, for large values of s, be-
cause of the cancellation between 1/a7 and 1/a 7..

1 1 1 +
a(f3+ f3g )s

2
1 qt

a(f3+/3g )s —s 2

The same cancellation occurs when p is finite in the fac-
tor (1/a9+1/a9). To obtain the leading term we are
therefore allowed to integrate over pg keeping track of
the dependence on Pg only in the terms proportional to s

in a7 and a7, while we can integrate on P keeping the
dependence on p only in the terms proportional to s in a9
and a9. More explicitly, the actual integral on pg (in a
region of a size of order q, /s around /3g = —P) is

dPg a(p+pg)s+ —,'q, —
q, ~+is

1

—a(p+pg)s+ ,'q, q„+—ie—

If one replaces q„with —q„ in the second integral, the
second term is the opposite of the complex conjugate of
the first. One is then allowed to replace the sum of the
two integrals with a single integral, involving the first in-
tegrand only, performed along a closed contour, in the
complex Pg plane, including the polar singularity of
1/a7.

dPg +
a(p+ pg )s —a + 'e a(p+ pg )s +a +i e—

dPg
~ a(p+ pg )s —a

where a =q, /2 —q„. The integration over pg is provid-
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ing a factor 2in/a. s as a result. The integration on p,
that involves (as a leading contribution} the factor
(I/a9+ I/a9) only, is done, with the same line of argu-
ments, in a region of p of a size of order q, /s around
zero. The resulting leading contribution from the
configuration with a„az, and P, +Pz of order q, /s is ex-
pressed as as =a1(p1+pk, » —

q « =o (23)

diagrams gives the same contribution.
The difference with respect to the previous case is that

the parton lines that are cut are presently identified by
a „a8, and a 5. The mass shell conditions are

(2n) 1
(21) as=(a —a1 —az)( —P, —Pz)s —

q, =0,

az=O, a, =0, P, +P2=0;

az=o, p1+p» =0, a1 —a=0;
1

a2 0 pl+pk 0 p2 pk

p2+pk 0 pl+pk 0 a a1 a2

Pz+P„=O, a, =0, a —az=0;
2

p2+pk 0 a1 0 pl pk

(22)

where =0 means =0 (q, /s). For all different solutions,
with the exception of the first one, which was discussed
previously, a, or az are finite in the q, /s~O limit and,
analogously to the uncut graph, the corresponding con-
tribution is a subleading one.

The result which has been obtained is proportional to the
product of two elementary partonic cross sections. In
fact, this term is evaluated by squaring two successive in-
teraction amplitudes between on-shell partons. The in-
termediate partons are put on shell as a result of the con-
tribution to the cross section from the pinch singularities
produced from the constructive interferences between
I/a7 and I/a7 when performing the p& integration, and
between I/a9 and I/a 9 in the case of the integral on p.

The mass shell conditions, Eq. (16), can be solved
differently. In the limit q, /s~O one finds a set of six
different solutions:

the condition of positivity for the energies of the cut par-
ton lines is

az+pz —
pg ~0,

a1+p1+pk -o
a —a, —az —p, —pz~O,

and the denominators to be integrated become

az. (kz+qz) =a (P2g+P» )s+iE,

a, : (qz)z=ayqs+ie,

az. (kz+ Q
—

qz } = —azP» s +it,

(24}

a4. (q1+Q) =a1( P» +Pg—)s,

6: (q1)'= —a1pk s

a7: (p —qz+ Q) =a( pz+ pg )s—,

a9: (p —q, ) = —ap, s —a,pk s+ie,

az. (p —q, —Q) = —a(P1+P&)s —a, (P» —P&)s,

a9.. (p —qz) = —ap z+sapz&s +i e.

The integrations on the longitudinal variables a, , az, p, ,

pz, and p&, corresponding to the graph in Fig. 10, are ex-
pressed as

2. Cases band c
1 1 1

a3~4~6 ~2 a 2

1 1

Q7 g7

1 1

Q9 g9

g. g 7' g

9
'I

7' 9

FIG. 10. The graphs corresponding to Eq. (25).

The second case we consider is that of the cuts of the
kind in Fig. 8(b) (case b). The set of cut diagrams that we
have analyzed is represented in Fig. 10. Altogether there
are four sets of diagrams of this kind. They are obtained
from the set that we have considered moving, in each dia-
gram, the cut from a

&
to a3, exchanging the top with the

bottom and combining the two operations. Each set of

5(a1)5(a& )5(a& ) . (25)

The mass shell conditions, in the limit q, /s ~0, give rise
to the set of possible configurations:

a2=0, a, =0, p, +p2=0;

az=O, P, +Pk =0, a, —a=O;
I

a2 0 pl +pk 0 p2 pk

Pz
—Pg=O, P, +P» =0, a —a, —a2=0;

I

Pz —Pg =0, a1=0, a —a2=0;

Pz
—Pg =0, a1=0, P1+Ptz =0;

(26)

[where =0 means =0 (q, /s)]. The most important con-
tributions are obtained, in the configuration az, P, +P„,

1

and a —a, =0 (q, /s), by the combination
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1 1
5(a, )5(as )5(a» )

a z a3a4a6a 7a9

1 1=0
( 2)4» (27)

1 1=0
(

2)4» (28)

These configurations, however, do not give rise to leading
terms owing to the effect of the numerator. Following a
discussion already initiated in Sec. IIA we recognize
that, in both cases, the line originally carrying momen-
tum p becomes soft owing to the presence of the factors
a —a, or a —a2=0 (q, /s). In this way the term s, which
arises everywhere p is contracted with k, or k2, is no
longer produced and the whole contribution is depressed
by a power of s. The configuration a„a2,
p, + p2=0 (q, /s), which is entitled to also give rise to a
leading contribution, as in case a, is depressed as a power
of q, /s with respect to the leading term in the present
case: In fact, the mass shell conditions Eq. (23) force the
coefficients of the terms in s of a~ and a7 to be %0 and
opposite in sign while the condition a2=0(q, /s) forces
P+P WO(q /s), where P=(P, —P2)/2. As a conse-

Q t
2 2quence the factor (I/a7+I/a7) is of order (q, /s ).

While in case a the conditions of reality for the cut lines
allowed a7 and a7 to go on shell, this is not possible any
more with the present cuts. The consequence is that in
case b there is no pinch singularity, corresponding to the
sum of the imaginary parts of a7 and a7, only the real
parts are left that interfere destructively providing the ex-
tra suppression factor.

Things are qualitatively analogous to case b when con-
sidering case c, corresponding to the cuts of the kind

2and in the configuration a„a—a2, p, —
p&

=0 (q, /s) by

+ 1 1
5(a, )5(a, )5(a» )

a2 a3a4a6a7a9

shown in Fig. 8(c). More precisely, all cuts of this kind
are those represented in Fig. 11 and those obtained ex-
changing the top with the bottom in each of the graphs in
Fig. 11. The most important contribution (that does not,
however, contribute to the leading term) comes from the
set of graphs in Fig. 11(a) in correspondence with the
configuration a, , P2

—
P&, and a —a2 of order q, /s and

from those in Fig. 11(b) in correspondence with the
configuration P&, a2, and a —

a& of order q, /s. The
configuration u„a2, and P, +P2 of order q, /s is now

depressed as (q, /s) with respect to the leading term be-

cause the conditions of reality for the cut parton lines
force 1/a7 and I/a 7 as well as I /a9 and 1/a 9 to interfere
destructively.

B. One box cuts

1. Case a

In this section we analyze the cuts where one of the
two target partons acts as a spectator. There are two
different kinds of cuts to be considered the first case is the
one where two horizontal lines are cut (case a), the
second is the case where the cut involves one horizontal
and one vertical line (case b).

The cut diagrams of case a that we consider are shown
in Fig. 12. All possible cuts of this kind are four times as
many, corresponding to the four independent possibilities
of choosing the horizontal lines to be cut. Each different
set of cut diagrams is providing the same contribution as
the set we are considering. Our result has to then be mul-
tiplied by four to account for this multiplicity factor.
The mass shell conditions are

a» =ai(pi+ p„)s —
q i, =0,

a9=(a —a, )( —P, )s —q„=0 .
(29)

There are two different sets of solutions for small values
of q„ /s. The first set corresponds to a, and

/3, =0 (q„ /s), while the second set corresponds to a —a,
and P& +P, =O(q„/s). This last case contributes only

1

at the subleading level. The case of interest is the first
one

2

a= p=
/3k

s'

The denominators corresponding to the parton lines of

FIG. 11. Graphs of the "two box cuts kind, case c." FIG. 12. The graphs corresponding to Eq. (30).
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interest are

a]. (qz —Q) =a2(P2 —Pp)s —qt2+i6,

a2. (kz+qz) =a&(P2+P» )s —
q,z+iE,

a3. (q~) =a2P2s —
q,~+is,

a2: (k2+g —q2) = —a2(pi, +pg —p2)s —
q,2+if,

pg p»—
,

a4. (q, +g) = 2

p»,

Q6:

Q7'.

I
Q 7.'

Qs:

(q i
)'= —qi'i

(p —q2+g) =(a—az)( P2+p—&)s qt2+—ie,
(p —q, —Q) =(a—a, )( —Pg)s+ie,

(p —
q&

—q2) = (a —a&)( —P2)s+a2(p&+P2)s

+q]i qt +iE',

a s. (p +Q) =aP&s +i e .

The variables to be integrated are p2, a2, and p&. The
limits of integration of p&, namely, —

p» and p», are not
2 1

affected by the constraints imposed by the cuts. The lim-
its for a2 are a consequence of the integration on pz, to
obtain a result different from zero one needs to have
0 ~ a2 & a. The leading contribution comes from the re-
gion a2=0(q, /s). One observes that the transverse mo-
menta q„can be neglected, in this case, in Q7, Q7, and Qs:
if one introduces the positions of the poles of 1/a7, 1/a 7,
and 1/as in the other lines, terms of the p; =q, /s kind
multiplied by a;s are introduced. The term a;qt that is

I

Q 7.'

I
Q 7'.

Qs.

(p —q, +g)'=a( —p, +pq)s+ie,

(p —
q&

—Q) = —aP&s+ie,

(p —q, —q2) = —ap2s+ie .

The graphs of Fig. 12 correspond to the integral

1 1+1
Q]Q3Q4Q6 Q2 Q2

1 1 1
I I

Q7QS Q7Q S Q7QS

5(a9)5(a, ) . (30)

Having neglected the q, terms in Q7, Q7, and Qs, one can
write

1 1 1
I

7 S Q7QS Q7 S

1

ap&s +isap2s i e —ap&s ie—
in such a way that the integration on pz can be done tak-
ing the residuum of the pole (ap2 —ie) and Eq. (30) is
expressed as

generated is much smaller with respect to the term q, al-

ready present. On the contrary, if the positions of the
poles of the vertical lines are introduced in the horizontal
ones, terms of the kind q, /a, - »q, are generated so that
the original q, can be neglected. Finally, if the positions
of the singularities of 1/a7, 1/a7, and 1/as are intro-
duced in 1/a7, 1/a7, and 1/as, no critical dependence is

generated in the q, /s —+0 limit. Keeping only terms
where the integration variables are multiplied by s, Q7,

Q7, and Qs are expressed as

da, dPq
o —a &S qt2+ ~ qt2 D k $ qt2+ 1 E'

+ 1

—az(p» +p& )s —
qt2 +i e

1 1 (2~)'
ap&s ie ap&s—+i@ p& p», a p» s —(q„)

(31)

dPg
1 1

apgs i E ap—gs +i e
dPg

a &s
—ie

The integration on p& is done taking the residuum of the
pole (aP&s i e)— 2. Case b

The second possibility is one of cutting a vertical and a
horizontal line. The set of cut diagrams that we consider
is shown in Fig. 13. The mass shell conditions are

The integral on o.2 receives its major contribution from
the imaginary part of 1/a2, since the singularity of 1/a2
is outside the integration domain. The resulting leading
term, after keeping mind the multiplicity factor men-
tioned in the beginning of the paragraph, is

a4 =a, (P, +Pg )s —
q „=0,

a =(a—a, )( —p, )s —q„=0 .

The reality of the solutions implies, for p&,

4q„/as ~pg ~p„

(33)

4m. (2m. ) 1

P» P» a's' (qt'i)'(qA)'
(32) and, in the q, /s~0 limit, the solution of interest of Eq.

(33) is

that is, twice the leading contribution obtained when dis-
cussing the two box cut case.

2

a,=, p, = —q„/as
pgs
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where allowed, in the present case the conditions of reali-
ty for the cut parton lines force p& to take positive values
only and the requirement a&=O(q, /s) excludes the
domain P& =O(q, /s). As a consequence, while previous-

ly

1 1 1

a7a8 a7a 8 a7a8
E.

dPzdP(z =0 1

it is presently contributing with a factor of order q, /s
only. As a consequence the contributions from cuts of
this kind are suppressed by a factor q, /s with respect to
the leading contributions.

C. No cut boxes

FIG. 13. The graphs corresponding to Eq. (34).

gt2+&&

Pk PQ
&s: (ki+qi)'=

(z

a', : (k, —Q —q, )z= 1 2

Q

a, : (q, ) = —q„ ,2= — 2

a7: (p —qz+ Q) = (a —az)( —Pz+P& )s

/f2+LE,

az: (p —q, —Q) = —aP&s+q„,

as: (p —q, —qz) = —(a —a, —az)pzs

+azp, s+q„q, +ie, —

as: (p+Q) =aP&s .

Analogously to case a one can neglect the transverse mo-
menta in a7, a7, and a8. The diagrams in Fig. 13 corre-
spond to the integral

with p&WO(q, /s). The denominators corresponding to
the parton lines of interest are

a, : (qz —Q) =az(Pz —P&)s —qtz+ie,

uz' (kz+qz) az(pz+pkz)s qtz+~~ ~

a3. (qz) =azpzs —
q,&+i e,

(kz+Q qz) = az(P», +Pg Pz)s

The last case to be considered is the one where the tar-
get parton lines are not cut. The graphs to be considered
in this case are shown in Fig. 14. The mass shell condi-
tion is

as =(P + Q) =aP&s =0,
which implies p& =0. The denominators to be integrated
can be written as

a, : (qz
—Q) =azPzs —

qtz +i e,
az. (kz+qz) =az(Pz+Pk )s —

q,z+ie,

03'. (qz) =azpzs q(z+le

,': (k, +Q —q, )'= —az(P» —Pz)s —qt'z+ie,

a4. (q, +Q) =a,P,s —q„+ie,
~: (ki+qi)'=ai(PI+Pk )s q1+i~-

(q) ) a)p)s qt)+lE,
a', : (k, —Q

—q, ) =a, (p, —
pk )s —q„+ie,

(p —q, +Q)'= (a —a, )( —p, )s —
q,', +i e,

tz~: (p —q, ) =(a—a, )( —p, )s —q„+is,
(p —q, —Q) =(a—a, )( —p, )s —q„+ie,
(p —

qz ) = (a —az)( —pz)s —
q,z+i F. .

The first four graphs in Fig. 14 that have to be integrated
on a, , P, , az, and Pz are rePresented by the exPression

I +, + 5(as), (35)
ala3 a2 a2 a7a4a6 a5 a5 a9

r

1 1 1

a la3a6 a2 a2

1 1 1
I Ia7a8 a7a 8 a 7a8

1 1+ 5(a9)5(a4) .
a5 a5

(34)

i/ (

, X

The main difference from the previous case comes from
the domain of integration on P&.. while in case a P& was
both positive and negative and values of P& of order q, /s

iL
FIG. 14. The graphs corresponding to Eqs. (35) and (36).
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while the graphs in the second line in Fig. 14 correspond
to

1

a)a3 a
+ +, , fi(a,"). (36)

2 a2 a9a4a6 a5 a5 a7

The two contributions are explicitly equal. Let us com-
pute the first one. The integrations on az and P2 involve

a „a3, a 2, a z, and a 7. The P2 integration is evaluated

taking the residuum of the pole 1/a7 that gives for Pz the
value

2' dcx2 1

DaS(q, 2) agk S q,~~+ie—

—a2Pk S —
q,2, +i@

(37)

In the limit q, /s~O the leading term to the integral is

provided by the imaginary part of 1/az.
The integrations on a& and P& involve a4, a6, a5, a5,

and a9. The integral on P& is done taking the residuum of
1/a9 while that on a, is performed analogously to the a2
integration. The contribution from the no cut boxes case,
resulting from the sum of the graphs in Fig. 14, is ex-
pressed as

1 m(2~)
3 5 2 2ikiks qtlqt2

(38)

that is, half of the contribution obtained in the two box
cut case and —,

' of the contribution obtained in the one box

cut case.
One can then conclude that the leading contributions

to the cut semihard rescattering diagrams are proportion-
al to one another and the weight factors are precisely the
AGK weights [9]. Even more, the leading contribution
comes from the configuration where the intermediate
projectile parton, between the two successive semihard
collisions, is on shell. As a eonsequenee the three-body
cross section is factorized as the product of two-body in-
teraction probabilities.

IV. DISCUSSION AND CONCLUSIONS

The set of Feynman diagrams in Fig. 2 is the complete
set of diagrams contributing, at the lowest order g, to
the isospin component of the three-body amplitude

qf2

(a —a2)s
'

while the a2 integration is restricted to the interval

0 O.'2 O, .

The dominant contribution comes from the region
a2~0:

1 1 1 1

characterized by the base-isospin diagram in Fig. 3. The
leading behavior of each of the diagrams in Fig. 2 and of
all the different cuts of the amplitude, dominant in the
high s fixed t limit, have been explicitly evaluated in the
previous sections. Each of the different cuts of the ampli-
tude is obtained by summing a different subset of cut dia-
grams. The leading behavior of every different cut ampli-
tude grows less rapidly with s than each single cut dia-
gram in the corresponding sum. The relevant contribu-
tion of each single diagram to the cut amplitude is there-
fore a subleading one. The efficient way, which we have
adopted to account for all interferences between the
different terms, has been to evaluate directly the leading
behavior of the sum, rather than working out, in ad-
vance, all subleading terms of every single different dia-
gram. In this last section we would like to remark on a
few interesting properties of the amplitude under con-
sideration and we describe the physical picture of the in-

teraction which results.
Semihard interactions are connected with the presence

of different scales. In fact, in our case, there are three
different scales: the nucleon-nucleon c.m. energy &s, the
cutoff q, '", and the typical hadronic scale, which we have
called m. Moreover, the relation &s &)q, '"&)m holds.
When studying parton interactions, without keeping in

mind that partons are bound in the hadron, one is assum-

ing that, at least to work out the leading terms, one is al-
lowed to split the semihard part of the interaction from
the binding effects. Namely, one assumes to be allowed
to neglect, at that stage of the calculation, the virtuality
and transverse rnomenta of projectile and target partons.
A consistency requirement is therefore that the scale of
the virtuality and of the transverse momenta of the par-
tons in the loop integrals is provided by q, '", while the
analogous scale for the incoming and outgoing projectile
and target partons is rather m. This consistency require-
ment is met when the integrations on the longitudinal
variable a„a2, P„P2, and P& are all done within the
kinematical configurations relevant for the eikonal. More
explicitly, the behavior of the integrand at infinity has to
be regular enough in such a way that, in all cases, the
contours may be closed without need of specifying the
position of further singularities other than the ones in the
eikonal region. When the contour cannot be closed, the
kinematics of the interaction is not constrained enough
and configurations, far from the eikonal ones, became im-

portant as well. To perform the integration on P&, which
is a variable external to the loop integrals, one should
consider, in that case, the singularities of the nonpertur-
bative part too.

The set of diagrams in Fig. 2 allows one to meet this
consistency requirement. In fact, the behavior of the in-

tegrand, far from the singular points of the propagators
in the set of diagrams of Fig. 2, is always convergent rap-
idly enough in such a way that the contour can always be
closed at infinity. One notices that this is a property of
the sum of all the space-time parts of the diagrams in Fig.
2, when dealing with the uncut amplitude, and of the sum
of all cut diagrams contributing to the same final state,
when looking to the cut amplitude. It is not a property
of each single diagram or cut diagram. In the sum of dia-
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grams in Fig. 2 one finds, in fact, that, when a term does
not converge sufficiently well at infinity, there is always
another one, in the q, /s ~0 limit, with the same
behavior but with opposite sign. One may notice that,
when logs appear, the convergence at infinity is not fast
enough. In that case the corresponding integration vari-
able is not restricted to a particular range and all possible
values contribute to the final result. Consistently, with
this observation, both the G& component of the ampli-
tude M», +M&&, considered in the first part of the paper,
and the corresponding cuts of the amplitude, which have
been discussed in the second part, do not contain any lns.

Some of the different cuts of the same diagram are re-
lated. In the set of diagrams in Fig. 13, one could select a
few terms in the central column and compare with the
corresponding terms in Fig. 14. The contributions are re-
lated as a consequence of the suppression of the ampli-
tude corresponding to each one of the first eight uncut di-
agrams in Fig. 2, which has been discussed in Sec. II A.
Rather than emphasizing this compensation between
different cuts of the same diagram [8], we separately add
all cut diagrams in Figs. 13 and 14 because we want to
keep in mind all interferences of the different contribu-
tions to the same final state. Differently with respect to
the cut diagrams in Fig. 14, the resulting contribution,
from the whole sum of cut diagrams in Fig. 13, is a sub-
leading one. Specifically, consider the first diagram in
Fig. 2; the corresponding contribution to the cut shown
in Fig. 13 (the second cut diagram in the first line of Fig.
13) is compensated by one of the contributions from the
first cut diagram in the same line. In detail, with refer-
ence to Eq. (34), where the term corresponding to the first
diagram in the first line of Fig. 13 is 1/a7a8, one obtains
two contributions from the integration on P2, one from
the pole I/a~, the second from 1/as. The first of the two
contributions is the one which interferes destructively:
For a& =0,

as= —a/& +sO(q, )+is .

The second diagram in Fig. 13 is obtained from this term
by the replacement 1/a, ~l/as, where as =aP&s+ie.
The sum of the two terms contains the factor

(1/a 8+ I/a 8 ) =O((1/s)(q, /s) ),
because the cut in Fig. 13 does not allow the two propa-
gators, 1/a8 and 1/a8, to go on shell. As discussed in

Sec. IIIB1, the compensation just mentioned does not
occur when the cut allows the configuration with the in-

termediate propagators 1/a8 and 1/a 8 on shell, as in the
case of the cut diagrams in Fig. 12. In fact, while the real
parts of 1/a8 and 1/a8 are canceled in the sum, the
imaginary parts are, on the contrary, added.

In Ref. [8] double ladder exchanges are discussed in

QCD, limiting the analysis to the diagrams with the lead-
ing behavior at high energy. We have studied the sim-
plest case of the double box exchange in a three-body in-
teraction. In our framework, which is consistent with the
Reggeized gluon framework, we have taken into account
all of the diagrams which contribute, at the lowest order
in g, to the color factor shown in Fig. 3, which is also the

color factor selected by using the criterion of the leading
behavior of Ref. [8]. The set of diagrams, which we have
taken into account, is gauge independent and contains
both leading (set III) and nonleading (sets II and I) dia-

grams at high energy. As a consequence of destructive
interferences between different terms, contributions sub-

leading at large s acquire the same importance as the
leading ones in our analysis. Actually the diagrams of set
II, which are of order lns, contribute to the final result to
the same extent as the diagrams in set III, which are of
order (lns) .

The physical picture which we obtain is considerably
different from the one obtained by selecting the leading
diagrams only. After grouping all cut diagrams, which
contribute to the same final state, and considering the
leading contributions, for (q, '") /s~0, only a restricted
number of cut diagrams contribute at the leading order.
These are the cut diagrams shown in Figs. 9, 12, and 14.
The leading terms, corresponding to the different kinds of
cuts, are all proportional to one another with given
weight factors that are equal to the AGK weights [9].
The same destructive interference, which cancels the
dominant real parts of the different cut diagrams, is the
mechanism which selects, as a dominant contribution to
the loop integration, the imaginary part of the intermedi-
ate propagators of the projectile and target partons. The
leading configuration, where the projectile parton is on
shell between successive interactions, allows, correspond-
ingly, the probabilistic physical picture where the three-
body interaction is factorized as the product of two suc-
cessive collisions between pairs of on-shell partons. One
may notice that the intermediate propagator, as expected
from an analysis of the rescattering diagram by means of
the Landau equations [1S], contributes with a factor of
order 1/s to the loop integral. In the case of the pinch
singularity, obtained by summing two different propaga-
tors with opposite real parts, the values for the virtuality
of the intermediate propagator, while performing the
loop integration, are of order q, . The integration range
of the relevant integration variable is, however, of order

q, /s, in such a way that an overall factor of 1/s is ob-

tained.
In all the leading cut amplitudes considered here, only

the projectile and target parton lines are cut. According-
ly, the main contribution to the inelastic cross section is
localized in the projectile and target fragmentation re-
gions. Already in an Abelian theory one can find graphs
with more particles in the s channel, which contribute
rather to the production in the central region. Moreover,
in the three-body scattering, graphs, which are not trivi-
ally related to the ones present in the two-body scatter-
ing, arise. An example is obtained if we read term 4 in

Fig. 7 as a standard Feynman graph: it cannot enter in

the process of gluon Reggeization; it can more easily, if
the Reggeization program works completely, begin to
build up a three-Reggeon vertex. We must, in any event,
mention that since we have been considering a three-body
scattering process, with the possibility of exchanging the
vacuum quantum numbers in both t channels, the pertur-
bative order g is the lowest we can use. For that reason,
not all the features that are considered typical of the
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Reggeization process [4] can show up. We have, in fact,
repeatedly found terms in lns and even in (lns) which
could be considered as the beginning of a series in g lns,
but they were unavoidably associated to the exchange of
gluon quantum numbers. Our main interest has been,
however, to study the exchange of vacuum quantum
numbers for this kind of process, following the treatment
of Ref. [4], we expect that the first signal of Reggeization
should be found at the g

' order.
Moreover, as already stated at the end of Sec. II, at the

same order g, other Feynman graphs are produced
where three or four gluon interactions take place. If we
look to these Feynman graphs from the point of view of
the color structure we see that they show the same group
factors as those combinations of graphs, analyzed in this
paper, which finally do not contribute to the coefficient of
the 6& term. These families of graphs are the most typi-
cal of a non-Abelian theory —even at g order they are
quite a large number; we think that they build up an in-
teresting part of the three parton scattering and we hope
to be able to complete the analysis in this direction. The
feature, which characterizes the term of the three-body
amplitude studied here, is that it is related to the part of
the inelastic cross section where all partons scatter
without production.
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APPENDIX A

In this appendix we wish to discuss some problems
connected with the gauge and spin properties of the par-
ticles involved in the processes discussed in the paper
that, according to the standard point of view, are de-
scribed as massless quarks and massless gluons.

It is well known that in order to connect parton model
with perturbative QCD it is better to use a gauge where
there is no need of ghosts and one of the most usually em-

ployed is the axial gauge [16]. The relevant kinematical
variables of the problem suggest for the gauge vector c„
the choice c„—=(1;0), so we make the choice which is
sometimes referred to as a temporal gauge [17]. The gen-
eral form of the gluon propagator

c„l,+c l„ l„l
b,„,(1)=—g„—" " +

(c 1)

is then reduced to

—
&;, +p~p, h o

and, since p, =p0, the propagator in this case reduces to

1
~ab 2 ~ah~ a, b =1,2,

(p +q)

4,3=433=0(q/po) .
(A2)

(2p+q, )„(2p+q, +qz)
5,b 2 2(p+qi) (p+qi+q2)

2p+g q
'2

p+Xq

(A4)

while if one of the indices of the line carrying momentum

p is either 3 or 0 we get only a subleading contribution
and the terms in q are there only as a remnant of many
subleading terms. If we consider the lines carrying the
momenta k the result is the same. Now we proceed to
connecting the subgraphs in order to obtain the general
form such as Fig. 15(b). For the vertical line the form of
the propagator is given by Eq. (Al) and, if we come back
to the light-cone variables, we find that the factor of the
general expression corresponding to two vertices and a
vertical propagator takes, in its leading term, the form

s 4ap,
z ~u~k2 P

( +p )2
(A5)

This expression by suitable iteration finally gives rise to
the whole expression of the leading terms in s of the am-
plitude represented by Fig. 15(b), which has the proper-
ties we used in the discussions of this paper —in particu-
lar, in the individuation of the most important terms in
the cut graphs.

If the horizontal lines are fermionic the problem is
simpler; it is known from standard QED that for large
energy and small momentum transfer the convective part
of the current is the most important. A simple exercise

Now one inserts between two propagators the vertex J&„,
[Fig. 15(a)]:

~~„.=(2p+q)gk. +( p ——2q)Ã„, +(q p)A—„~ .

(A3)

It is evident that the first addendum alone builds up the
leading term because the large longitudinal parts of the
second and third addenda are eliminated by contracting
the expression of Eq. (A3) with the ones of Eq. (A2). The
conclusion is that the leading term corresponding to the
horizontal line of Fig. 15(a) is

l;I-

0
(A 1)

p p+v, p+X, q

When we take into account the lines carrying mornenta p
or k we assume consistently with all the treatment that
q «p0 or k0. If the horizontal lines are gluonic the most
important term in the numerator is

FIG. 15. (a) Representation of the propagator in Eq. (A4)
and (b) eikonal diagram for the three-body parton interaction.
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on y matrices reproduces the result

p+q p+q+g'
(p +q) "(p +q+q')

2( + )
1 p+g+q

"
(p +q) (p +q +q')

J"+q p+q+q'
Vp"(p+q) (p+q+q')

In the second addendum, using the fact that p =0, we

get a factor of p less than in the first one, which gives just
the convective part of the current; the procedure can be
iterated and we end up with an expression like Eq. (A4).
Since there is no way in which the terms considered up to
now might disappear, it is correct to classify all the
neglected terms as subleading ones. The case, finally,

where there is a quark in the vertical line corresponds in
our kinematical frame to a backward scattering of a
gluon by a quark and is therefore suppressed. This result,
obtained in axial gauge, can be translated in Feynman
gauge. It is well known that there is no straightforward
correspondence between the graphs drawn starting from
the two gauges. Nevertheless, it holds for the graphs
which we have chosen, because there are no graphs con-
taining ghosts at that perturbative order and with the
prescribed quantum number exchange between the pro-
jectile and the targets.

ticular attention to the role of some subleading terms. As
already seen the 24 graphs of the "eikonal type,

" i.e.,
graphs where neither gluon branching nor four-gluon in-
teraction are present can be easily grouped into three
families which can be called the two boxes, box in the
box, and pentagonal graphs and correspond, respectively,
to graphs 1 —8, 17—24, and 9—17 of Fig. 2 (see also Fig.
5). Since there is an obvious symmetry between the two
target quarks it is enough to study 12 graphs, 4 in each of
the 3 families. As in all the previous discussions, the in-

tegration will be performed over the longitudinal vari-
ables at fixed' transverse ones; since we also integrate over
the longitudinal variable which represents the difference
between the "minus" component of the target momenta
we have, on the whole, a fivefold integral.

Tao-box graphs

For this family, nothing relevant has to be added to
what was already said; in fact, even if we keep in the ex-
pression those transverse variable that were discarded in
the previous discussion it is still possible to bring the in-

tegrand in P& in a form having all its poles on the same
side of the real axis and decreasing fast enough to infinity
so that the overall result is zero.

APPENDIX B 2. Boxin the box

The aim of this appendix is to review with some more
detail the high s behavior of the uncut graphs, with par-

I

One of the possible integrand, the one corresponding to
term 17 in Fig. 2 is

1 1I,7=
a2() k +~2)s q2 al(] k ] I ) 'q lt

1 1 1 1

2
a2(Pp —Pg)s —

q2] ay~s —
q2t a](P]+Pg)s —q]t a]P]s —q],2 2 2

1 1 1

(a —a2)(P& —P2)s —
q2, (a —az)P2S+qz, (a —a, —a2)(P]+P2)s+q,

whereas the other three terms 18, 19, 20 in the same Fig. 2 show analogous forms which are not reported here. The in-

tegration over the variables P], P2, and P& leads to the expressions

i(2m) a2
I)7=

(a —a, —a~)s ]]3„

1 1 1

a]ag„s —A ~2 q4„

1 1 1 1 1

a]a2(pk +pk )s A A q& a]apk s A a2(1 a2)pk s +q&
(B2)

where the following notation has been used:

2 2 2A =a,q2, +a2q &, +aoq, ,

a)a2
ao=

a+a&+a2

(B3)

It is useful to note that all the four expressions consist,

as the one explicitly displayed, of two addenda showing
this common feature: the first one gives a larger contri-
bution for s ~ ~ because it has fewer s in the denomina-
tors, the second one gives a relevant contribution only
when the a parameters are very small, so that they can
cancel the effect of the s in the denominators; the origin
of this difference may be traced back to the integration
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over the p variables, where it is unavoidable, at a certain
step, to take into account at least two poles; one of which
has its position depending on the external variables P»

1

and p», which are of the order 1. We are interested in2'

keeping the cutoff on the transverse momenta, since this
justifies the use of the perturbative expansion, but the
sign of the transverse variables is irrelevant, so q,- is whol-

ly equivalent to —q;.
We realize that the "large terms" in Eq. (B3}cancel in

pairs while the subleading terms of the four expressions
are, in general, different so that they do not cancel. If we

I

study the large s behavior of the single large term of Eq.
(B2}we find that it behaves as s (lns); moreover, when
the overall phase makes this leading term real there is an
imaginary part going as s (lns). The "small terms"
give, in general, contributions going as s, so this is the
behavior of the sum.

3. Pentagons

One of the possible integrands, corresponding to term
9in Fig. 2is

1 1I9=
az(p» +pz)s —

qz, a, (p» +p, )s q, —

1 1 1 1

az(pz —
p& }s —

qz, azpzs —
qz, at(p&+p&)s —

q&, atp&s —
q&,

2 2 2

1 1 1

(a —az)(p& —pz)s —
qz, (a az)p, s +—q t, (a —

a&
—az)(p&+pz)s+q,

1 1 1
X

a~azP» s+A qzt q lt
2 2

(B5)

were it not for an end-point singularity which is produced
in this way, but which is wholly artificial; if we consider
also the small contribution, at least for the relevant in-
tegral, i.e.,

with three other analogous expressions for terms 10, 11,
and 12. We perform the integrations over the three vari-
ables P and we also find here larger and smaller contribu-
tions due to the necessity of taking the contributions of
two poles. We could use only the larger contributions,
arising from terms I9, I,o, I&&, and I&2 producing in this
way the expression

i (2m. ) 1

(a —
a&

—az)s p» p» a&aA s —A

t'(2n } 1

(a —at —az)s p» p»
—at(a —a&)p» s

1 1 1

a~azP» s+A qzt A (B6)

we find, in fact, by studying in detail the behavior of the
expression at the end points of the integration domain
that the singularity is no longer present. The actual eval-
uation implies the separation of the principal part and of
the pole contribution, both of them give contributions go-
ing as s, while in single terms of (B5) we can find
behaviors like s lns.

This analysis confirms that the logarithmic behavior in
the total energy is present in the single terms, even the
squared logarithm growth, in the graphs of the family of
the "box in the box," but summing the terms family by
family only the power behavior survives.
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