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We investigate the use of effective Lagrangians to describe the effects on high-precision observables of
physics beyond the standard model. Using the anomalous magnetic moment of the muon as an example,

we detail the use of effective vertices in loop calculations. We then provide estimates of the sensitivity of
new experiments measuring the muon's g —2 to the scale of physics underlying the standard model.
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I. INTRODUCTION

One of the time-honored methods of probing physics
beyond the known realm is to perform highly accurate
measurements of precisely predicted observables. Rather
than observing new particles directly, we infer their ex-
istence from the effects they have on known particles; in-
teractions unexplainable within the framework of the ac-
cepted theory (which in our case is the standard model)
imply new physics. This type of experiment, by its very
nature, cannot unambiguously discriminate among the
manifold possible models which extend the standard
model to higher energies; there may be several competing
models which affect measured quantities in the same way,
but no observable to which only one of the models con-
tributes.

Faced with this situation, it becomes questionable to
try to understand the low energy effects of new physics
on a model-by-model basis. The best approach is to fol-
low a characterization which is sufficiently general to en-
compass all types of high-energy physics. Such a charac-
terization is readily available in an effective Lagrangian
approach [1,2], which has recently been advocated [3,4,5]
as a model- and process-independent parametrization of
deviations from the standard model.

The effective Lagrangian method should be contrasted
with an approach in which a given model (or set of mod-
els) extending the standard model is chosen, and the
effects on low energy observables are calculated. The
specific model approach determines all corrections to the
standard model in terms of a few couplings and masses.
The effective Lagrangian approach parametrizes its pre-
dictions in terms of the coefficients of effective operators.
Therefore we are faced with a tradeoff: the requirement
of model independence increases the number of unknown
parameters whose order of magnitude can at best be es-
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timated. The results of the effective Lagrangian ap-
proach are very useful in determining, in a model-
independent manner, the sensitivity of a given experiment
to new physics, and can be used to isolate those observ-
ables most sensitive to possible new interactions.

The basic idea of the method is that processes below
some energy A can be described by effective operators
consisting of fields with masses below A. From these
operators we hope to infer the existence of particles with
masses above A. Thus, so long as we are below all new
particle thresholds, any type of new physics can be
parametrized by a series of effective operators involving
standard-model particles. It is important to note that
any given model will produce operators which respect the
(exact) symmetries of the standard model, and that the
best we can hope for from high precision measurements
are statements regarding the coefficients of these opera-
tors.

The underlying physics is described by a high-energy
Lagrangian, out of which all excitations with masses
above —100 GeV (which we label "heavy") are integrat-
ed out; what remains will be the standard model, plus an
infinite series of effective operators. These must be gauge
invariant' and describe the low-energy remnants of the
full high-energy theory. We will denote by A the (large)
energy scale at which the new physics first directly mani-
fests itself.

There are two possible types of high-energy physics to
consider: that which decouples from low-energy physics
and that which does not. In the decoupling scenario, the
masses of heavy degrees of freedom are 1arge because a

~This is not a trivial result: Its derivation requires the intro-

duction of a gauge-fixing technique which produces a manifestly

gauge-invariant effective action [6]. This does not yield a

gauge-independent effective action, but, although we have not

seen it demonstrated for spontaneously-broken gauge theories,

this can apparently be arranged [7]. This can be realized simply

by choosing the Landau gauge among the class of gauges dis-

cussed in Ref. [6].
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a weak 19.5 X 10 (1.2)

too small to be seen in the CERN experiment, but well
within the projected accuracy of the AGS experiment,
which should measure a„with an accuracy of 4X 10

Several authors [13] have considered the effects on a„
of gauge-boson anomalous magnetic dipole and electric
quadrupole moments. %'e will reexamine this problem
using the effectiv-Lagrangian formalism to discuss the
effects of high-energy physics on these constants, and will
examine the previous results from this point of view.

Regardless of whether or not the heavy excitations
decouple, the contributions to a„produced by the under-

dimensionful parameter respecting the symmetries of the
theory is large. In this case, the decoupling theorem [1]
tells us that at energies E «A observable corrections to
the low-energy theory are suppressed by powers of 1/A
(times possible powers of lnA). In the nondecoupling
case, the masses of the heavy degrees of freedom in the
theory are large because some dimensionless coupling
constant is large. An example of this is a heavy fermion
which gets its mass from spontaneous symmetry breaking
and becomes heavy due to a relatively large Yukawa cou-
pling. In this case, the contributions due to physics
above A need not be suppressed by powers of 1/A; the
corrections to standard-model processes are given by a
chiral expansion in powers of p/A, where p is a typical
momentum for the process at hand [8].

The application of effective-Lagrangian techniques to
the case of high precision measurements contains a new
complication, for the effective vertices can appear within

loops and thereby produce new divergences. But the
effective Lagrangian is completely renormalizable-
power counting arguments similar to those involved in
proofs of renormalizability show that all divergences
multiply local operators. Since the effective Lagrangian
includes all operators respecting the symmetries of the
theory, such divergences simply renormalize the bare
coupling constants. Their only effect (associated with
the logarithmic divergences) is to determine the
renormalization-group running of the efFective couplings.
This is a well-known fact and has been applied in the con-
text of the strong interactions [9].

%e will develop and apply the techniques of effective
Lagrangians using the anomalous magnetic moment of
the muon ps an example. This is an especially interesting
observable because the Brookhaven Alternating Gradient
Synchrotron experiment AGS 821 [10] is expected to
achieve a precision greater than that required to observe
the standard-model contributions. The best present mea-
surement of a„comes from a series of experiments at
CERN [11].

a CERN
= 11 659 230( 84 ) X 10

The calculated effects on a„ofweak interactions are [12]

lying interactions can be classified in three types: 5a„,
produced by loops containing the effective operators;
5a„, produced by the modification of the gauge boson
eigenstates; 5a„""',produced by effective operators of the
type p,o.„~F". The contribution 5a„ is due to the fact
that the new interactions modify the quadratic part of the
Lagrangian, so that a rediagonalization of these terms is
required. %e will consistently use this classification
below.

II. DECOUPLING CASE

As previously mentioned in the decoupling scenario
the low-energy effective Lagrangian can be written as a
power series in 1/A:

g(n +4)
oo

n=O ~~
(2.1)

0 =—(P P)W W"1
(2.2)

8~~ = (p p)8„8"—1

where the operators 8'"+ ' have dimension [mass]'"+ ',
are SU(2)z XU(1)r gauge-invariant, and contain only
standard-model fields. The constants ao (which must be
renormalized) determine the strength of the contribution
of 8. We shall assume that in this expansion 8' ' is equal
to the standard model, which then takes the status of an
effective Lagrangian valid for energies much less than A;
this is true only in the decoupling case. As the structure
of the interactions underlying the standard model are
presently unknown, the coei%cients ao cannot be evalu-

ated; nonetheless, their order of magnitude can be es-
timated [8].

The determination of the contribution to a„ from
dimension-six operators is simplified by the constraint
that these operators must be gauge-invariant. Addition-
ally, we may use the classical equations of motion to re-
move some redundant operators [14]. Buchmiiller and
Wyler [15] have compiled a list of all possible gauge-
invariant terms (assuming lepton and baryon number
conservation) in an effective Lagrangian to order 1/A .
They find that there are no dimension-five operators, and
81 operators of dimension-six (for a single fermion fami-
ly).

In determining '5a„' [see (1.3)], we will not treat all
dimension-six operators, but will instead focus on those
operators which give rise to anomalous three-gauge-
boson- or two-gauge-boson —Higgs-boson couplings, and
thereby to anomalous gauge-boson dipole and electric
quadrupole moments. There are four such operators in
[15):

2The coupling may still be within the perturbative regime.
Note that this does not require that the underlying theory be

renormalizable.

Su, and 8~~ contribute to Fig. 1(a) (there are three addi-
tional graphs where the 8' bosons are replaced by the
corresponding would-be Goldstone bosons). 8~~, 8&~,
and 8&~ contribute to Figs. 1(b) and 1(c). In each figure,
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crated by loop graphs implies that the corresponding a
must contain a factor —1/16~ . In this fashion, we ob-
tain (for the constants at scale A)

(2.5)

(b)

FIG. 1. Contribution to a„ from the triple-boson vertex. The
heavy dot denotes a 8~& or 8+ vertex. There are three addi-

tional graphs where the W bosons are replaced by the corre-
sponding would-be Goldstone bosons.

a heavy dot denotes one of these effective operators.

We must also consider the two operators which can

give a direct contribution to 5a„:

6„w= —
( Lo"'r p.„)P W„,+H. c. ,

6„s= —(L o "'ps )PB„„+H. c. ,

V

where L =( "). Our notation is
P

(2.3)

0
vW'2

Our effective low-energy bare Lagrangian will there-
fore be

1
&,s=J-sM+, (a w6w+a ws 6ws+ayw6yw

A

for the SU(2)I, B„,for the U(1) i, field strength, and

D„=9„+(i /2)g r'W„' +ig'YB„

( Y being the hypercharge) for the covariant derivative. P
denotes the standard-model scalar doublet; its vacuum

expectation value is

PB 16~2

While we cannot expect these expressions to be numeri-

cally precise, we can use them as useful order of magni-
tude estimates. One should, however, be aware of the
possibility that there may be several such contributions
or resonant effects that may enhance these estimates,
perhaps by as much as an order of magnitude; on the oth-
er hand, the presence of small couplings in the underlying
theory can suppress these values below the ones in (2.5).
Moreover, there may even be additional suppression fac-
tors of I/16m, since certain couplings may arise only

beyond the one-loop level in the underlying theory, e.g. ,
the contribution of a fourth generation to a„w and a„B
sets in at the two-loop level. Thus, the inferences to be
drawn on the sensitivity to the scale A must be interpret-
ed in this context and not immediately identified with the
threshold for new particle production.

It might be argued that the coefficients a„wB should
have a factor of m„/v to allow for a natural mass genera-
tion for the muon. In fact, this is not necessarily the
case. Supersymmetric models can substitute for m„/v a
factor of mz/v, for example. Also without this factor
are models constructed so as to allow a relatively large
magnetic moment for the neutrinos while keeping their
mass within experimental bounds [18]. However, models
which do not contain the m„/v suppression are likely to
render the muon mass unnaturally light. We shall

present results both including and disregarding this small
factor.

When P is replaced by its vacuum expectation value,

then
+a~s6~s+a„w6„w+a„s6„s) .

(2.4) 6 = —— W g"',1 v
WB 2 ~2 P

(2.6)

The above parametrization in terms of the a@ is not stan-

dard in the literature, where the description of X,s in

terms of parameters frequently called ~ and A, are used

[16]. We will see that aw is proportional to A, , and aws
to (~—1).

When we replace P by v/&2, the effects of 6&w and

6&s on a„are not observable. They can be absorbed into

a wave-function renormalization of B and W, together
with a rescaling of the constants g and g', and will not be

considered further. These two operators therefore only

contribute to a„ through Figs. 1(b) and 1(c).
As mentioned previously, we do not know the full

theory, and so we cannot compute the six a' s, but we can
estimate their sizes. It can be shown [17] that, because of
the SU(2) XU(1) symmetry of the high-energy theory, the

six operators must come from some loop in the full

theory with heavy internal lines. This implies that any W

or B must be accompanied by the corresponding coupling

g or g'. Moreover, the fact that these operators are gen-

V+ cw+~w awa Z
A

v2
B =cw 1 swcw 2 wB ~p

A

(2.7)

3
v2

~W+CW 2 &WB
A

This is not required, though: many supergravity-inspired su-

persymmetry (SUSY) models avoid this.

which contributes to the quadratic part of the Lagrang-
ian. This necessitates a rediagonalization of the boson
fields (see [15]):

v2

WP, ~w 1 ~wcw 2 +wB ~P3

A
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sM GF m„Mw
6v'2~' Mg

GFm 10+
8&v~'

M*—6 , +1w

Mz

4' 2e

Sm
(2.9)

where sw and cw are the sine and cosine of the tree-level
weak-mixing angle in the standard model. This leads to
certain modifications of the standard-model parameters
which we reproduce for completeness [15]:

V2

A
(2.8)

V2
Mz~Mz Mz 1+swcwuwB

A

Gws does not affect v, Mw, or GF. We will use e*, Mz,
and GF as our input parameters; for example, it is Mz
that is measured to be 91.2 GeU, not Mz.

The standard-model electroweak one-loop contribution
to a„ is [12]

The change in the values of Mz and the Z couplings
results in a change in a„; the anomalous magnetic rno-

ment calculated with the shifted fields (2.7) minus the
standard-model result (2.9) is equal to 5a„.

The inclusion of effective vertices in loop graphs re-
quires a certain amount of care. It is assumed from the
beginning, that all momenta in (2.4) lie below A, and this
is violated by the loop momentum in Fig. 1. To deal with
this problem, note that when the graphs in Fig. 1 are
differentiated once with respect to an external momen-
tum, they become ultraviolet convergent, and so the mo-
menta entering the heavy loop can be effectively assumed
to be small compared to A, then the use of (2.4) is
justified. Integrating with respect to the above external
momentum produces an undetermined integration con-
stant times a "direct" operator G„w or G„s. We expect
that for scales p=A this term will give a contribution of
the same order of magnitude as 5a„'. In this manner, us-

ing the above expressions (and calculating in the Feyn-
man gauge with dimensional regularization) we obtain,
from (2.4),

4~2Mwm„
p z z ( w pw wapB)

g swA

2 2 2

Sa"=— p 1 3 Mw
aw+, a w~

——y+ ——ln
16& A 8~ g' A e 2 4~

3 g mI,5a' = " ——y+ —+ ln ln
16& A e 2 M2 —m 2 4~&2 Mz m ~ 4~&2

2 2
1 3 2

2
— 1'+———ln

2 (cwaves +swa&w 2swcwaw—~ ),
4 A2 e 2 4~}u2

m
~~p= z zawaswcw(1 —4sw»

6m A

s2 —c2w
PB +

cwsw
(2.10)

where m& is the mass of the Higgs boson, p is the renor-
malization scale, y is Euler's constant, and the dimension
of space-time is 4—2e. We have broken 5a„' into three
parts, one from each diagram in Fig. 1. To this order in

A, the starred and unstarred parameters in (2.10) are
equal. As mentioned above, the divergences are unob-
servable; the infinite contributions from the graphs in
Fig. 1 are canceled by counterterms of the form of a„B
arid cxpw

The complete expression for the new physics contribu-
tion to a„ is given by the sum of the five contributions in
(2.10). We will assume that the renormalization of the
dimension-six operators has been carried out using the
modified minimal subtraction scheme (MS) [19] and
choose p =A, so that we may use the estimates in (2.5).
If we renormalize at a different scale, for example
p =Mw, then we must run our estimates for cz„w and2= 2

a„B from scale A to scale Mw. This running is deter-
rnined by the part of 5a„' proportional to awB, and the
difference in a's at scale A and scale Mw will be propor-
tiona1 to lnM+, /A such that 5a„'""+5a„' is unchanged.

5a'+5a = —1X10P P A

+WB+3X 10 1+—lnA
6

4X 10
—Io 5" A'

9 1+ 1
1 A2 PB5" A

(2.11)

where A is to be expressed in TeV. Then, taking the esti-
mates for the couplings given in (2.5), we obtain

It is only in this sense that the logarithmic divergences in

(2.10) have any effect. (The couplings e, g, and g' at scale
A will differ from those at scale Mw by terms involving

1nMw/A, but these differences are suppressed by higher

powers of standard-model coupling constants and can be
ignored to this order. )

We find numerically that



C. ARZT, M. B.EINHORN, AND J. %UDKA

~6a„'+5a„~=10 ' ~[4+1+0.9+0.3]

+ [0.8+0.2+0.2] lnA ~, (2.12)
A

where all masses are measured in TeV, and the + refers
to the relative signs of the various e's. mz has been set to
150 GeV (the dependence on mh is slight). This equation
shows that the CERN and Brookhaven experiments are
both completely insensitive to A above the Z mass for our
estimates of n~ and n~z. To reach a bound which is at
all interesting, say A=200 GeV, would require the o, s to
be about ten times larger than expected. To reach A=1
TeV would require the n's to be about 100 times larger
than expected —an unlikely occurrence in our opinion.

These discouraging results do not apply to 6a„'""
which (assuming no strong cancellation between the two
terms) takes the value

ga direct

A
(2.13)

III. NONDKCOUPI. ING CASE

We now turn our attention to the possibility that phys-
ics above the scale A does not decouple from the 1ow-

energy physics. In this case, the appropriate expansion of
the effective Lagrangian is in powers of momentum. We

(A in TeV), which is about six orders of magnitude larger
than the contributions in (2.12). This is because (2.12)
contains a factor m„/(16m. v)-10 due to the loop in-

tegration and the helicity change of the muon. Equation
(2.13) allows a sensitivity limit of A 50 TeV for the
Brookhaven experiment; effects from scales beyond this
value will not be observed. In fact, the CERN experi-
ment already implies a bound A ~ 10 TeV.

If the previously mentioned factor of m„/v is included
in cz„~z, the above estimate decreases to 5a „""'
-4X10 ' /A . The sensitivity is accordingly dimin-
ished to A ~ 1 TeV for the Brookhaven experiment, while
the CERN data implies only that A ~ 0.2 TeV.

The suggestion here is that, if A is of the order of the
weak scale, these effects may be as large as the standard
model electroweak contributions. SUSY models exem-

plify that possibility. Nevertheless, these limits, as we
mentioned previously, must be cautiously interpreted,
since, in other models, small coupling constants or reso-
nances in the underlying theory can alter these limits on
A by an order of magnitude or more. It is important to
note, however, that even if an effect is seen in the
Brookhaven experiment, it will not be produced by any
modification of the "anomalous" three-gauge-boson cou-
plings: 5a„'+Sa„would produce a measurable effect
only for scales for a few GeV, corresponding to a region
already probed by the CERN e+e collider LEP, Fermi-
lab, and many other previous experiments [20], which
found no evidence of new physics.

will assume here that the particle spectrum is the same as
the standard model's with the exception of the Higgs bo-
son, so that the effective Lagrangian can be written as a
gauged chiral model [9,21,22]. In this model, we expect
that A-4m. v [21], and that, for energies small compared
to A, the first terms in the expansion will provide a good
approximation [8].

Specifically, if

U = exp[2im'r'/v] (3.1)

then lowest order kinetic terms in the effective Lagrang-
ian are [5]

Xk;„=—tr [ D„U D„U ]
——tr [ W„,W""

]

——tr [ B„„B"'],1
(3.2)

where we have adopted the matrix notation
W„=W„r /2, B„=B„r/2, D„U=B„U+igW„U

ig'—UB„, and r denote the Pauli matrices.
There are six new SU(2)I XU(1)r operators which are

of chiral dimension four or lower and contain quadratic
or trilinear gauge vertices [22]. The only term of chiral
dimension two is

VX', =—P', (tr[r U D„U]) (3.3)

and the five of order [mass] are

X, =gg'P, tr[UB„,U W"'],

X2= 2ig'p—2 tr [8„,D~ U D'U],

X3= —2igp3 tr[W„,D"UD"U ],
X8=—g ps( tr[Ur U W„,])

1

X9= ig pt9—r[U '~U W„]tr[r D"U D"U] .

(3.4)

The numbering system, prefactors, and signs are adapted
from those of Ref. [22). p, corresponds to L,o of Ref.
[9], p2 and p3 to L9 of that same reference. p', is denoted

in [5].
As in the decoupling case, except for Xi, the naive or-

der of magnitude estimate of each p is v /A = I/16~
[8]. The p's may be larger than expected, for example, in

technicolor theories, where they are enhanced by the
numbers of generations and technicolors [5], or if
enhanced by a low-lying resonance. pi, though a priori of
order 1, violates the approximate SU(2)it, and can be lim-

ited by measurements of p =(Ma /Mz cos9+ ) to2

pi - 1% [23], which, coincidentally, is of the same magni-

tude as 1/16m .
Just as in the last section, we must also include the

operators (2.3) which give a direct tree-level correction to

a„: namely,

5These are summarized by Kinoshita and Marciano in Ref.
[13).

60nce the top mass is known, the error on p will be reduced to

a few tenths of a percent.
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&d;„.i = —
WR &„mPL[g. &„wW""+g '&„s8""1,

0 0
0 1

The P's in the direct terms are expected to be of order
1/4n. We will consider separately the cases where P„ii s
are decreased by a factor m„/A. Our complete effective

Lagrangian is then given by expressions (3.2) through

(3.5}.
We look first at the direct terms. A quick calculation

shows them to be

gm

~ZM W

(3.6)

As in the decoupling case, there will be contributions
to 5a from three-boson vertices and from two-boson

P
vertices; X', , X,, and Xs have bilinear terms, and all but
X', have trilinear terms. We first consider the trilinear

terms. To this order in the expansion of L,s; there is no

contribution such as aii since 6ii, has chiral dimension

six. We can see by comparison that the contributions
from Pi, Pz, P3, Ps, and P9 are all proportional to the a iis
term of the decoupling Lagrangian, so that we need only
make the replacement

2

ass z
—g g'[ —2P, +Pz+P3 P—s+P9], (3.7)

M~
4

and, therefore (using the MS and taking v as the renor-
malization scale),

4 2

p z p [ I i+13$+P3 Ps+P9]
Sn. M~

V 3
X ln +-

Mg

(3.8)

The ultraviolet divergence is, as in the decoupling case,
non-observable and has been canceled by the appropriate
counterterms in X„ii +X„s.

Next, we must consider the effect of the terms quadra-
tic in gauge bosons on 5a„. The quadratic part of the
gauge-boson Lagrangian is

= ——W W "'+ P W W""——8 8""+—gg'P W Q""+—(g W W "+g' 8 8" 2gg'W38—")1
2

1 1 v2
WB 4 pv 4 8 Pv 4 Pv 2 i P 8 P P P

v2—P'i (g W„—g'8„)(gW " g'8") . — (3.9)

This requires the rediagonalization 6 2

—" [(1—4ca )Pi —g'(1 —4sw)(sw&i —ck&s)] .
3&2m-'

W„=sii, 1+—g ski (2Pi+Ps) A„22
2

+cii, 1 g sii,P, +—g (1+sing )Ps Z
2

Bp cw 1+ g sw(2~1+~8) ~p22
2

(3.10}

—sii, 1 ——g cii (2P, +Ps) Z„.22

These expressions lead to the redefinitions

22e~e'=e 1+—g sii, (2P, +Ps)
2

1Mz~Mz=Mz 1 Pi ——g'(2s~P, —c~P, )
2

(3.11)

while G+ and M~ remain unchanged.
As in the previous case, the above expressions produce

a new term in the standard-model contribution to a„due
to the modification in Mz and the Z couplings, which

in turn modify a„. A straightforward calculation gives

(3.12)

The total change in a„ is again given by the sum
5a„'""+5a„'+5a„,where these quantities are given in

(3.6), (3.8), and (3.12), respectively. Numerically,
~5a„'+5a„~ & 6X 10 ' depending on the relative signs of
the P;. The direct contribution is restricted to
~5a„'""~~10 if no factor of m„/A appears in P„s „„
or ~5a„'""

~
5 3X 10 if this factor is present.

We see then that the situation here is marginally
different from the decoupling case: if the P; all conspire
to suppress the direct contribution and enhance (by a fac-
tor of 2 or so) 5a„'+5a„, then the Brookhaven experi-
ment may be sensitive to the effects of an anomalous
triple-gauge-boson vertex. On the other hand, if we as-
sume no significant cancellations between the P;, and no
unexpected enhancement of these coeScients, then the
main contribution to 5a„comes from 5a„'"",just as in
the decoupling case, while the other contributions are
unobservable. In this case, current CERN data imply a
very strong suppression of the direct contributions, which
can be interpreted naturally as evidence for the factor
m„/A in P„s ii, ', when this is included, the contribution
from these terms lies below the sensitivity of the existing
data (but well inside that of the Brookhaven experiment).
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We can conclude that, if the nondecoupling is realized in

nature, the "direct" contributions must be suppressed by
a m„/A factor and that the Brookhaven experiment will

either observe them or set interesting limits, implying
that these contributions are further diminished (for exam-

ple, by arising only at two loops).
The discussion above includes the a+~ (or, in the con-

ventional notation, a —1) piece of the triple-gauge-boson

vertex. The a~ (or A, , in the conventional notation) part

is unchanged from the decoupling case and is therefore

probably unobservable.

IV. COMPARISON TO OTHER RESULTS

Several authors [13,22] have considered the effects of
high-energy physics on the anomalous moments of the
8'. In this section, we compare these results with ours in

the decoupling scenario.
In our notation, the effects considered in [13,22] are de-

scribed by the replacements

a~~ =(x —1)gg'A /(4M~),
(4. 1)

a~= —
A,gA /(6M~);

all other ao are ignored. The constants A, and ~ are relat-

ed to the magnetic dipole and electric quadrupole mo-
ments of the %by

p~= (1+~+A, ), Q~= — (~—I, ) . (4.2)
2Mw M w

Note that our previous arguments imply that, taking the
most benign case where 4= v, the natural scale for these
constants is

~
I~
—1

~

—3 X 10 and
~
A,

~

—2 X 10 . With
this proviso, the results obtained in [13,22] coincide with

5a „' in (2. 10).

V. CONCLUSIONS

See next section for the notational relations.

We have described the formalism of loop calculations
for effective-Lagrangian models, using a„as an example.
The philosophy of our approach differs markedly from
the one used in several other publications [13], and this
translates into different conclusions. Firstly, we note that
any divergence obtained in using an effective Lagrangian
is unobservable, since it will always be canceled by ap-
propriate counterterms appearing in other operators in

X,tt. The only remnant of these divergences concerns the
logarithmic ones which specify the renormalization
group flow of the couplings due to the light fields. It is

only in this sense that the logarithms in (2.10) are observ-
able. Stronger divergences (quadratic or quartic) are
completely unobservable; this argument contrasts with
several other opinions [24]. Related to this issue is the
constraint of gauge invariance; this allowed us to use a
gauge-preserving regularization where divergences higher
than logarithmic are automatically (and consistently)
disregarded.

Secondly, it is important to note that the magnitudes of
the dimensionful coefficients reflect assumptions regard-
ing the scale at which new physics will become apparent.

For example, if we require A. -1, this implies a scale of
—10 GeV, which is obviously irrelevant; similar results
hold if a —

1~ —l. It is important to note that the scale A
in the logarithms and the one multiplying the prefactors
must be the same (required by consistency), and the ob-
servability limits cannot ignore this fact.

These conclusions apply independently of the nature of
the physics beyond the standard model, whether
confining or weak. For example, in the approach advo-
cated in this paper, the statement that A. -1 in a compos-
ite model is untenable.

Finally, we remark on the estimates we used for the
couplings. In the decoupling case, we have assumed that
each gauge boson is associated with a coupling-constant g
or g' and that, since all the operators have dimension
larger than 4, they represent the low-energy limit of a
series of loop diagrams; this relies to a certain extent on
perturbation theory. But, in the case where the underly-
ing physics does not lie in the perturbative regime, we
can borrow the arguments used in the chiral approach to
the strong interactions [8], which lead to similar results.
The nondecoupling case, again, closely parallels QCD,
and we use the corresponding arguments. If the factors
of 1/16m in our estimates are ignored, the magnitude of
the contributions increases about two orders of magni-
tude and the conclusions are markedly altered. Since we
have no reason to suppose such an anomalously large
value for the ao, or the /3, , we have not considered this
possibility.

Effective Lagrangians can be used to calculate observ-
ables in a loop expansion. Among other things, these
loop contributions modify the direct terms, contributing
to the P functions for a„~ and a„z. Whether these
"direct" terms are larger than suggested by operator mix-

ing is model dependent, as we discussed following Eq.
(2.5). Taken at face value, in the decoupling case, the
BNL experiment will push the limits on A from their
present value of 200 GeV up to about 1 TeV. However, it

may well be that the relevant threshold associated with
new physics is much lower than A, depending on the na-
ture of the underlying theory. In the nondecoupling case,
the Brookhaven experiment should again be sensitive to
the underlying physics whose effects should be apparent
at scales of order v. In the decoupling case, certain rnod-
els ([18], SUSY) illustrate the possibility that the direct
couplings are not suppressed by a m„/A factor (an un-

likely possibility for the nondecoupling scenario in view

of the CERN data), in which case the sensitivity of the
Brookhaven experiment is increased to A —50 TeV. For
both situations, however, the measurements of a„will not
be sensitive (or at best marginally so) to anomalous
triple-gauge-boson vertices.

After this manuscript was completed, we became
aware of Ref. [25], in which many of the points of princi-
ple discussed above are also addressed.
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