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Unstable particle mixing and CP violation in weak decays
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We discuss unstable particle mixing in CP-violating weak decays. It is shown that for a completely de-

generate system unstable particle mixing does not introduce a CP-violating partial rate difference, and
that when the mixings are small only the off-diagonal mixings are relevant. Also, in the absence of mix-

ing, unstable particle wave function renormalization does not introduce any additional effect. An illus-

trative example is given to heavy scalar decays with arbitrary mixing.

PACS number(s): 12.15.Ff, 11.30.Er, 13.30.—a

I. INTRODUCTION

The smallness of the KL -Ez mass difference allows us
to have access to rare processes such as CP violation. Up
to now the only established experimental evidence of CP
violation comes from the mixing of the unstable particles
K and E [1].

Earlier studies of unstable particle mixing followed two
physically equivalent paths. One is due to Weisskopf and
Wigner [2], in which one introduces an effective complex
mass matrix. The evolution of the system is determined
by the standard time-dependent Hamiltonian formalism
[3]. The other is due to Sachs [4], in which one studies
the dynamics of the complex pole of the kaon field propa-
gator. The Hamiltonian method is expressed directly in
terms of the measured quantities and is therefore more
transparent from a phenomenological viewpoint. On the
other hand, the propagator method arises naturally in the
context of quantum field theory, and hence is more easily
adapted to fundamental gauge theories of weak interac-
tions. Both approaches are phenomenological, having
difficulties handling ultraviolet divergences arising from
higher-order corrections. In spite of these fundamental
difficulties, the phenomenological formalisms have been
very successful. They provide the standard descriptions
for the study of unstable particle mixing.

The advent of renormalizable gauge theory provides a
connection between the parameters of a phenomenologi-
cal formalism and the parameters of a given fundamental

theory. In this paper we would like to study these con-
nections for unstable particle mixing in some detail,
focusing on CP-violating processes. We wi11 adopt an ap-
proach that combines the two methods mentioned above.

Instead of introducing a complete renormalization
prescription, our immediate goal is more modest. In the
next section we discuss some general properties of S-
matrix elements in the presence of unstable particle mix-

ing. The results of this analysis turn out to be very useful
for simplifying Feynman diagram calculations.

In Sec. III we study the relationship between the unsta-
ble particle mixing and antiparticle mixing. For simplici-

ty, we only focus on scalars. A simple formula valid for
small mixings is derived for CP-violating partial rate
differences.

The formalisms developed in Secs. II and III are ap-
plied to a simple example of baryogenesis by heavy scalar
decay. The results are shown to agree with the published
results obtained directly from Feynman diagram calcula-
tions. This part is presented in Sec. IV, followed by a dis-

cussion in Sec. V of large mixing and renormalization.
Our conclusion is presented in Sec. VI. We give two ap-
pendixes to present some technical details: one discusses
the renormalization of unstable particle mixing and the
other shows how to diagonalize an arbitrary n X n com-

plex matrix.

II. GENERAL FORMALISM

Consider the weak decay of a set of unstable particles

P, produced at t =0, where the index a = 1,2, . . . labels

different flavor of P. Suppose the lowest-order amplitude
of P, decaying into a final state Ff ) is given by

By CPT invariance, to first order of H„„k a replacement
of Ff and P, by their antiparticles Ff and P, corresponds
to change Tf, to Tf, . By the superposition principle, the
weak amplitudes at a later time t are

b, c

Tf (t)= g TfbVb V
b, c

(2)

(3)

where V and V are the mixing matrices

(4)

(5)

and ~P,
' ), ~P,

'
) are the eigenstates of an effective Hamil-

tonian, which is correct up to second order in H„„„.
~P,') and ~P,') will be referred to as the eigenstate of
propagation hereafter. The eigenvalue of ~P', ) and iP,')
is co, =m, —i y, /2 in the rest fratne P,', where m, and y,
may be interpreted, respectively, as the mass and width of
tt', and P,'.

If ~Ff ) ( iFf ) ) belongs to the unstable particle set, then

Tfb and Tfb are zero unless f=b, and Eqs. (2) and (3) are
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useful for the study of time distribution of CP asymmetry
in oscillation [5,6]. Except for situations in which the
particles are stable or the mass and decay matrices com-

mute, V and V are, in general, not unitary. If both CPT
and CP are conserved, V= V and Eqs. (2) and (3) are the
natural generalizations of the known formalism [7]
describing the so-called "mix-and-decay" phenomena.
The formalism of [7] has been employed in the study of
unstable neutrino oscillation [8,9]. For practical purpose
the mixing matrix has so far been approximated as uni-

tary. Such an approximation is not always justifiable.
Our main interest is in the unstable particle mixing

effect in the time-integrated rate difference

is evident by dropping the matrix V (not V ') from (2)
and V from (3). Phenomenologically, neglecting Vand V
in (2} and (3) corresponds to ignoring mixing in particle
production. As pointed out earlier [4,19], the propaga-
tion eigenstates cannot be regarded as physical in the
sense that they cannot be directly produced nor detected
[20]. As a result, b,I, is not a physical observable

Another important feature of Eqs. (2) and (3) is that,
when the mixings are small, the diagonal mixings and
phases are irrelevant for 6&, . Indeed, for small mixings,
we expand Vand Vas

V„=e ' [5„+b, V„],
V„=e '[5„+b,V„], (10)

It should be pointed out that, in addition to the mixing,
the rate difference may also depend on final-state interac-
tions, and it is not always possible to separate them if
these two effects are comparable. A discussion on parti-
cle mixing is always warranted, however, unless its effect
is negligible. For recent discussions on the final-state in-

teraction effect see Refs. [10—15].
In order for 6&, to be nonzero it is necessary that CP

be violated and to have significant nontrivial CP-
conserving phases. According to Eqs. (2) and (3), a CP-
conserving phase may arise either from the mixing matrix

lN
V or V or/and from the evolution phase e '. For a
completely degenerate system, i.e., co, =co, the evolution

phase factors

TI, (t)=e ' 'TI, , (7)

T (t ) =e '"'T'
fa fa (8)

Although a nonreal T&, implies CP violation, the contri-
bution to the rate difference from mixing is seen to vanish
because

~ TI (t ) ~ ~ Tf (t)
~

This result has an important implication in searching
for mechanisms for baryogenesis [16]. It has previously
been suggested [17] that a degenerate unstable system

might provide a resonance enhancement to the CP-
violating partial rate difFerence from mixing. Our
analysis shows that the outcome would be the opposite if
the degeneracy is complete. Instead of a resonance
enhancement, we expect that contributions to the genera-
tion of baryon number asymmetry from unstable particle
mixing is highly suppressed whenever the particles in
question have nearly equal mass and lifetime, and is zero
in the complete degenerate limit.

One special example of a completely degenerate system
is that the set contains only one particle, i.e.,
a =b =c=1. In that case (2) and (3) show that particle
instability itself does not contribute to the CP-violating
partial rate difference. The same statement applies to
systems with an arbitrary number of unmixed particles.
In terms of perturbation theory these results imply that,
in the absence of mixing, unstable particle wave function
renormalization does not affect 5&, .

Had we considered the rate difference of the eigen-
states of propagation, i.e., b f] —I'($]~Ff ) I (I]I]~Ff),
we would have reached a different conclusion [18]. This

T&,(t)=e ' TI*, + g Tg&b, V]„[e ' —e '
] .

b

(12)

The second terms in Eqs. (11) and (12) vanish for diago-
nal mixings. Therefore, neglecting off-diagonal mixings
the CP-conserving phase e ' factors and ~T&, (t)~
—

~T&, (t)~ =0. Hence, for small mixings the diagonal
phases a„a„and co, t do not enter into the determina-
tion of EI„only the off-diagonal mixings, i.e., bAa, are
relevant. This is similar to a result of Wolfenstein's for
final-state interactions [6]. Thus, for the calculation of
b &, one does not need to consider flavor-conserving one-
particle-reducible diagrams.

III. RELATIONS BETWEEN PARTICLE
AND ANTIPARTICLE MIXINGS

CPT invariance provides a relationship between V and
V. In quantum mechanics this would be obtained by
studying the Hamiltonian. The existence of the "stan-
dard model" underlines the usefulness of a field-
theoretical analysis. In field theory the relation between
V and V can be easily obtained from particle propagator.
Consider situations in which P, is a scalar. At tree level,
the propagator of P, is

ib. ' '(P )=i[P'—m' ' ] '5 (13)

where m ] ' is the bare mass of P„and we have implicitly
assumed that ~P, ) is an eigenstate of zeroth order of
H „k. Including one-loop corrections the following
changes occur in (13):

(0)2 2
ma ~ha ~ha (14)

where Af is the square of an effective complex mass ma-
trix,

where the diagonal phases a, and a, are real. The ele-
ments in hV and hV are assumed to be much smaller
than unity. To first order of EVand EVwe have

TI, (t)=e ' TI, + g TI],AV]„[e ' —e ' ],
b
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~2b. ——~2b. —) r2b. , (15)

[QAI'Q ']b (m tm Y )5b. , (16)

where Q is a complex matrix. The one-loop regularized
propagator can be written as

id' '(P )=iQb '[P m, +—im, y, ] 'Q„, (17)

where for simplicity we have neglected terms of order y .
Evidently, i [P m, —+im, y, ]

' is the propagator of P', .
It follows that

Vb. = Qb.

in which AL is the effective mass matrix and
I =

—,'(JRI'+I JR), where I is the decay matrix, and
I /4 has been neglected. Both AI and I are Hermitian,
but Af is not.

For a given P, AL can be diagonalized by a transfor-
mation

SVb. =avb(. '+iaVb A',

aV =SV(D)+iaVb(A) .

(21)

(22)

Phenomenologically, b, Vb,
' and 6 Vb,

"' correspond to the
mixings arising from the mass and decay matrices, re-
spectively. The Hermiticity of the mass and decay ma-
trices then implies

is necessary if the orthonormality conditions are to be
maintained for both IP, ) and IP,

' ) [21]. In practice, this
does not introduce any additional complication, as P is
always fixed by the on-shell condition once the initial
state is specified.

We now focus on a case of special interest, small mix-
ing. By small mixing we mean that (1) the width
differences of the particles are much smaller than their
mass differences and (2) the off-diagonal elements in JR
can be treated as a perturbation. In that case AV and
b, V, defined by (9) and (10), may be separated into their
dispersive and absorptive parts:

—1Vt. =Q.b

and thus the relationship between V and V is

(19) gV(D, A) gV(D, A)
ba ab

gV(D, A) gV(D, A)e
ba ab e

(23)

(24)

Vb Vb (20)

For stable particles At is Hermitian, Q is unitary, and
hence so are V and V, and (20) reduces to the known re-
sult V= V*. Substituting (20} into (3) one sees that the
time-dependent mixing matrix in the antiparticle decay is

g, V,, 'e '
V,b, which differs from that in the particle

decay (2) by exchanging the indices a and b (a conse-
quence of time reversal).

It is important that At is momentum dependent. This
I

The solution to (20) satisfying the constraints of (23) and
(24) is

g V(D, A) g V(D, A )e
ba ba (25)

This is a much simplified version of (20}, valid for small
mixing s.

With (25) one can have a simple expression for b,f, .
From (11), (12), and (25) we find that the time-
differentiated CP-violating partial rate difference is

I Tf, (t)I —Tf, (t)I =4+ pb[sinP eb2™a~—sin[Re(co, cob)t+Pb]e — ' ' },
b

where

(26)

(28)

pb
= '(/ [Im( b, V&,

"' Tf', Tfb ) ] + [I m( b, Vb, 'Tf', Tfb ) ] (27)

tanpb =Im[b Vb,
" Tf Tfb 1/Im[h Vba''Tf'

Tfb ] .

In the absence of Cp violation 6V'D' "' and Tf, are real, pb =0 and hence Eq. (26) vanishes. As pointed out earlier, Eq.
(26) shows explicitly that for diagonal mixing, i.e., b =a, the phase makes no contribution. If the mass and decay ma-

trices commute, b V' "'=0 and (26) reduces to

I Tf, (t)I —ITf, (t)I = —4 + Im[AVb, 'Tfa Tfb] sin[Re(co, cob)t)e-
h

(29)

The result given by (29) can also be obtained from a gen-
eral formalism developed recently by Gronau and Rosner
[22] for a 2X2 system.

Within our approximation all oscillatory terms are in-

tegrated to zero. Hence,

&f.=f« f [ITf.(t)I' —ITf.(t)l']
graf, =0.
f

(31)

I

j1Q represents a phase-space sum. Equation (30) shows

that for the calculation of 6&, one only needs to consider
off-diagonal mixings in the decay matrix.

For small mixings it is easy to show that

=4 dQ Im b Vb, 'Tf Tfb (30)
This relation follows from unitarity of an S matrix, which
in the present situation implies

where 1/~, = —2Imco, is the width of the particle and
X Tfb Tfa I p2=~& ~ba ~Vba
f

(32)
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Thus, gf $Q hV,'~"'T,'f Tbf is real and Eq. (31) follows as
a consequence. Since the final-state interaction contribu-
tion to the total rate difference of a particle and its an-
tipaticle is known to vanish [6], the result of (31) is in ac-
cordance with the usual expectation that a particle and
its antiparticle have the same lifetime [23].

IV. AN ILLUSTRATIVE EXAMPLE
FOR SMALL MIXING

In this section we show how to apply (30) to model cal-
culations. Consider a system containing two heavy sca-
lars S, (a =1,2} and a as a color index. The lowest-
order interaction of the system is given by

Xi=Gi uI'i d~ pS re +Gz ua eziS +H c , . (.33)

where u, d, and e' are the charged fermions of the first
generation, which are considered as massless. This in-
teraction can arise from an SU(5) grand unified theory
(GUT) with two five-plets of Higgs fields. Since the two
final states into which the heavy scalars can decay have
difFerent baryon number, (33) provides an interaction for
baryogenesis via heavy scalar decays.

For convenience, we choose as a basis S, the mass
eigenstate fields and select ~F, &

= ~dz uz'i & and
~Fz &

= ~eziuz'i &. The lowest-order transition matrix for
IS, , & IF~, & is

p2
I b,

= [2gibg„+GzbGz, ], (36)

where n is the dimension of regularization, p0 is the ultra-
violet cutoff, and yz is Euler's number. Following the
standard technique [3] we find that the matrix which di-
agonalizes A according to (16) is

cos8 —sin 8 e ' 0
V=

(sin8 cos8 0

where 8=Re8+i Im8 is complex,

tan28=2
2(M„—M }—i(I „—I )

with the real quantity

4 =(P /16&) ~2G iigiz+ GziGzz ~

(38)

lar propagators to second order of Xi. A simple calcula-
tion shows that the regularized elements in the complex-
inass-matrix square (15) are (remember M and I are
inomentum dependent)

2

Mb =m, 5$ — [2giggi +gzbgz ]
16

3 P2
X +——

y@
—ln, (35)4-& 2 4~p,'

T=C
G2i G22

~2G i, P2G iz
(34} X +——yz —ln(P /4n. p,o)

2 3

where C is an overall normalization constant. The factor
+2 in Tii and Tiz is introduced to account for the effect
of summing over the indices of e ~~ in calculating the
squares of the elements.

To determine b, V' "' we consider corrections to the sca-

The phase 5 is real and determined by

5=—,
' arg[2G»G, z+ Gz, Gzz ] .

The eigenvalues are

(39)

mi, z
—imi zy, z=-,'I(M»+Mzz) —i(1»+I zz)+V [(M» —M») —i(f' —I zz)]'+4[+'+ill'izl]'] (40)

In the small mixing limit, i.e.,

one has from (37) that

(41)

0) m)2»= —bz, =
2 z z Im[G»G, zgz, Gzz],2~ m —m1 2

(44)

gy(A)—
Im8e

—Im8e'"
(42)

where 0,=m, /16m. is a phase-space factor for S, . Also,
for the S2 decays we have P =m 2 and

where

Im8e' = [Im8e ' ]*

P [2G;,G,z+Gz, Gzz]

16vr[Mii —Mzz ]
(43)

Substituting (34) and (42) into (30) and making use of the
relation m, 2 =M» 22 =m

& 2, which is valid to zeroth(0)2 — 2 2

order in X i, we obtain, for Si ~F, z, in which P =m i,

02 m2
2

b, ,z= —bzz= z z Im[G„Gizgz, gzz],
m m2 1

(45)

where Qz=mz/16m. These results are in complete agree-
ment with those obtained from a direct Feynman dia-
gram calculation [25]. Contributions to 6f, from vertex
corrections can be found in [24,26,27,25].
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V. AN ILLUSTRATIVE EXAMPLE
FOR LARGE MIXING

In the small mixing limit (41) one can simply use the
regularized (but not renorrnalized) formalism to compute

f.. The Unphysical quantities in M' do not enter.
However, to go beyond this limit we must introduce a re-
normalization prescription to remove the divergences. A
pedagogic introduction illustrating how this may be done
for the example discussed above is given in Appendix A.

From a phenomenological viewpoint, the mixing phe-
nomena under consideration is determined by the renor-
malized interaction Lagrangian [28]

A convenient form for the matrix which diagonalizes (47)
according to (16) is

V=
cosO

since '&

—since'&

cosO
(49)

Again, the mixing angle O is complex:

where Mb, and gf, are the parameters of the model deter-
mined experimentally (at some scale). The parameters in
1 b, are calculable:

2-2
b [2g lbgl +g2bg2 ]

16~

+I gl uR, dR, jP,]e +g2 &R, eR~, +H c.

(46)

[M'„—i r'„][M2„' —il.2„']
tan 28=4

2[(Mll —M22) —i(I' ll
—I 22)]2

(50)

M
1 1 M122= M' M12 22

~12

p24 p2
12 22

(47)

where gf, (f= 1,2) are the renormalized couplings in the
weak eigenstate basis. The square of a renormalized
complex mass matrix is

The phase P is also complex determined by

21' o 2M, —I'I,
2M, —I,

The eigenvalues are

(51)

'2

=
—,[(M„+M )

—i(I'„+I' )]6—,'Q[(M„—M ) —i(I'„—I' )] +4(M, —iI, }(M,' iI, '—
) . (52)

If argM, 2 =argI, 2, t)I] =2 argM, 2 =25 is real. Compared to the regularized formula (37), one sees that Eq. (49) differs
from (37) only by a diagonal phase matrix. This difference has no physical significance. The diagonal phase matrix can
be removed by a suitable choice of phase convention.

Let us now turn back to b,f, . Equations (48)—(52) enable us to compute b,f, for arbitrary mixing angle and phase.
The results are only limited by the validity of perturbation expansion of Xt. Here one should use the general formulas
(2), (3), and (20). In applying Eqs. (49)—(52) one should also be very careful whenever the parameters are near the
branch cuts in the complex parameter space.

As an illustration we consider that the initial (renormalized) state is an eigenstate of mass matrix, i.e., M]2 ~0, but
not an eigenstate of the decay matrix. In that case P is real and

2

sin28e ' =i
2 2 2

(co]' czo')[2—g g]]12+g2]zg]2.
8]r Ct]] N2

We find

(53)

1~ 1 lm[g llg12g21g22 l dt
]—Re[(e]]—co2)(c e +s e e —e

2~~~2] —~22~2 O

(54)

where c =cosO and s =sinO. Also,

2 tt' t2 2™Lg 11g 12g 21g 22 j dt ~] ~g ~]
]—Re[(co2 —co])(c e +s e ) e —e )

2'lr~ Ct]2 tt]1 ~

(55)

In (54) and (55) the mixing angle 8 is arbitrary.
In the limit in which the mixing angle is small due to ~I » —I z2~)) ~M» —M&2~, ~I,2~, Eqs. (54) and (55} are

simplified to
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01 m12

11 21 2~ m —m2 2
1 2

02 m2
2

12 22 2~ m —m2 2
2 1

2 2'2
m1 —m2

Im[g 1lg l2g2lg22 ] r„—r„
2 2 2

m1 m2
Im[g l lg 12g 2lg22 ]

I11—I22

(56)

(57)

Compared to (44} and (45) (after renormalization Gf, are

replaced by gf, ), these results are further suppressed by a

ratio (m, —
m2 ) /(I» —I'zz} «1. In particular, all the

CP-violating partial rate differences vanish in the limit

m 1
=m 2. This is in contrast with what one might have

expected, based upon a naive extrapolation from (44) and

(45}. Since b,f, depends on the imaginary part of the

mixing angle (30), it must vanish whenever Im8=0. For
the case at hand, 8 is real when M, 2

=0 and m, =m2

VI. CONCLUSION

We have discussed a formalism for unstable particle
mixing based upon one-loop renormalization of field

theory, with emphasis on its applications to CP-violating
physical processes. Among various interesting results,
we have found that, for a completely degenerate system,
unstable particle mixing does not contribute to the CP-
violating partial rate difference. In particular, in the ab-
sence of mixing, unstable particle wave function renor-
malization does not introduce any additional effect for
the CP asymmetry. When the mixing is small we show
that only the off-diagonal mixings and phases are relevant
for CP violation.

We have used a simple example to show how to apply
the formalisms developed in this paper in model calcula-
tions for arbitrary mixing. The basic steps for renormal-

izing unstable particle mixing are also outlined.
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APPENDIX A

It is most convenient to introduce a renormalization
prescription in the weak eigenstate basis. We
parametrize the interaction Lagrangian as

(Al)

where gf, ' (f=1,2) are the weak eigenstate bare cou-

plings. The one-loop regularized inverse propagator can
then be written as

l(p2 +2)—p25 m(0)2+XR (p2 +2)

2

+
2 [2g lbgla +g2bg2a ] p fo I »

q +p +' harp 8(p )
16' po

where mb,
' is the square of the bare mass matrix,

2 3f = +——y +ln4n. ,4—n 2

(A2)

gf, (f= 1,2) is the renormalized couplings (to the lowest order gf, =gf', ') and 8 is the 8 function. Xb, (p,p } is the re-
normalized self-energy:

P2
X&,(p,p )= [2glbg„+gzbg2, ] (P p)+P ln

2
—+imp [8(P ) 8(p, )]-

16m p

which has the standard features

XR( 2 2)—0

a
aP'

XR (P2 2)~ ()

(A3)

(A4)

(A5)

and p is the subtraction point. In practice, it is convenient to choose p be the invariant mass square of the initial par-
ticle.

Following the standard method the renormalized inverse propagator is

hg'b, (P,P )=P 5b, Mb, (P )+iI b (P—)+Xb (P,P ), (A6}
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where I b, (P ) is given by (48) and

Mb (P ) ba 2 [ g lbgla+g2bg2a ]
16m

2

2 g {[2g',bg„+g2bg2, ]M„+Mb, [2g;,g„+g2,g2, ]J fo —1 —ln
16m Po

(A7)

(A8)

is the square of the renormalized mass matrix. The renormalized weak eigenstate fields are related to the bare fields by

~a, a Q ~ba 2 [2g ibgla +g2bg2a ] fo 1 ln
2 ~b, a

b
' 16~' '

p,2

The divergencies in the interaction Lagrangian associated
with wave function renormalization and vertex correc-
tions are finally absorbed into coupling constant renor-
malization, i.e., gf', '~gf, .

Once the renormalized parameters are determined at a
given scale p by experiments, the separation of the diver-
gent term fo from P and p in (60), (64), and (65) allows
us to predict these parameters at any other scale.

APPENDIX B

In this appendix we outline the basic ideas of diagonal-
izing an arbitrary n Xn complex matrix &. & can al-
ways be diagonalized by a biunitary transformation, i.e.,
[VL~V2i]ba kalb&ba ~here Vl. and Vli are umtary and
the eigenvalues A,, are real. However, this procedure is
not useful for us unless VL V& =1; otherwise the kinetic
energy part of the Lagrangian will not remain diagonal
under such a transformation.

Methods for diagonalizing a 2 X 2 complex non-
Hermitian matrix are known [3]. We have employed one
of them in our analysis in Sec. V. Here we extend them
to arbitrary cases. Consider an arbitrary n Xn complex
matrix &. In general, % has 2n parameters. It is con-
venient to separate & in to a Hermitian and an anti-
Hermitian part:

UHU (85)

where OO =1. 0 differs from a usual orthogonal matrix
by having complex mixing angles, i.e., 8;=Re8;+Im8;
[i =1, . . . , n(n —1)/2]. It should be emphasized that a
complex mixing angle is not equivalent to a real mixing
angle times a real phase. Indeed, ~cos8~ could be bigger
than 1 if 8 is complex, whereas ~cos8e'

~

& 1 if both 8 and
a are real. Nevertheless, trigonometric functions with
complex angles have very similar properties, such as
sin 8+cos 8=1, etc. , as the elementary trigonometric
functions. This is the advantage of introducing complex
missing angles.

The n(n + 1) parameters of % determine the n com-
plex eigenvalues, which have 2n parameters and the
n(n —1)/2 complex angles involving n(n —1) parame-
ters.

This idea can be extended to situations in which both
M and I are complex, provided the phases involved in
the diagonalization are chosen as complex as well [30].

Let us first review the diagonalization of a Hermitian
matrix H:

%=M iI—
where

M =M&= ~+~'
2

(81)

(82)

where A,; are real. U '=U is unitary with n(n —1)/2
real angles and n(n+1)/2 real phases. However, not all
phases of U are determined by (85). To be specific, we
write

(83) U=KU', (86)

In the study of unstable particle mixing M and I are the
mass and decay matrices, respectively.

Let us start from simple cases involving real M and I .
These correspond to situations in which the mixed
unstable-particle system conserves CP. Now, & is sym-
metric. It has n (n + 1)-independent parameters. We can
diagonalize such an & by an orthogonal transformation
[29]

where U' is a reduced unitary matrix with n(n —1)/2 an-

gles and n (n —1)/2 phase, E is diagonal with n phases:

iai
e

(87)

O&O (84)

Clearly, if U diagonalizes H so does its reduced matrix
UI

An arbitrary % has 2n parameters: among them, n 2

in M and the rest in I . The transformation that leaves
the unity matrix invariant and diagonalizes % is
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0

(B8)

where A, ,- are complex. In practice, we may parametrize
V in terms of a reduced unitary matrix, such as U' dis-
cussed above, but change all the mixing angles and

phases into complex variables. Now, the 2n parameters
determine the n complex eigenvalues which involve 2n
parameters, the n(n —1)/2 complex mixing angles [with
n(n —1) parameters], and the n(n —1)/2 complex
phases, which also have n (n —1) parameters.

For example, for a 2 X 2 gf, V has one complex mixing
angle and one complex phase [see (49)]. For a 3 X 3 %, V
has three complex mixing angles and three complex mix-
ing phases. It may be parametrized as

0 C)
iu&

s&e 0 0

V= 0
l CX2

—ia&
$2e $]e c] 0 0 C3

lQ3
S3e (B9)

EQp0 s2e C 2 0 —se '"
3 C3

where c; =cos8; and s; =sin8; (i =1,2, 3). 8; and a; are complex.

[1]For recent reviews see B. Winstein and L. Wolfenstein,
Rev. Mod. Phys. 65, 1113 (1993); R. D. Peccei, "CP and
CPT Violation: Status and Prospects, "UCLA Report No.
UCLA/93 TEP/19, 1993 (unpublished).

[2] V. Weisskopf and E. P. Wigner, Z. Phys. 63, 54 (1930); 65,
18 (1930).

[3]T. D. Lee, R. Oehme, and C. N. Yang, Phys. Rev. 106, 340
(1957).

[4] R. G. Sachs, Ann. Phys. (N.Y.) 22, 239 (1963).
[5] N. Cabibbo, Phys. Lett. 72B, 333 (1978).
[6]T. K. Kuo and J. Pantaleone, Phys. Lett. B 198, 406

(1987).
[7] J. A. Frieman, H. E. Haber, and K. Freese, Phys. Lett. B

200, 115 (1988).
[8] J. N. Bahcall, N. Cabibbo, and A. Yahill, Phys. Rev. Lett.

28, 316 (1972); S. Pakvasa and K. Ennakone, ibid. 28, 1415
(1972).

[9] R. S. Raghavan, X-G. He, and S. Pakvasa, Phys. Rev. D
38, 1317 (1988); A. Acker, J. Pantaleone, and S. Pakvasa,
ibid. 43, 1754 (1991); A. Acker, A. Joshipura, and S.
Pakvasa, Phys. Lett. B 285, 371 (1992). In the model dis-
cussed in the last article there is no one-loop correction to
the off-diagonal elements of the effective Hamiltonian if
one assumes CP invariance. As a result, the mixing matrix
remains unitary.

[10]J.-M. Gerard and W.-S. Hou, Phys. Rev. Lett. 62, 855
(1989);Phys. Rev. D 43, 2909 (1991).

[11]L. Wolfenstein, Phys. Rev. D 43, 151 (1991).
[12]G. Eilam, J. L. Hewett, and A. Soni, Phys. Rev. Lett. 67,

1979 (1991);68, 2103 (1992).
[13]J. M. Soares, Phys. Rev. Lett. 68, 2102 (1992).
[14]D. Atwood et al. , Phys. Rev. Lett. 70, 1364 (1993); Phys.

Rev. D 49, 289 (1994).
[15]J. Liu, Phys. Rev. D 47, R1741 (1993); 48, 212 (1993): in

Proceedings of the 5th International Symposium on Heavy
Flavour Physics, Montreal, Canada, 1993 (unpublished).

[16]For a review see E. W. Kolb and M. S. Turner, The Early

Universe (Addison-Wesley, Reading, MA, 1990).
[17]V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhinikov,

Phys. Lett. 155B, 36 (1985).
[18]J. Liu, "Phenomenological Description of an Unstable

Fermion, " University of Pennsylvania Report No. UPR-
0558T, 1993 (unpublished).

[19]C. P. Enz and R. R. Lewis, Helv. Phys. Acta 38, 860
(1965); in CP Violation, edited by L. Wolfenstein (North-
Holland, Amsterdam, 1989), p. 58.

[20) The eigenstates of propagation defined here are not physi-
cal, as is evident from the fact that (P',

~ PI, )Afi, b. This re-
lation follows because the ~P,

' )'s are related to the ortho-
normal states

~ P, ) by a nonunitary transformation.
[21]By construction, the orthonormal and complete conditions

of ~p, ) at r =0 are given by (p, ~p» ) =5,b and

g, ~P, ) (((),
~

= 1. The situation for the propagation eigen-
states is diff'erent [4,19,18). For a given

~
P', ), its conjugate

state is (((, ~A(P', ~, where (P,'~=~/,') as usual. The
orthonormal and complete conditions at t =0 are
(P. lgb) 5 g and g. l(().')((().l= 1.

[22] M. Gronau and J. L. Rosner, Phys. Rev. Lett. (to be pub-
lished).

[23] If unstable particles mix with unstable antiparticles the
situation could be more complicated. For a recent discus-
sion see V. S. Mathur and S. G. Pajeev, Mod. Phys. Lett.
A 6, 2741 (1991).

[24] A. Yu. Ignatev, V. A. Kuzmin, and M. E. Shaposhnikov,
Pis'ma Zh. Eksp. Teor. Fiz. 30, 726 (1979) [JETP Lett. 30,
688 (1979)].

[25] J. Liu and G. Segre, Phys. Rev. D 48, 4609 (1993).
[26] D. V. Nanopoulos and S. Weinberg, Phys. Rev. D 20, 2484

(1979).
[27] F. J. Botella and J.Roldan, Phys. Rev. D 44, 966 (1991).
[28] For simplicity we do not display finite vertex corrections

explicitly.
[29] P. Langacker (private communication).
[30] D. Chang (private communication).


