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The differential decay spectrum d I /dE, dq for the semileptonic decay of an unpolarized hadron con-
taining a b quark and the decay spectrum dI /dE, dq'd cosO for polarized Ab decay are computed to
second order in the 1/mb expansion. Most of the 1/mb corrections have a simple physical interpreta-
tion, which is discussed in detail. The implications of the results for the determination of V„b are dis-

cussed. The decay spectra for the semileptonic decay of hadrons containing a c quark are also given.
There is a subtlety in the use of the equations of motion at order 1/mb in the heavy quark expansion
which is explained.
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In the approach of Chay, Georgi, and Grinstein the b-

quark mass appearing in Eq. (1.1) has a precise meaning
that is provided by the heavy quark effective theory. This
is necessary for the statement that there are no A«D/mb

The inclusive lepton spectrum from semileptonic B de-
cays has undergone intensive experimental and theoreti-
cal study. An understanding of it provides information
on the weak mixing angles V,b and V„b. Recently there
has been considerable progress in understanding the
theory of these decays. Chay, Georgi, and Grinstein [1]
showed that inclusive semileptonic B—+XeV, decay can
be treated in a fashion similar to deep-inelastic scattering.
Using a two-step process that consisted of first using an
operator product expansion and then a transition to the
heavy quark effective theory, they showed that
d &/dq dE, [q =(p, +p„)] when suitable averaged over

E, is calculable. Their leading-order result agrees with
the free b-quark decay picture. The full power of their
method becomes apparent when corrections to the
leading-order result are discussed. These corrections are
of two types: perturbative a, (mb ) corrections and non-
perturbative corrections suppressed by powers of m&.

Chay, Georgi, and Grinstein pointed out that there are
no nonperturbative corrections of order AQCD/mb. In
this paper, we will compute the AQCD/m& corrections.
The order a, (mb) corrections have been computed previ-
ously [2—5]. The results of this paper can be combined
with Refs. [2—5) to give the inclusive semileptonic decay
including all corrections to order AQCD/mb and a, (mb ).

At leading order in a, (mb ) and AQCD/mb the
differential B~X„ev,semileptonic decay rate is

corrections to have content. In the heavy quark effective
theory the strong interactions of a bottom quark with
four-velocity u are given by the Lagrange density [6]

X=b, (iv D)b, + (1.2)

1+/ &mb v.x
~ ~ ~

V
(1.3)

where the ellipsis again denote terms suppressed by
powers of I /mb. It is the same mb that appears in Eq.
(1.3) that is used in Eq. (1.1). With the heavy quark
effective theory given by Eq. (1.2) (i.e., no mass term for
b„)mb is a physical quantity that can, at least in princi-
ple, be determined experimentally. For example, the
form factors for the exclusive decay Ab ~A, ev, depend
on A=M~ —mb [7] and the determination of A from a

detailed study of this decay together with the measured
Ab mass gives the b-quark mass to be used in Eq. (1.1).

Bigi, Shifman, Uraltsev, and Vainshtein [8] have per-
formed an analysis of the AQcD/mb nonperturbative
corrections to the lepton energy spectrum dI /dE, in

semileptonic B-meson decay. Bigi et a/. found that these
corrections are determined by the two local
matrix elements (B (v) ~b, (iD) b, ~B (v) ) /2mb and
(B( )~gob„o"'G„„b,~B(v) )/4mb. The latter is fixed by
the measured value of the B*—B mass difference.

In this paper we extend the results of Bigi et al. and
Chay, Georgi, and Grinstein and compute the AQcD/m~
corrections to the fully differential decay distribution
dI /dq dE, for an unpolarized hadron Hb containing a 6
quark. We also consider inclusive polarized semileptonic
decay for the special case of the Ab. Ab's produced in Z
decays are expected to be polarized [9]. The differential

In Eq. (1.2) the bottom quark field b, satisfies the con-
straint tib„=b„andthe ellipsis denote terms suppressed
by powers of 1/mb. The relationship between the &-

quark field in the effective theory and the "full QCD" b

quark field is

0556-2821/94/49(3)/1310(20)/$06. 00 1310 1994 The American Physical Society



49 INCLUSIVE SEMILEPTONIC B AND POLARIZED Ab DECAYS. . . 1311

decay distribution for a polarized A& has the form

=A(E„q)+B(E„q)cos8,
dq dE, d cosO

(1.4)

where 0 is the angle between the electron direction and
the A& spin in the rest frame of the A&. For reasons simi-

lar to those given by Chay, Georgi, and Grinstein in the
case of B-meson decay, there are no AQcD/m& nonpertur-
bative corrections to the differential decay distribution in

Eq. (1.4). The AQcD/m„corrections to A(E„q ) are
similar to those computed for dI /dq dE, in B-meson

decay. One simply replaces B-meson matrix elements by
A& matrix elements and sets the A& matrix element of
b„go""G„b„to zero. However, we find that the

AQcD/m& corrections to B(E„q) are not characterized

by just (At, (v, s)lb, (iD) b„lA&(v,s) &/2mI, The. normali-
zation of B(E„q) involves another order AQCD/m&
correction which arises because the heavy quark spin is
renormalized at order 1/m&.

We examine the physical interpretation of the

AQcD/mb corrections. Most of the corrections [i.e., all of
those involving the matrix element of b„(iD)b, and some
of those involving the matrix element of b„go""G&„b„]
can be interpreted as arising from the fact that in the
bound state the b quark has an effective mass that differs
from mb and an effective four-velocity that differs from
v". These differences arise, for example, from the motion
of the b quark in the hadron rest frame. Corrections of
this type are similar in spirit to those included in models
for inclusive semileptonic B-meson decay [2—5].

Section II contains a discussion of the kinematics
relevant for semileptonic H& and polarized A& decay.
The operator product expansion and the transition to the
heavy quark effective theory are discussed in Sec. III.
This section contains a lengthy discussion of the compu-
tation. Readers not interested in the details are advised
to skip this section entirely. Section IV contains a brief
discussion on the use of equations of motion in time-
ordered products. It clears up some confusion on this
subject that occurred in the previous literature. Section
V gives the differential decay rates for unpolarized Ht,
semileptonic decay and polarized A& decay. Section VI is
concerned with the physical interpretation of the

AQcD/mQ corrections. Section VII gives differential de-

cay rates for unpolarized hadrons H, containing a c
quark and polarized A, semileptonic decay. Section VIII
discusses the prediction for d I'(B~X„ev,)/dq dE, near
the boundary of the Dalitz plot. This region is important
for the determination of V„&.Particular attention is paid
to the size of the region of E, that must be averaged over
before experimental results can be compared with theory.
Numerical estimates and plots of the lepton spectrum are
given in Sec. IX, and concluding remarks are given in
Sec. X.

46
H~= —Vs q y"P~b ey„Prv,J 2 J

4G= —Vb,—J"JI„,
&2

(2.1)

where PI is the left-handed projection operator —,'(1 —y5).
J"and Jt' are the hadronic and leptonic currents, respec-
tively. The final quark q. can be either a u or a c quark.
The inclusive differential decay rate for a hadron H& con-
taining a b quark to decay sernileptonically, H& ~X„,ev,
is determined by the hadronic tensor

8'""=—g""W&+v"v'8'2 —ie"" ~v q13$3

+q "q "W4+(q"v "+q v") Ws, (2.3)

where v is the velocity of the initial hadron, defined by

PHb ~H V (2.4)

8'& and 8'2 have mass dimension —1, 8 3 and W5 have
mass dimension —2, and W4 has mass dimension —3.
(The form factor W6 of Ref. [1]vanishes by time-reversal
invariance. ) The form factors are functions of the invari-
ants q and q v, and will also depend on the initial had-
ron H& and the final quark mass mj. The difference be-
tween the heavy quark mass m& and the hadron mass

MH will be important in our analysis, so we have chosen
b

to write the form factors in terms of q rather than the res-
caled g=q/mb used in Ref. [1].' The spin-averaged
differential semileptonic decay rate is

I
I I'G'

[W +W(2EE ——' )

+ W3q (E, —E„)], (2.5)

where E, and E are the electron and neutrino energies
in the Hb rest frame, q is the invariant mass of the lep-
ton pair, and the kinematic variables are to be integrated
over the region q ~4E,E . The terms proportional to
q" or q in Eq. (2.3) do not contribute to the decay rate if
one neglects the electron mass.

The polarized Ab has in addition to the five form fac-
tors in Eq. (2.3), nine spin-dependent form factors which
are

W,""=(2n ) g 5 (pH
—

q
—px )

X

&«HI, (v, s) I~,"'Ix & &&IJ,"IHI, (v, s) &, (2.2)

where j=u, c. The spin-J hadron state IHt, (v, s) & is nor-
malized to v, instead of to the usual relativistic normali-
zation of 2MH v as this is more convenient for the heavy

b

quark expansion. W"" can be expanded in terms of five

form factors if one spin averages over the initial state:

II. KINEMATICS

The semileptonic decay of a b quark is due to the weak
Hamiltonian density

We will use m to denote quark masses and M to denote had-
ron masses.
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Wg = —q.s[ —g" G, +v"v G2 —ie"" ~v q&G3

+q "q G~+ (q "v '+ q'v") G, ]

+ (s"v "+s "v")G6+(s"q "+s "q")G,

+is" Pv spG8+ie" Pq spG9 . (2.6)

The identity

g @vs p~~
g ~ c&p&a'+g pp&uvkcr g pA, &vapa+g po6 p~ =0

has been used to eliminate terms in Wf" of the form
i [q"e" ~ v quasi

—(p~v)] and i [v"e" ~ v ques~—(p, ~v)]. The form factors G4, G, , G, do not contrib-
ute to the decay rate if the lepton mass is neglected. The
di6'erential decay rate is

dl Il jbl GF. + cos8[ [G,q +G2[2E,E,——,'q ]+G3q ~(E, E, )~—](E,+E, q /2—E, )
dq dE, dE,d cost9 4m

+G6(q 4E,E—„)Gsq —G9q (—E, E„+q—/2E, )], (2.7)

where 0 is the angle between the electron three-momentum and the Ab spin vector in the Ab's rest frame. The ellipsis
in Eq. (2.7) denotes the part independent of cos8 and is one-half the expression in Eq. (2.5) so that integration over cos8
reproduces the unpolarized decay rate.

The form factors in W"' and Wf" are given by the discontinuities across a cut of the amplitudes T""and Tg':

TI"= i f—1 x e ''i" g (H (v, s)~T[J" (x)J'(0)]~Hb(v, s))1

S

g"'T, +—v"v "Tz ie"' ~v —q&T&+q "q'T4+(q "v'+q'v")T, . (2.8)

It is easy to see that ImT"'= —
m 8'"' by inserting a com-

plete set of states between the currents. Tf' for the po-
larized Ab is defined similarly and has nine additional
spin-dependent form factors:

Tf"= —
q s[ —g" S, +v"v "S2 ie"' ~v —

q&S3

+q "q "S4+(q"v "+q'v")S, ]

+ (s"v'+s'v")S6+ (s"q'+s'q")S,

+i@"' Pv spS, +is" Pq spS9 . (2.9}

The analytic structure of T"' (or Tf") as a function of

q v for fixed q was given in Ref. [1] and is shown in Fig.
1. There is a cut from

~ -'-
2

Hb

(MH +q —M ),

Iq. 1'

-q

FIG. 1. The analytic structure of T" in the complex q. U

plane for fixed timelike q . The contour C encircles the cut
relevant for semileptonic b decay. The other cuts extend to
infinity, and correspond to other physical processes. Here

q
—=&q'.

where M is the mass of the lightest hadron containing the
final-state quark q . The discontinuity across this cut
(which will be called the physical cut) gives W"' for semi-
leptonic Hb decay. In addition there are cuts along the
real axis for

MH q v &-,'[(2M„+M)' —q' —M„' ]

corresponding to the physical process ev, Hb ~X (where

X contains two b quarks), and for v q
~ —i/q corre-

sponding to the~hysical process e v, Hb ~X. There is

no cut for —+q ~q. v ~ i/q, since (q } )q for any
physical state, so that, in general, the physical cut is

separated from the other two cuts along the real axis.
(This disagrees with Ref. [1].) For M =0 and q =MH

the two cuts on the positive real axis are not separated.
The end of the physical cut at v.q =MH coincides with

b

the beginning of the second cut. Similarly for q =0 the
cut on the negative real axis ends at the same point the
physical cut begins.

The amplitude T" can be computed in QCD perturba-
tion theory away from the cuts along the real axis. Pro-
vided q is not too near zero or M& (for q =u ), the

b

value of the amplitude in the physical region can be ob-
tained by performing a contour integration along the
closed contour C shown in Fig. 1 that stays away from
the cuts in the complex q v plane.
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III. THE OPERATOR PRODUCT EXPANSION

The amplitude T""can be computed reliably in pertur-
bative QCD in a region that is far from the cuts and
therefore free of infrared singularities. The time-ordered
product

i —fd e ""T(J"J ) (3.1) (a)

can be computed using an operator product expansion in
terms of operators involving b-quark fields in the heavy
quark effective field theory. The coefficients of the opera-
tors in the operator product expansion are determined by
evaluating the matrix element of the time-ordered prod-
uct between quark and gluon states. Once the operator
product expansion has been computed, one can compute
T" by taking the matrix element of the operator product
expansion between hadron states. We will compute the
matrix element between unpolarized hadron states to
determine the form factors T;, and we will take the ma-
trix element between polarized Ab states to determine the
spin-dependent form factors S;. The operator product
expansion can be written as an expansion in inverse
powers of m&. The expansion of T"" to order limb can
be written in terms of gauge-invariant operators of di-
mension less than or equal to five. The operators will in-
volve the b field, covariant derivatives D, and the gluon
field strength tensor G" . The coefficients of the opera-
tors involving b and D are determined by taking quark
inatrix elements of Eq. (3.1), and the coeScient of opera-
tors involving 6"' are determined by taking gluon matrix
elements of Eq. (3.1). We only calculate the form factors
T$ 3 S$ 3 S6, S8, and S9 which are the only ones that
contribute to semileptonic b decay when the mass of the
lepton in the final state is neglected.

The quark matrix element of Eq. (3.1) between b-quark
states with momentum mbv +k is

FIG. 2. The leading term in the operator product expansion.
(b) does not contribute to semileptonic b decay.

A. The k terms

The order k term in the expansion of Eq. (3.2) is

u t ( mi, v —q)"y"+ ( mb v q)"y—"
0

(m&d——g)g"" ie""—~(mbv q) y&—]PI u,
where

(3.3)

I (mb v —q)"g""+(mb v —q)"g""
0

—(mbv q) g"'—ie"" (—mbv q) ]by&PLb—.

The spin-averaged matrix element

Q, (H„(v,s)~by ysb~Hb(v, s))

(3.5)

between hadrons Hb of velocity v is zero. The matrix ele-
ment

60=(mbv q) —mj +—is . (3.4)

The matrix elements of the operators by b and by y5b
between b-quark states are u y u and u y y5u, respective-
ly, so the operator product expansion is obtained by re-
placing u and u in Eq. (3.3) by the fields b and b, respec-
tively:

1

(m„v—
q +k) m+i e—

X uy"PL (mba) g+k'+m —)y "Pl u, (3.2)

from Fig. 2(a), where u is the quark spinor. The crossed
diagram of Fig. 2(b) has no singularities inside the con-
tour C of Fig. 1, and does not contribute to semileptonic
b decay. The matrix element Eq. (3.2) can be simplified
using the identity

y"y y =g" y +g y"—g" y +i e"" ~y&y 5 .

The 1/mb expansion is given by expanding Eq. (3.2) in a
power series. The momentum q can be of order mb, but k
is only of order A&CD. Thus, each factor of k in the ex-
pansion of Eq. (3.2) corresponds to a 1/mb suppression.
The factors of k in the matrix element will become fac-
tors of iD in the operator product expansion, so each fac-
tor of iD corresponds to a1/mb suppression.

(0)—T' '= (m —
q v)

0

(0)— 1
T2 =

~ mb
0

T(0)— 1

26O

(3.6)

The k terms in the operator product expansion give b-

quark operators that have zero derivatives. In principle,

(Hb(v, s)gaby biHb(v, s)) =v

to all orders in 1/mb, since the b-quark number is an ex-
act symmetry of QCD. [This relation is true because we
have normalized our hadron states to v, and defined v in
Eq. (2.4) to be the velocity of the hadron Hb. ] Taking the
matrix element of the operator product expansion be-
tween spin-averaged Hb states, and comparing with Eq.
(2.8) gives the contribution to T" of k terms in the ex-
pansion of Eq. (3.2):



1314 ANEESH V. MANOHAR AND MARK B. WISE 49

these operators could produce contributions to T" of
higher order in 1/mb because of 1/mb corrections to the
matrix element of the operator between hadron states.
However, the only matrix element we need is the zero-
rnomentum transfer matrix element of a conserved
current, which has no 1/mb corrections.

The matrix element of the operator b y y 5b between
polarized A& states does not vanish. At leading order (in

I/m&) it is equal to the spin vector s . However, the
axial-vector current is a generator of heavy quark sym-
metry [10] that is broken by I/m& terms in the effective
Lagrangian. Thus, the matrix element of the axial-vector
current between polarized Ab states is not equal to the
spin four-vector. The first correction to the matrix ele-
ment is of second order in symmetry breaking [11],so we
write

(A&( ,u)s~by ysb~A&(u, s)) =(I+ &e)u( ,u)sy you(u, s)

S', ' = —
—,'(I+a'q), S's ' =

—,'( I+eI, )

S' '= ——'(I+e ) S' = ——'(I+e )
mb 1

6 p b g ~ 9 Y b
0 0

(3.8)

g(o) —$(o) —02 3

B. The order k ' terms: Spin-averaged case

where eb is a parameter which is of order A&cz/mb, and
is defined by Eq. (3.7). Substituting this into Eq. (3.5)
gives the spin-dependent form factors from the k terms:

=(1+e&)s (3.7) The linear terms in k in Eq. (3.2),

2k(m u —
)

u [k"y'+k y~ g~ k —ie"' ~k —y&IPLu — u I(mi, u q)"y"+—(mi, u —q)"y"—(mi, & ift)g""—
0 0

i e"" —~( m q u q) y p] PL
—u, (3.9)

produce operators in the operator product expansion
with one derivative, of the form by iD'b and by y5iD'b.
The matrix elements of these operators need to be com-
puted to first order in 1/mb, since they contribute to
terms that are already suppressed by I /m~. Unlike the
current operator by b in the k terms, these operators
will have 1/mb corrections to their matrix elements, and
so can contribute terms to T""at order 1/m& and 1/m&.
The matrix element of b y y 5iD'b vanishes between
spin-averaged Hb states. Its contribution to the polarized
Ab decay amplitude is discussed in the next subsection.
The matrix element of by iD'b can be computed in a
I /m& expansion using the heavy quark effective theory.

The b quark is represented by the velocity-dependent
b-quark field b„ in the heavy quark effective theory.
Since the terms linear in k are already of order 1/mb, we
only need the relation between b (x) and b„(x)to first or-
der in I /mi, [12],

( b)x=e 1+ b, (x) .
2mb

l.

(3.10)

gG p~~
4mb m b

(3.11)

The QCD Lagrangian for the b quark in the heavy quark
effective theory is

L = b, iu.Db, +b, b,
— (iD)

2mb

where Zb is a renormalization factor, with

Zi, (p=m&)=, 1. The operator b, (tD) b, /2m& is not re-
normalized because of reparametrization invariance [13].

Equation (3.10) gives the expansion of the operator in

the effective theory:

by iD'b= b, y iD'b, +b, y iD'b,
2mb

+b, y'iD' b,
2mb

= u b, iD'b„+ b, iD' iD'b„,
mb

1
bgG 0. b„, ,

2mb
(3.12)

1

2J+1 g (H&(u, s) ~b, iD'b, ~H&(v, s) ) = Au ', (3.13)

where 3 is a constant to be determined. Contracting
both sides of Eq. (3.13) with u' gives

A =(H~(u, s)~b„iD vb, ~Hi, (u, s) } . . (3.14)

where we have used the relation b, y b, =v b„b, (which

follows from the constraint ifb, =b, ) and the commutator
[D",D "]=igG" . In Eq. (3.12) the parentheses around
indices denote that they are symmetrized.

The spin-averaged matrix element of the first term of
Eq. (3.12) must have the form
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The coefficient A is zero at lowest order in 1!mb, since

(v D)b„=0is the lowest-order equation of motion in the

heavy quark effective theory. Thus, the order k terms
make no contribution to T" at order 1/m&. The order

k terms also did not contribute to T""at order 1/m&, so
there is no 1/m& correction to T"". This reproduces the
result of Ref. [1]. The parameter A is nonzero at first or-
der in 1/mb,

A = —Hb u, s bv bv Zbbv bv
— (iD) —gGalsa

v
2mb

" "
4mb

(3.15)

using the equations of motion from the Lagrangian, Eq. (3.11), to order 1/m&. This 1/mi, value of A contributes to
T""at order 1/m&.

It is useful to define the dimensionless parameters

Eb —= —Hb V, s bv p bv Zbbv
&

bv Hb u, s
— (iD) —gGap&

2mb 4mb

Kb ———Hb u, s bv z bv Hb v, s
— (iD)'

2mb

gG.po'~

4mb

(3.16)

to characterize the 1/m& corrections, with EI, =E&+G&.
Gb, Kb, and Eb can be thought of as the average value of
the spin energy, the kinetic energy, and the total energy
of the b quark in the hadron Hb, in units of mb. All three
parameters are expected to be order AQcD/mi, The
operators in Eq. (3.16) are renormalization point indepen-
dent, since the p dependence of Zb cancels the p depen-
dence of b„gG &o. ~b„.The anomalous dimensions of the
operators only affect the relations between the parame-
ters for different heavy quarks. For example, the parame-
ters for b and c quarks are related by

The matrix element of the second term in Eq. (3.12)
must have the form

g (Hi, (u, s)~b, iD' iD'b, ~Hi, (u, s))
S

=(B,g '+B2v v') . (3.20)

This term has two covariant derivatives, so we only need
its matrix element to lowest order in 1/m&. The lowest-
order equation of motion (v D)b, =0 implies that
8&+82=0. Taking the trace and comparing with Eq.
(3.16) gives

m, K, =m, Kb ~

m, G, IZ, =m b Gb /Zb
(3.17) g (H&(v, s)~b„iD' iD'b„~H&(v,s))

S

Since Z, (m, )=1 and Z&(m&)=1, the ratio Z&/Z, is

given by the scaling of b,gG &o ~b, between the scales
m, and m& Z&/Z, =[a (m&)/a (m )) [12). The
gluon operator 6"" in the operator product expansion
occurs through the equations of motion, and through the
commutator [D",D "]=igG"' We will. use Ei, to
parametrize the matrix elements of the gluon operators
obtained using the equations of motion, and Gb to
parametrize the matrix elements of the gluon operators
obtained from [D",D "]. This distinction will be useful in
Sec. VI. With this convention,

2mb Kb

3
(g"'—u u') . (3.21)

The operator b„gG,o b, in Eq. (3.12) is renormal-
ized at a scale p=mb, since that is the scale at which the
operator product expansion has been performed. We can
therefore multiply the operator by the renormalization
factor Z&, since Z&(m& ) =1. This makes the operator re-
normalization group invariant, and includes the QCD
scaling of the operator between mb and p. The matrix
element of the third term in Eq. (3.12) must have the
form

mbEb (3.18)

and the matrix element of the first term of Eq. (3.13) can
now be written as

g (Hi, (v, s)
~
v "b„iD'b„~HI,(u, s) ) =mi, Ei, u "v' .

1

S

(3.19)

g Z&(H&(u, s) lb.gG 'a b. 1Hb(v, s) &

S

=(C,g '+Cpu v') . (3.22)

Contracting both sides with v', and using b, o. 'v b, =0
gives C&+C2=0. The trace gives
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1
T] —mb Eb

(1)—
0

(mb —
q u)

~o

2mb+ '(K+G )
— ' +q

3 2b, o

mb(mb q 'U)
T2" = mbEb ~

—2
g2

g Zb (Hb(v, s) lb. gG "o.'b, IHb(u, s) )
$

4mb Gb

3
(g"'—u v'), (3.23)

on comparing with Eq. (3.16).
Substituting Eqs. (3.19), (3.21), and (3.23) into Eq.

(3.12), and substituting the result into Eq. (3.9) gives

( .)b, iD ' iD'( v y u "y—)y sb, ,
mb

which is equal to

(3.27)

element of the second and third terms in Eq. (3.25) can be
simplified by neglecting terms proportional to G ~. The
operator G vanishes in any matrix element between Ab
states at zero recoil, since the light degrees of freedom in
the A„have spin zero. [That is why spin symmetry can
be used in Eq. (3.26) even though we are including effects
of order 1/mb. ] The only vector that can be constructed
using the light degrees of freedom is v", and it is not pos-
sible to construct a tensor that is antisymmetric in two
indices from a single vector.

The 1/mb terms in Eq. (3.25) can be simplified using
y-matrix algebra and neglecting G ~ to give

2mb 1 2mbq v
+ (Kb+Gb ) +

3 50
(3.24)

—
~ (. .)~b, iD'iD' "y.y,b„,

mb
(3.28)

using the equations of motion. The matrix element of Eq.
(3.28) between polarized Ab states is

T3 ———mbEb
(1)— mb —

q v

Q2
(Ab(v, s}lb,iD' iD'v y y5b, IAb(u, s))

2mb mb q v
(Kb+ Gb )

0

C. The order k' terms: Polarized Ab case

The spin-dependent form factors arising from the order
k terms in the operator product expansion of Eq. (3.9) are
obtained by taking the matrix element of the operator
by y5iD'b between polarized Ab states. This operator
did not contribute to the spin-averaged matrix element
between unpolarized Hb states discussed in the previous
section. The method used to evaluate the matrix element
is similar to that used for the operator by iD'b in the
previous subsection. The operator can be written in
terms of the field b, of the effective theory:

by y5iD'b~mbEbs v'+ —', (3.30}

in Eq. (3.9) to obtain the spin-dependent form factors

(i)S',"= (mb —
q u)(mbEb+ ', mbKb), —

0

(1)— 4
S2 = mbKb

2

3A

(&)—S(3~) = mbKb,
3A

', mbK—bu uy'y, u, (3.29)

using heavy quark spin symmetry, and the matrix ele-
ment Eq. (3.21). Equations (3.26), (3.27), and (3.29) imply
that one can make the substitution

by y5iD'b = b„yy5iD'b„,+ b„i8y y,iD'b,1

mb S(i)
6

(3.31)
1 1

(mbEb+ ', mbKb)+ (m—b
—

q u)mbEb,
2~0 ~o

+ b, y y,iD'i8b„.
2mb

(3.25)
(i) 1 , 1S's" = (mbEb 'mbKb )

— (—mb——
q U)mbEb,

2d

(Ab(u, s)lb, y y&iD'b„IAb(u, s})= Auy y&u u' (3.26)

by heavy quark spin symmetry. Contracting both sides
with v' and using the equations of motion determines
A =mbEb, where Eb is defined in Eq. (3.16). The matrix

!

The matrix element of the first term of Eq. (3.25) between
polarized Ab states has to have the form S9"= (mb —

q v)mbEb . .
0

D. The order k terms

The order k terms in Eq. (3.2) are

2k (mbv —q}
g{ki'y "+k"y" g"'k ie" ~k yisI—PLu—

0

[k.(mb u —q) ]+ 4
603

2

u [(mbv —q)"y"+(mbu q)"y" (mbi( —g)g&—"—iE""—~(mbu q) y&]Pi u . (3.32—)
0
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The matrix element of Eq. (3.32) between unpolarized
hadrons Hb can be written in terms of the operator
by ia' iB~'b. This matrix element is needed to lowest
order in 1/mb, so b can be replaced by the heavy quark
field b„,and y replaced by v . The matrix element need-
ed 1s

2J+1 g (Hb(v, s) ~b„iD' iD~'b, ~Hb(u, s) )

using Eq. (3.21) and heavy quark spin symmetry. This
gives the order k contribution to the spin-dependent
form factors:

S(2) 1 m2K[q2(qu}2]4 5
1 3 b b '

0 0

g()=-'m K . [q —(q v) ]—4 3 2 v

g3 g2 g20 0 0

2mbKb
(gag V au

3
(3.33)

4mb
2 3~b 2qS(2) ) m 2K [q (q 'v)2]+ +8 3 b b

'

Q2 Q2
0 0 0

using Eq. (3.21). Substituting Eq. (3.33) into Eq. (3.32)
gives the contribution of the k terms to T":

T' '= ——'m K (m —q.u). [q —(q.u) ]—
0 0

g(2) —g(2) —p2 3

0 0

(3.36)

T' '= —-'m K . [q —(q u) ]—2 3 4 2 2
2 3 b b '

Q2
0 0

4 2 v'q+
3 ~bKb (3.34)

E. The one-glnon matrix element

T(2) — 1 m2K [q2 (q v) ] + 2m4 3 2 1
3 3 b b ' b b~2

0 0 0

The spin-dependent contribution to T"" for polarized
Ab states is given in terms of the matrix element

(Ab(v, s)~b„y y,iD' iD~'b„)(Ab(v,s) )

'mbKb(g —~ —v'v~)s, —(3.35)

Finally, one needs to compute the one-gluon matrix
element of Eq. (3.1} given in Fig. 3 to determine the
coefficient of the 6 ~ operators. The one-gluon matrix
element can be expanded in a power series in the momen-
tum p of the external gluon. The terms of order p are
identical to the one-gluon matrix element of the operators
we have already found, with the gluon field from the co-
variant derivative D =d+igA The term. s linear in p are
the matrix element of the operator:

, bG ~e.is), (mbv q}"[g"—y'+g "y" g4"y —+i' "y,]Pub. .
0

(3.37)

This is a dimension five operator, so we need its matrix element to lowest order in 1/mb. The fields b can be replaced
by the heavy quark fields b„.The matrix elements needed to evaluate the one-gluon contribution to T"" for a spin-
averaged hadron Hb are

2J+1 g (Hb(v, s) ~b„gG Py b„~H„(v,s) ) (3.38)

and

2J+1 g (H(, (u, s)lb„gG y y b, l5H (v,bs}) . (3.39)

The matrix element in Eq. (3.38) can be simplified by replacing the y matrix between b„fields by u. The resultant ma-
trix element must vanish because there is no antisymmetric tensor in the indices a and P that can be constructed out of
the single four-vector v. The matrix element in Eq. (3.39) must have the form

1 g (H„(v,s)~(b„gG ~y ysb„~Hb(u, s)) =No~ 'u, .
S

The constant N can be evaluated by contracting both sides of Eq. (3.40) with e &)„v4 to give

1 g e &&V4(H„(v,s)~b„gG y ysb„~Hb(v,s)) = 6N . —
S

(3.40}

(3.41)
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T3= 1 mb q v
(1+X„)—,'m—„(Kb+Gb )

2 q 1 1 2 1+—mK ——mGb b ~2 3 b b ~2
0 0

, PmbKb[q (q v) ]]
0

5mbKbq-v ——(1+Eb)

FIG. 3. The one-gluon matrix element.

Using the spinor identity

&apxpv bU'V 'Vs&U = &U~apbvp

and Eq. (3.16) gives

4
S2 = mbKb,2

3ho

= 2
2 mbKb

3ho

S6=
3 [ ', mbKb—[q —(q u) ]]2 2

(3.44)

g (Hb(v, s)~b, gG ~y y, b, ~H&(v, )s)

—2 m 2~ aPA. ~—Tmb b
E' (3.42)

5mbKbq v

3ho

mbKb 1 mb

Substituting Eq. (3.42) into (3.37) gives the contribution
of the one-gluon operator to T":

mb —q. vT'&'= —'m Gb

S, =—,PmbKI, [q (q u) ]j—1 4

0

5mbKbq 'v mbKb 1 mb
2

+ + + —(1+eb )
65o 2 6o

T'&' = -'m 'G mb
2 3 b b

Llo

T[g) ] 2G 1
b b

Lko

(3.43)
S,=

3 [ ', mbKb[q —(q u) ]]—4 2 2 2

0

[mbq. u + ', mz ]
-- ——(1+mb )

The gluon terms do not contribute to polarized Ab decay
since G ~ has vanishing matrix element at zero recoil be-
tween Ab states.

F. Summary

The final expressions for T"' and Tg" to order limb
are obtained by combining Eqs. (3.6), (3.8), (3.24), (3.31),
(3.34), (3.36), and (3.43):

1T = (mb —
q v)(1+X„)

1 q
—(q.u)'+ ', mb(K„+Gb )

—— +
2~o

mbEb 1 mb —q. v
+ ——m Gb b g2

(1+Xb )
5o

2mbq v, ~ mbEb+—,mb(Eb+ Gb ) +, +
g2 ~o

4 2 q v 2+ —mbEb +—mb Gb
Q2 3 Q2

where

mbEb
Xb= —2 (mb —

q u)b

——mb [q —(q v) ]+2mb
8

0 0
(3.45)

The expressions in Eq. (3.44) can be simplified using the
identity Eb =Kb +Gb. There is an additional
simplification in Ab decay, where Gb =O.

IV. TIME-ORDERED PRODUCTS
AND THE EQUATIONS OF MOTION

In the above computation, we used the equation of
motion to order 1/mb. Another method commonly
used in the literature is to treat the 1/mb terms in
the Lagrangian, Eq. (3.11), as a perturbation, so that
the equations of motion are (v.D)bb =0. The 1/mb
terms in the Lagrangian then give terms that are time-
ordered products of operators with 1/mb terms in
the Lagrangian. For example, the matrix element
(HI, (u, s)~(b„iD'b,~HI, (u, s)) [that was needed in Sec. III,
see Eq. (3.19)] is zero using (u D)b„=0.However, one
now gets an additional contribution:
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~ ~ , &&(y)
H&(v, s) T b, iD'b„(x)if d y

2mb
Hb (U, S ))

(4.1)

and is equivalent to taking the imaginary part in T""
directly by making the replacements

~5((m~u —q) —m },
0

X&(y) is a sum of operators of the form b, (y)Xb, (y), so
that the time-ordered product in Eq. (4.2) is

f dy T jb„(ivD)b„(.x)b,Xb„(y)J

= f dy T[b„(ivD)iS(x,y)Xb, (y)], (4.3)

where S(x,y) is the b-quark propagator, which satisfies
the Green's-function equation (iv D)S(x,y)=5(x,y).
This converts the T product into the local operator
b,Xb„,so that A is given by

&&(y)
A = —Hb U~s Hb v~s

2mb
(4 4)

the same answer as that obtained by using the equations
of motion to order 1/mb Using th. e equations of motion
to order 1/ms is equivalent to treating the 1/m& correc-
tions to the Lagrangian as insertions, provided one takes
into account that the heavy quark propagator does not
satisfy the equation of motion, since (iu D)S (x,y}.
=5(x,y).

V. DECAY DISTRIBUTIONS
FOR HADRONS CONTAINING A b QUARK

The amplitude W""can be determined by performing a
contour integration of T"" from Eq. (3.44) around the
contour C of Fig. 1. This contour integral is trivial to do,

where the 1/mb terms in the Lagrangian are denoted by
X, /2m&, using the notation of Ref. [14]. The matrix ele-

ment, Eq. (4.1) is equal to Av', where A is the constant of
proportionality. Contracting both sides with v' gives

T

, &&(y)A= Hb U, s T b„iU.Db„xi d y Hb U, s
2mb

(4.2)

~—5'((m&u —q) —m ),
0

1 1

~3 2 b~—5"((m u —q) —m ),
0

(5.1)

f, (q', q.u.)&o&, A,;f;(q, q u)&o&, ,

so the imaginary part of T" is related directly to the
imaginary part of f, . In deep-inelastic scattering, the
different powers of q. v in the expansion of f; would each
be multiplied by the anomalous dimension of a different
twist-two operator, so that the imaginary part of T"" is
related to the imaginary part of f; by a nontrivial convo-
lution.

One can now compute the inclusive lepton spectrum by
substituting Eq. (3.44) and Eq. (5.1) into Eq. (2.5), and in-
tegrating over E„.The kinematic region is determined
by the mass of the decaying hadron MH . The 5 func-

b

tions in W restrict the integration to that given by the
parton model kinematics determined by the quark mass
m&. In QCD, one can prove [15] that MH —

m&
=—A) 0,

b

so that the parton model kinematic region is contained
within the hadron kinematic region. Thus, there is no
dependence on the hadron mass MH through the limits

b

on the region of integration, and the lepton spectrum is
determined only in terms of the quark mass mb. This
would not be the case if A were negative. Evaluating the
E„integral gives the decay distribution for Hb ~Xev, :

in Eq. (3.44). This is very different from the analogous
calculation in deep-inelastic scattering. In our problem,
there are nontrivial functions of q and v, multiplying a
few operators, so that the amplitude has the form
f;(q, q.u)(O&;. The QCD corrections multiply each
operator by an anomalous dimension,

z
=8(z)[ 12(y —

q )(1+q —
p

—y)+12E&(2$ —2q p+y —2g y+py)I b dydee'

+8K&(2q q+q p 3y)+8—G&( q +—2q 2q p
—2y —2q y—+py)]—

+5(z) [12E~q (y —q )( —q +2y y)+4K~( q +9—q y 6q y —2g y q
—y +y )— —

y

where

+8/ G&(y —
Q )( —q +y+y )]+K&5'(z)

3 (y —q ) (y —
Q ),

y
(5.2)

z =1+q —p — —y, (5.3)
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and

q~ P7l . 2E,

mb mb mb
(5.4)

(5.5)

The curve z =0 is an edge of the Dalitz plot in the q -y plane. Integrating Eq. (5.2) with respect to Q gives the in-
clusive lepton spectrum:

1 dl
2(3 2 )

Q 6 & 6y p +2(3—y)y p +g 4(3 ) i+ 12y p 4(6—4y+y )y p
I b dy (1—y} (1 —y) (1—y) (1—y)

—33 —3P—, , b
—33

4y (9+2y) 4y (2y —2y —3)p 4y (18—10y+5y —
y )p

(1—y}' 3(1—y)'

4y (15+2y) Sy (3—2y)p 12y p 8y (
—6+4y —y )p

(1—y)' (1 —y)' 3(1—y)'

This agrees with the result of Bigi et al. Integrating Eq. (5.6) with respect to y gives the total decay rate

l
I =

I 1 —8p+8p —
p

—12p lnp)+E& I5 —24p+24p —Sp +3p —12p lnpI
b

+K& I
—6+32p —24p —2p +24p lnpI+Gz I

—2+16p —16p +2p +24p lnpI,

(5.6)

(5.7)

which also agrees with Bigi et al.
The decay rate for b~u is given by Eqs. (5.2) —(5.7) in the limit that p~0. This limit must be taken carefully be-

cause of the I /( I —y) singularities in Eq. (5.6). The resulting expressions are

dy dg
=0(z) I 12(y —g )( I+/ —y)+12E&(2$ +y —2g y)+8K&(2$ g 3y)+—SG&(—/+2' —2y —2g y—) I

+5(z) I 12EI,g (y —
Q )( —g +2y y)+4KI, (

—/+9' y
——6g y 2g y gy—+y )—

3'

where now

4 2

+Sg G~(y —g )( —4 +y+y )1+5'(z)K„(y'—g ) (y —
g ),

3'
(5.8)

z =1+/ — —y, (5.9)

1 d I » 4y'(9+2y) 4 2

I b dy
= I2(3 —2y)y I +EI, I4(3 —y)y +25( 1 —y) ] +K& — ——5(1—y)+ —5'( I —y) .

b b

4y (15+2y) 16
&b 3

(5.10)

and

I =I (I+5E —6K„—2G„). (5.11)

The results, Eqs. (5.10) and (5.11), agree with Bigi et al. The 5 function in Eq. (5.10) is present because the parton
model decay distribution ~ 2(3—2y)y does not vanish at the end point. This will be explained in more detail in the
next section.

The decay distributions for a polarized Ab have the form A +B cosO. The coefficient A is half the value of the corre-
sponding decay distribution for an unpolarized A„given in Eqs. (5.2) —(5.11). The results can be simplified for A„by
setting Eb =Lb and Gb =0. The coefficients of the cos6 terms are
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+ {6(1+eb )(y —g )( —2q +y +Q y —
py

—
y }

1 b dy c@zd cos8 y

+2Kb( —6Q"+12/ y+4q y —4g py
—3y —6q y +3py ))

+&(z), {& ( 4—q'+2q'y +3q y —A' —A'+y') l'y'
2 2—&b$'(z) (y2 —

q ) (y —
q ) cos8, (5.12)

r
1b dydcos8

+ (1+mb) (1—2y)y' —3y p+
3y'p' (1+y}y'p'

(1—y)' (1—y)'

+Eb

10y3 2y (5—2y)p 4y (5+2y —y )p

(1—y)' 3(1—y)'
cos8, (5.13)

+(1+eb E)[{———,'+2p+6p —
—",p

—
—,'p +6p lnp+4p lnp) ]cos8 .

I b d cos8

The p~0 limits of the polarized Ab distributions are

(5.14)

+ {6(1+eb)(y—g )( —2q +y+q y y)+2K—b(
—6g +12q y+4q y —3y —6q y )]f'b dydq d cos8 3'

+5(z) {Eb(—4Q'+2g~y+3$4y q y q
—y +y —))

2
b

2 2—Kb5'(z} (y —g')'(y —
q ) cos8,b (5.15)

r

1 dl + (1+eb){(1—2y)y j+Eb — +5(l —y) ——5'(1 —y) cos8,10y 1

I b dy d cos8 3 3
(5.16)

1 I —
—,'(1+eb —Kb }cos8 .

I b d cos0
(5.17)

The formulas obtained here will be discussed in detail in
the following sections.

VI. PHYSICAL INTERPRETATION
OF THE 1/mb CORRECTIONS

There is a way to obtain most of the 1/mb corrections
which also provides a physical picture of these correc-
tions. One can obtain a class of 1/mb corrections by tak-
ing the lowest-order expression, Eq. (3.6), for T" (or
W" ) and smearing it over a distribution of b quark mo--
menta in the Hb hadron. This will give the terms propor-
tional to Eb and Kb in Secs. IV and V, but not those pro-
portional to 6b. This is why we did not simplify the re-
sults using Eb =6b+Kb.

We begin with the spin-independent terms. The &-

quark momentum in ~Hb(v, s)) can be written as
p =mbv+k. The lowest-order (parton model) expres-
sions Tg"(q, mumb. ) were obtained by considering the
decay of a quark of mass mb and velocity u in the rest
frame u =(1,0,0,0). A quark with momentum mbv+k

can be considered to be an on-shell quark with mass mb
and velocity v', where v' =1, and mbv'=mbv +k. The
decay rate of such a quark can be obtained by using
Tg'(q, v', mb, m )Iv', where v' is the Lorentz time dila-
tion factor for a moving particle. The value of T""is ob-
tained by averaging To"(q, u', mb, m )/u' over a distribu-
tion of b-quark momenta. This average is most
easily done by writing v' = v mbu'/mb.
mb To"(q, u', mb, mj. )/v mbu' can be w. ritten as a function
of q, m~, and the product mbu'. This makes the averag-
ing simple because one can use the substitution
mb v'=mb U +k to rewrite the expression in terms of mbU
and k, and then average over k. Since q is unafFected by
the averaging, terms proportional to q" or q" will remain
proportional to q" and q . Thus, averaging T4 or T5 will
not produce T& 3. Similarly, ave&aging T& or T3 will
produce terms only proportional to T, or T3, but averag-
ing T2 produces terms proportional to both T2 and T&.

As a simple example, we will consider the average of
the piece of T" containing T3 explicitly. The average we
need is
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(
mb 1 1

[ i—e"' ~u'q&T3(q, q u', mb)] pvaP 1

bv aqua (mbu' —q) m—
~

1 1

2 u (mbu+k)
i—e"' ( mb u +k) ~q& (mbu+k —q) —m,

(6.1)

The averages over k can be written in terms of

(k ) =E„m,u
(k k ) =—'(k')(g —u u~)

= ——'Km(g —uu)

(6.2)

The total decay rate for a quark distribution is given by
averaging

mb f (m Imb )Iu' =mb f (m /mb )Iu mbu' .

Now

where Eb and Kb are the mean total energy and mean
kinetic energy in units of mb. This gives the terms in Eq.
(3.44) with the exception of the Gb term. A similar com-
putation also reproduces T, and T2 in Eq. (3.44).

The above averaging procedure computes the 1/mb
correcti. ons using a distribution of quark momenta k in a
hadron Hb. Here k is considered to be a number, not an
operator. The operator product expansion gives a similar
result, with k replaced by the covariant derivative iD.
The commutator of two covariant derivatives is propor-
tional to the gluon field strength, [D,D~]=igG ~ The.
covariant derivatives commute if we neglect all terms in-
volving G, i.e., all terms involving Gb. Thus, the 1/mb
terms obtained by the averaging method are identical to
those obtained using the operator product expansion
neglecting 6 ~. This result holds to all orders in the
1/mb expansion due to reparametrization invariance
[13].

Our averaging procedure provides a useful check on
the total decay rate. The total decay rate (neglecting
1/mb corrections) can be written as I o=mb f (m /mb ).

mb =mb u' =(mbu+k) =mb(1+2Eb 2Kb)—,

and u mbu'=mb(1+Eb). This gives

I = m (1+E ) '(1+2E„—2K„)
Xf(p(1+2Eb —2Kb ) '), (6.3)

dI p
+Eb —6I p+2p

dp
(6.4)

The result, Eq. (5.7), agrees with this check.
One can also use the averaging procedure to determine

the leptonic spectrum. Recall that we needed to compute
the average of mbTD'Iu mbu', where mbT~ is a func-
tion only of mbv' and q, and has mass dimension zero.
This can be written as

where p =m /mb. Expanding this and retaining correc-
tions to order 1/mb gives

dI pr=rp+Eb 5Ip 2p
dp

(
mb Tp

V'mbv

a2

8 2
T~z' Eb T~z'+Ebu —

mb Tio' — Kbmb(g i uu—i
)

—
mb TIO' (6.5)

using Eq. (6.2). The decay rate depends on L„„T""=Fwhich has mas—s dimension two, and is a function only of k, k
mbu, m, and q. One can rewrite F in terms of the dimensionless variables y, q, p, and an overall factor of m . The vari-
ables y, q, and p were defined in Eq. (5.4), and x is defined by

2E 2mbv k

mb (m„u)
(6.6)

The averaging formula, Eq. (6.5), for T implies that F can be written in terms of the lowest-order expression
Fp:L@ Tp by difFerentiating with respect to mb V. In performing the differentiation, it is important to remember that
Tp and Fp are to be considered as functions only of the product mb v, not of mb and v separately. Thus, mb is an impli-
cit function of v, with

c)
mb = [(mbu). (mbu)] =u

0mb v 0mb L
{6.7)
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Using the partial derivatives

Bx

B(mbu )

By

B(m&v )

2k
2

mb

2k,
2

mb

2xU~

mb

2yU a

mb

Bg

B(mbv )

Bp

B(mbv }

mb

= — p v.
2

a
mb

(6.8)

and Eq. (6.5) our averaging procedure implies that

F = 1+E& 1 —2p —2Q —y —xB, B B B

Bp Bg By Bx

+Kb —2+2p +2/ +2y +2x +—y +—x +—(xy —2q }
B B B B 1 2B 1 2B 2 2 B

Bp B$2 By Bx 3 Byz 3 Bx2 3 BxBy
FD . (6.9)

The differential decay rate is given by integrating F over the phase space, which is proportional to dy dx dq . Integrat-
ing Eq. (6.9) with respect to x gives the formula

dl 0

dy dq' ' 'Bp By' By
' 3 Bp Bq' 3 By 3 By' dy dq

+Kb
B 4 B

+2p +—y
3 Bp 3 By

where dI v/dy dq is the parton model decay rate ob-
tained by setting E&,KI„GI,~O in Eq. (5.2). Integrating
Eq. (6.10) with respect to g gives

dl 1+Eh 4—2p —y
Bp By

(S")=(1+ e+bK )bs",

(S"k")=mbKbs"u "+ 'm
Kbs

"—u",

(SPk k~) = —2m K (g ~—v u~)sP

(6.13)

where S"is the quark spin, and s" is the hadron spin.

spin-dependent form factors. One considers the b quark
in the hadron to have a distribution of spin and momen-
tum, with

dI
+—y

3 By dy

Integrating Eq. (6.11) with respect to y gives

l = 1+E 5 —2p +K —6+2pB

Bp Bp

(6.11)

VII. DECAY DISTRIBUTIONS
FOR HADRONS CONTAINING A c QUARK

(6.12)

which is the same result we obtained in Eq. (6.4). Equa-
tions (6.10)—(6.12) agree with Eqs. (5.2)—(5.7) on setting
Gb~0. One can also understand the origin of the 5-
function terms in Sec. V. Since the decay distribution
does not vanish at the end point, the derivatives in Eq.
(6.11) produce 5 functions and derivatives of 5 functions.

One can also apply the averaging method to obtain the

The decay distributions for semileptonic c-quark decay
can be readily obtained from the calculations in the previ-
ous section for b-quark decay. The charged lepton distri-
bution in c decay is equal to the neutrino distribution in b
decay, and vice versa. This is equivalent to changing the
signs of W3, G3, G8, and G9. The lepton energy spectra
are less singular than for b decay because the free quark
decay rate vanishes at the end point. The double
differential c-decay distribution for an unpolarized had-
ron H, containing a c quark is

1 dr
I,

dydee'

= 8(z) I 12y (1—
p —y)+ 12yE, (1+p) 24yK, +8yG, (p —2—) J

+5(z)—I 12E,Q (y —1)(Q —2y+y )+4K, (3$ 6Q y —4Q y+6q y—+y )

2

+8/ G, (1—y}(Q +y —y })+5'(z)K, (y —
Q )2(1 —y),

V
(7.1)
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where

5

r, =fv,, /'G,'
192~

(7.2)

Integrating this with respect to q and then y gives

1 dI z z 12y ~ 12y (
—2)

12(1—y)y —24y p+ .+E, 12(2—y)y +I, dy (1 —y)
'

(1 —y)

2 2 8 3 2

+K, —8y (3+y)+ +G, —8y +
(1—y)' '

(1 —)'
(7.3)

and

1 I = {1—8p+8p —
p

—12p lnp]+E, {5—24p+24p —8p +3p —12pzlnp]
C

+K, {
—6+32p —24p —2p +24p lnp] +G, {

—2+16p —16p +2p +24p inp] . (7.4)

The p~0 limits of Eqs. (7.1)—(7.4) are

1 dI
r, dydee'

= 8(z) {12(y —y ) + 12yE, —24yK, —16yG, ]

+5(z)—{ 12E,q (y —1 )(q —2y +y )
—4K, (

—3q +6q y +4q y
—6q y —y")

4~2—8g G, (y —1)(g +y —y )]+5'(z)K, (y —g ) (1 —y),
y

12(1—y)y ] +E, {12(2—y)y ]+K, {
—8y (3+y)+45(1 —y)]+G, {

—8y
C

r=r, {1+sE,—6K, —2G, ] .

The cos8 terms in the decay distributions for a polarized A, are

1 dI + 9(z)(1+ )e{ 6y (1—
p

—y) —6y (1 p)K,j-r,

dydee'd

cos8

+5(z) {2K,( —g
—3Q y +3q y +y )]+5'(z)K, (y —

q ) (1 —y) cos8,
2'

2 22
y

(7.5)

(7.6)

(7.7)

(7.8)

1 dI
I, dy d cosO

6y~ ~
) 2y3(5 —3 )+ (1+F., ) 6(1—y)y —12y p+ .+K, —10y'+ . cos8,

(1—y)'
(7.9)

+(1+@, K, )[P—4p+4p——
—,'p —6p lnp] ]cos0 .

r, d cos0

The p~O limits of these distributions are

(7.10)

+ 0(z)(1 +)e{6y(1—y) —6yK, ]+5(z){2K,( —
q

—3Q y+3q y +y )]r, dy dg~d cosO

+5'(z)K, (y —
q ) (1 —y) cos9,

2'
2 -22

y
(7.11)

dr
I, dy d cosO

I dI
I, dcosO

+[(1+@,){6(1—y)y ]+K, {
—10y'+25(1 —y)] ]coso,

+ —,'(1+@,—K, )cos8 .

(7.12)

(7.13)
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VIII. INCLUSIVE Hb ~X„ev,
NEAR THE BOUNDARY OF PHASE SPACE

For an exclusive decay Hb ~Xev, the kinematically al-

lowed region of phase space is

2MxE,
0&q'&2E, MH +

e Hb

(8.1)

The maximum value of the electron energy E,' '"' occurs
when the right-hand side of Eq. (8.1) is zero;

MH —M~
E(max)

2MH
(8.2)

The results of Sec. V show that in QCD, the inclusive de-

cay kinematics are governed by the quark mass mb, rath-
er than the hadron mass MH . The kinematically allowed

b

region in the Dalitz plot is

2m~ E,
0&q &2E,mb+

2E, mb
(8.3}

Mxu ~(MH —m&)MH 1— q

MHb
(8.4)

25

20

where m is the charm quark mass for b ~c transitions
and zero for b~u transitions (neglecting light quark
masses}. The difference between these two kinematic re-

gions is shown in Fig. 4 for b ~u decay.
For b~u transitions the region (8.3) of the q, E,

plane becomes the interior of a right triangle with sides

q =0, q =2E,m&, and E, =m&/2. Since mi, is less than

MH a comparison of Eqs. (8.3) and (8.1) reveals that a
b

part of the kinematically allowed phase space is not pop-
ulated. This part corresponds to the production of states
with mass squared:

The physical origin of this discrepancy has been dis-
cussed by Isgur, Scora, Grinstein, and Wise [16] and by
Isgur [17]. For simplicity, consider QCD in the large-N,
limit where the final state X must be a qq bound state
(nonresonant final states are produced with an amplitude
suppressed by a factor of I/QN, ). Provided q /MH is

b

not very close to unity, the production of states with
masses much less than in Eq. (8.4) is strongly suppressed
by hadronic form factors. For very large mb this form-
factor suppression arises from the transfer of a large
momentum to the spectator antiquark by a single hard
gluon. Clearly such effects are subdominant to those
given by Eq. (5.8). However, when the mass of the final

qq resonance becomes of order Qm&AQCD [see Eq. (8.4)],
the antiquark in the X meson has such a broad distribu-
tion of momentum that no form-factor suppression is re-
quired. Thus, the differential decay rate in Eq. (5.8) cor-
responds to a sum over exclusive final states with masses
greater than -Qm&AQCD, Note that for large mi, these
hadronic masses are much greater than the QCD scale.

There are theoretical limitations on the extent to which
our prediction for the differential Hb ~X„ev,decay rate
d I /dq dE, can be compared with experiment. In the re-
gion of the phase space very near q =MH, which corre-
sponds to low-mass final hadronic states recoiling at low
momentum, our expression for the differential decay rate
is not valid (the operator product expansion cannot be
justified for low mass states). Also, the appearance in Eq.
(5.8) of a 5 function and its first derivative indicates that
along the boundaries q =2m &E, and E, =mi, /2 the
differential decay rate must be smeared over a region of
electron energies. The amount of smearing necessary is
determined by demanding that corrections proportional
to I(b, Eb, and Gb give a contribution to the smeared
differential rate that is small compared with the leading
"free-quark decay" contribution.

For definiteness consider the boundary q =2mbE, . In
the free b ~uev, decay it corresponds to a configuration
(in the b rest frame) where the electron and u quark are
moving in the same direction and the antineutrino goes in
the opposite direction. Since the weak current is left
handed the free-quark decay amplitude vanishes here by
angular momentum conservation. Define (recall
y =2E, /m&, q =q /m& )

15

10

1 d I
S(q )= f dy W(y),

b dydee

where

(8.5)

0.5 2.5

[y (y2+ p) )2 pe

v'~e (8.6)

FIG. 4. The allowed region of the Dalitz plot for 8~X„ev,
decay. E, is in GeV, and q is in GeV . The outer curve is the
region allowed using physical hadron masses. The inner curve
is obtained using quark-quark masses, with A for the B meson
chosen to be 500 MeV. The free-quark decay distribution is
nonzero only inside the inner triangle.

$(q } corresponds to smearing the difFerential cross sec-
tion at y =Q +e over a region of y of order e. (The
averaging is at y =Q +E instead of y =g so that the
term containing a derivative of a 5 function is not made
artificially small. ) Demanding that the leading free-quark
decay contribution to S(q ) be large compared to that of
the corrections proportional to Kb, Eb, and Gb gives the
condition
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e )(AQcD/mb) (8.7)

This corresponds to smearing over a range of electron en-
ergies b,E, )AQCD. In deriving Eq. (8.7) the matrix ele-

ments Kb, Eb, and Gb were estimated to be of order
( AQcD /m b ) . A similar result holds for the region near
the boundary of phase space at E, =mb /2. The
differential cross section in Eq. (5.8) must be smeared
over a region of electron energies hE, & AQcD to be phys-
ically meaningful. Away from the boundaries E, =mb /2
and q =2mbE, of phase space some smearing may also2=
be required. As one varies E, (at fixed q ) new thresholds
are encountered corresponding to different M~ in Eq.
(8.1). However, here the situation is likely to be similar
to

10

5.

R (s)=0 (e+e ~hadrons)/0 (e+e —+p+Itb ),
where at large s the density of hadronic states is so large
that the size of the region s that must be averaged over
becomes negligibly small.

In semileptonic B decay the end-point region of elec-
tron energies, where B~X,ev, decays are forbidden, is
of great interest because of its potential use to determine

~ V„b~. However, in this end-point region 2.2&E, &2.6
GeV, our predictions are not very useful. Very near

q =M& our results do not apply and away from this
value of q the averaging of electron energies over a re-
gion AE, )AQCD makes it impossible to isolate the end-

point part of the electron spectrum. This is discussed
more quantitatively in the next section.

IX. NUMERICAL RESULTS

mbGb(B)= — [M(B')——M(B)],

mb Gb(B*)= —,'[M(B*)—M(B)] .
(9.1)

The experimental value of 46 MeV for the B*—B mass
difference determines Gb(B) to be —0.0065 (where mb

can be equated with the hadron mass to this order). The
parameter Kb(B) cannot be simply determined. Quark
model estimates suggest that Kb(B) is approximately
0.01. The size of the 1/mb correction to the lepton spec-
trum dI /dy for B~X,ev, decay is plotted in Fig. 5 for
Gb(B) = 0 0065 a—nd .Kb(B)=0.01. The plot shows the
ratio of the distribution Eq. (5.6) to the free-quark decay
spectrum without any smearing. Figure 6 shows the
same result as a percentage correction, so that one can
see how the corrections become large only near the end

point. The results must be averaged in y over a region
sufficiently large that the correction terms are small. The

The 1/mb corrections to the decay distribution for
semileptonic Hb decay have been computed in terms of
the parameters Gb and Kb. These parameters depend on

the hadron Hb, and will be denoted by Gb(Hb) and

Kb(Hb). The parameter Gb is the leading operator that
breaks the heavy quark spin symmetry, so its matrix ele-

ment can be determined in terms of the hyperfine spin

splittings within heavy quark multiples. For example,

Gb(Ab ) =0 and

2-
0

~ M
c$ 1-

0.5-

0.2-

O. l 0.2 0. 4 0. 6 0.8

FIG. 5. The ratio of the lepton spectrum for 8~X,ev„de-
cay including 1/mb corrections with Gb = —0.0065 and

Kb =0.01 to the free quark b ~c decay spectrum. Note the log-

arithmic scale.

0.5-

FIG. 6. The same spectrum as Fig. 5, plotted as a percentage
correction on a linear scale.

1/m, corrections to charm decay are a factor of
(mb /m, ) larger than the corrections for b decay.

To better understand the size of the 1/mb corrections,
it is interesting to plot theB ~X,ev, lepton spectrum in-

cluding 1/mb corrections without smearing. This is illus-

trated in Fig. 7, where the free-quark b~c decay and
b ~u decay electron spectra are compared to the
B~X,ev, decay spectrum including 1/mb corrections.
The peak near the end point for B~X,eV, decay gives

an indication of the minimum size of the smearing region
that must be used before the QCD calculation is valid.
The peak must be smeared over a large enough region
that it produces a small correction to the decay spectrum.
This indicates that smearing region should be at least

Ay =0.2, which corresponds to a lepton energy spread of
around 500 MeV.

The dominant uncertainty in the extraction of V„b is

the shape of the end point of the 8~X„ev,lepton spec-
trum. It is difficult to estimate the size of the smearing
necessary in QCD from the unsmeared spectrum, Eq.
(5.10), since it contains 5-function singularities at the end

point. Figure 8 shows the smeared lepton decay distribu-
tion using Gaussian smearing in y with different widths.
The smearing extends the spectrum beyond the parton
model end point y = 1, but the curves are only plotted for
0&y ~1. For simplicity, only the 6 functions in Eq.
(5.10) have been smeared, and then added to the remain-



49 INCLUSIVE SEMILEPTONIC B AND POLARIZED Ab DECAYS 1327

2

1

dy

1 5 .

0 5.

FIG. 7. The electron spectrum for free-
quark b~c decay (dashed line), free-quark
b~u decay (grey line), and 8~X,ev, decay
including 1/mb corrections (solid line) with

Gb = —0.0065 and Eb =0.01. The QCD calcu-
lation of the 1/mb corrections has not been
smeared.

0.2 0.4 0.6 0.8

ing terms. Clearly, the dip in the spectrum for a smear-
ing width of hy =0.1 is unphysical. The curves in Fig. 8
indicate that the minimum smearing width in hy is
around 0.2, which corresponds to a lepton energy width
of 500 MeV.

Even though the parameters Kb (Hb ) are not known ex-
cept by model calculations, one can determine the
difference of Kb between two hadrons. For example, the
masses of the Ab baryon and the 8 and 8*mesons are

M(Ab) =mb+A(Ab)+mbKb(Ab),

M(B)=mb+A(B)+mbKb(B)+mb Gb(B),

M (B')=mb+ A(B)+ mbKb(B) ,'mb Gb(B)—, —

(9.2)

1s

including all corrections to order 1/mb in the mass. We
have used the heavy quark spin-symmetry relations
Gb(B)= 3Gb(B') an—d Kb(B)=Kb(B'). The difference
between the Ab mass and the average meson mass

M (B),„=[M (B)+3M (B') ]/4

mb —1 [Kb(Ab) —Kb(B)] .=mb
m,

(9.4)

Equating the quark masses with the meson masses to this
order gives Kb(Ab) Kb(B)= —0 00—2+.0 006, .using the
present value of 5641+50 MeV for the Ab mass.

The difference between Gb and Kb for different hadrons
gives predictions for the differences in the semileptonic
decay distributions. The order a, corrections due to
gluon radiation that have been computed [2,3,5] are the
same for all hadrons, since they correct the free-quark de-
cay formula, and cancel in the difference. Thus, the
difference is known to corrections of order a, (mb)lmb
and 1/mb. For example, one can compute the differences
in the total semileptonic decay widths for Hb~X„ev,
decay:

A similar expression holds for the D mesons and the A,
baryon. Heavy quark symmetry implies that
A(H, ) =A(Hb ) and mbEb(Hb ) =m, K, (H, ), so that

[M(A, )
—M(D),„s]—[M(Ab ) —M(B),„]

M(Ab ) —M(B),„s
A(Ab ) A(B)+ b [Kb(Ab ) Kb(B)] (9.3)

r(H, ) —r(H„')= —', Gb(Hb) Gb(Hb)—
r(H, )+r(H,')

,' [Kb (Hb ) Kb—(H—b) ] . — (9.5)

2-

1d
P dy

1.5-

0.5-

. =~~
~

0.2 0.4 0.6 0.8

FIG. 8. Plot of the smeared corrections for
B~X„ev, decay for Gb = —0.0065 and
Kb =0.01. The plots are shown only in the re-
gion 0 y 1. The curves are the free-quark
spectrum (solid grey), the 1/mb corrected
spectrum smeared over Ay =0.1 (dashed grey),
0.2 (solid black), and 0.5 (dashed black).
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This gives

I(A )
—1(B) 9 M(8*)—M(8)

I (8) 4 M(B)
—[Et,(Ab) —Kt, (8)]

=0.021+0.006 . (9.6)

—[E,(A, )
—E,(D)]

=0.19+0.04 .

The uncertainties in Eqs. (9.6) and (9.7) are due to the
+50 MeV uncertainty in the Ab mass. The differences of
the decay widths for the decay modes Ht, ~X,ev, and

H, ~X,e+v, can be computed similarly using Eqs. (5.11)
and (7.4). In the b ~c case,
[I'(A ) —I (8)]/I (8)=0.029+0.004.

X. CONCLUSIONS

One of the important points of the analysis in this pa-

per is that the decay distribution is determined by the

quark mass mb, rather than the hadron mass MH . Thus,
b

the free-quark decay rate I b depends on mb, not M& .
b

The difference between the two masses is the A parameter
of the heavy quark theory. There should have been 1/mb
corrections proportional to A if a free-quark decay model

with the decay rate given by M& was appropriate.
b

Corrections of this form are absent in QCD. For
b —+cev, decays, the charm quark mass m, also appears.
To the order we are working, this is the pole mass in the

heavy c-quark propagator, or equivalently, the mass in

the phase factor that relates the c-quark field in QCD to
the c-quark field in the heavy quark effective theory. Up
to corrections of order 1/mb „mb—m, =Mtt —MD.
This connection is important because it reduces the un-

certainty in the differential decay rate.

Similarly, the decay width differences for H, ~Lde+v,
decay are

1(A, )
—1(D) 9 M(D*)—M(D)

r(D) 4 M(D)

The end-point region of the inclusive lepton spectrum
in semileptonic b decay is important for the extraction of
V„&. The QCD calculation near the end point must be
smeared over a large region (around 500 MeV) before it

can be compared to experiment. This region is larger
than the difference in the end points of the b~u and
b ~c decays. This means that the extraction of V„b still

requires modeling the end point. The QCD computation
does provide some constraints on the model. Any model
which has I /mb corrections, or has a decay distribution

given by hadron kinematics instead of quark kinematics,
is in contradiction with QCD.

We have presented results for decays of hadrons con-
taining a b or c quark. Formally, perturbative correc-
tions are of the form a, (m„)or a, (m, ). However, since
the final state in free-quark decay is three-body, perturba-
tive corrections to the total semileptonic decay rate may
be better represented by a, (mb/3) or a, (m, /3). Only a
higher-order perturbative calculation can resolve this is-

sue. Because of this, we do not have confidence in apply-
ing the results of Sec. VII to the decays of hadrons con-
taining a c quark.
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