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We calculate, in the framework of QCD sum rules and to next-to-leading order in perturbation
theory, the universal function (s(v v') which appears at order 1/mo in the heavy quark expansion
of meson weak decay form factors. We And that radiative corrections of order o., are very impor-
tant. Over the kinematic range accessible in semileptonic decays, (s(v . v') is proportional to the
leading-order Isgur-Wise function ((v v') to very good accuracy. Taking into account all sources of
uncertainty we estimate (s/( = (0.6 + 0.2). This reduces the theoretical uncertainty in the extraction
of

~

V, s~ from B m Dl 0 transitions. A measurement of the form factor ratio Az/Ai in B -+ D*Iv

decays can be used to test our prediction.

PACS number(s): 12.39.Hq, 11.55.Hx, 13.20.He

I. INTRODUCTION (M'(v')
i

h' I'h iM(v))

In the limit where the charm and bottom quarks are
considered infinitely heavy, their strong interactions with
light quarks and gluons acquire additional symmetries
[1—4]. In particular, the weak decay form factors de-
scribing the semileptonic transitions B m D 8 v and
B -+ D*E v become related to a single universal function.
The normalization of this so-called Isgur-Wise form fac-
tor is known in the zero recoil limit, where the initial and
Anal mesons have the same velocity. This allows a model-
independent determination of the Cabibbo-Kobayashi-
Maskawa matrix element

~

V,s] [3, 5], up to corrections
arising from the fact that m, , and mg are, after all, not
infinitely heavy. In this work, we investigate a particu-
lar type of such corrections, which is important to the
extraction of

~

V,s] from B —i D I v transitions.
Heavy quark efFective theory (HQET) provides a con-

venient framework to analyze the weak decays of hadrons
containing a heavy quark [6—12]. It provides a system-
atic expansion of hadronic matrix elements in powers of
1/m, q. The coefficients in this expansion are universal
functions of the velocities v and v of the initial and fi-

nal hadrons (v2 = v' = 1, v v' ) 1), but they do not
depend on the Havor or spin of the heavy quarks. These
form factors originate from long-distance hadronic dy-
namics, and so they can only be investigated using some
nonperturbative approach to QCD. One such method is
provided by QCD sum rules [13], which have recently
been widely used to calculate hadronic matrix elements
in HQET [14—22]. At leading order in the heavy quark
expansion, a single Isgur-Wise function ((v v', p, ) is

required to parametrize the current-induced transitions
M(v) m M'(v'), where M and M' are pseudoscalar or
vector mesons containing a single heavy quark [4]. This
is conveniently expressed by the compact trace formula
[10.aS]

= —((v v', p) Trf M (v') rW(v) ), (1)

where I' is an arbitrary Dirac matrix, and 6 and 6' denote
the velocity-dependent effective fields in HQET which
represent heavy quarks q and Q' moving at the hadron's
velocities v and e'. The heavy mesons are represented by
covariant tensor wave functions

(1+ /I

I
—ps, psendoscalar meson,Mv = mM vector meson,

(2)

which have the correct transformation properties under
Lorentz boosts and heavy quark spin rotations. Here
mM denotes the physical meson mass, and c is the polar-
ization vector of the vector meson. Current conservation
implies that the Isgur-Wise function is normalized at zero
recoil: ((1,p) = 1. Except at this point, the universal
form factor depends on a subtraction scale p, since the
velocity-changing currents in the effective theory have to
be renormalized. The p dependence of the Isgur-Wise
function cancels against that of the Wilson coefFicients
which appear in the matching of currents of the full the-
ory onto currents of the effective theory [10,24].

At order 1/mg, matrix elements receive contributions
from higher-dimensional operators in the effective La-
grangian and in the effective currents [11]. The former
give rise to three new universal functions, usually de-
noted by y, (v . v', p, ) for i = 1, 2, 3. In the framework
of QCD sum rules, we have investigated these form fac-
tors in Refs. [19,21]. Here we shall focus on the second
type of corrections, which come from operators of di-
rnension 4 in the short-distance expansion of the weak
currents in HQET. In the case of the vector or axial
vector currents, there are 14 independent operators of
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= —A Tr( ( (v, ', p, ) JH (v') r m(v) ),
where A = mM —mg ——mM —mg denotes the mass
difference between a heavy meson and the heavy quark
that it contains. 'This parameter sets the canonical scale
for power corrections in HABET. Matrix elements with a
derivative acting on h' are related to (3) by Dirac con-
jugation. The most general decomposition of the form
factor can be written as

(v, v', p) = (+(v v', p) (v + v')

+( (v v p) (v v ) (s(v ''v p)
(4)

Because of T invariance of the strong interactions, the
coefficient functions (;(v v', p) are real. Furthermore,
the equation of motion of HABET can be used to derive
the constraints [11]

(-(v v', V) =-, &(v v' ~)

(+(v v', p) =—, ((v v', p)
2 V'V +1

1 I(s(v v, P) .
V'V +1

These relations show that only one of the coeScient func-
tions, say, (s(v v', p), is independent. They also suggest a
close relation between the subleading functions (;(v v', p)
and the leading-order Isgur-Wise function ((v v', p). The
origin of this relation is the invariance of the effective the-
ory under reparametrizations of the heavy quark momen-
tum [25, 26]. In fact, one can show that the p dependence
of the functions (;(v v', p) is the same as the p depen-
dence of the Esgur-Wise function. This leads us to in-
troduce a new, renormalization-group-invariant function
q(v. v') by

(s(v ' v 8)
g(v v') = (6)

this type. Their Wilson coeKcients have recently been
calculated to next-to-leading order in renormalization-
group-improved perturbation theory [25]. On dimen-

sional grounds, any dimension-4 current operator must
contain a covariant derivative acting on one of the heavy
quark fields. Thus, these operators have the generic form
h'I'iD h or (iD h') I'h, where I' is again an arbitrary
Dirac matrix. In analogy to (1), the corresponding ma-
trix elements can be parametrized by a tensor form factor

defined by [ll]

(M'(v')I h'I'iD h IM(v))

Knowledge of the function g(v. v') becomes important
when one wants to extract

I
V,bl from a measurement of

the diiferential decay rate dI'/d(v. v') for B ~ D E v tran-
sitions near zero recoil. Because of the known normal-
ization of the Isgur-Wise function at v - v = 1, hadronic
uncertainties affect such a measurement only at the level

of power corrections of order 1/m, and 1/mb. Note that
whereas the B ~ D*Ev decay rate is protected against
first-order power corrections by Luke's theorem [11],the
rate for B —+ DEv is not, due to its helicity suppres-
sion at zero recoil [27]. However, one can show that the
symmetry-breaking corrections are parametrically sup-
pressed by the "Voloshin-Shifman factor" [3]

2

8=
I I

=023.
(mg + mD&

(7)

For this reason one may hope that the theoretical un-
certainty in extracting

I
V,bl from these transitions is not

much worse than in the case of B ~ D*Iv decays [19].
An extrapolation of the spectrum to zero recoil gives

1
lime.e'm 1

( . I)2

dI'(B ~ DI v)
d(v v')

&p I V.bl'
(my+my) mDrN 1+8 K, (8)

2 3 2

q2 A2(q2)

(m~ + mD. )2 Aq(q2)
' (10)

where Aq(q ) and A2(q ) are axial vector form factors in
the notation of Ref. [28]. Introducing the variable v . v'

instead of q2, and performing a 1/mq expansion of the
hadronic form factors, one obtains [19]

where

fA Al-
K = ~~+

l
+

l
(1+~1) 2(1+~2) 9(I)(2m, 2mb) .

(9)
Here qv and h; are perturbative /CD corrections arising
&om finite renormalizations of the currents in the inter-
mediate region mg ) p ) m, . Numerically one finds

—1.03, hq 11%, and 62 9% [24, 25]. The only
unknown quantity (except the heavy quark masses) in
this equation is the value of the function g(v v') at zero
recoil.

It has been pointed out in Ref. [19] that certain ra-
tios of the hadronic form factors describing B ~ D'8 v
transitions are very sensitive to symmetry-breaking cor-
rections to the heavy quark limit. Their measurement
can be used to test model calculations of the subleading
universal form factors. Consider the quantity

We expect that g(v . v') is a slowly varying function of
order unity. By means of (5) and (6), meson matrix ele-
ments of the dimension-4 operators in the short-distance
expansion of the currents can be parametrized in terms of
the product A ((v.v', p) and a single new function g(v. v'),
which is independent of the renormalization scale.

A (I 31R, =1—,
I

+
I
q(v v')+-. . .

v v'+ 1 (m, mb)

The ellipsis represents a small "hyperfine correction" pro-
portional to the function g2(v . v', p), and higher-order
power corrections of order I/m&2. The perturbative cor-
rections to R2 turn out to be completely negligible. Un-
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less the function g(v . v') was highly suppressed, the
dominant symmetry-breaking correction to R2 is the one
shown in (ll). A measurement of this ratio would there-
fore provide valuable information about the form factor
il(v v').

In Ref. [19], the function fs(v v', y, ) has been analyzed
using the QCD sum rule approach and adopting the stan-
dard approximations, in which one neglects radiative cor-
rections. Such an approach leads to the parameter-free
prediction that (s(1,p) = i1(1) = 1/3. In the context of
QCD sum rules, corrections to this simple result can only
come from radiative corrections or higher-dimensional
condensates. It was recently found that such corrections
can be quite significant, however. For the subleading
Isgur-Wise functions y2(v v', p) and ys(v v', p), the
terms of order e, even give the dominant contributions
to the sum rules [21]. In the case of (s(v v', y, ) this
may be expected to be even more so, as due to the pe-

culiar Dirac structure associated with this form factor
in (4) there is no quark condensate contribution at the
tree level. Therefore, it is important to refine the sum
rule analysis of Ref. [19] by including radiative correc-
tions. This requires, in particular, the calculation of the
two-loop corrections to the triangle quark-loop diagram.
The techniques to handle the corresponding two-loop in-
tegrals have been developed in Ref. [22].

II. DERIVATION OF THE SUM RULE

The QCD sum rule analysis of (s(v . v', p, ) proceeds
in complete analogy to that of the Isgur-Wise function.
For a detailed description of the procedure the reader is
referred to Refs. [19,22]. Here we shall only very briefly
sketch the main steps. One considers, in the effective
theory, the three-current correlator

I

dzdz'e'~" "*~ (0)T ( ql'M h'], , h' I'io h, (hl'M q ] )
0) = Tr(: (v v', k, k') I'M 7 I'M ],

(12)

where v and v' are the velocities of the heavy quarks,
and k and k' are the external o8'-shell momenta injected
into the three-point function. Depending on the choice
I'M ———p5 or I'M ——p„—v„,the heavy-light currents
interpolate pseudoscalar or vector mesons, respectively.
The Dirac structure of the correlator, as shown in the
second line, is a consequence of heavy quark symmetry, as
reflected in the Feynman rules of HQET. The quantity =
obeys a decomposition analogous to (4), with coefficient
functions =~ and:"3 that are analytic in the "oK-shell
energies" u = 2v k and u' = 2v' k', with discontinuities
for positive values of these variables. These functions
also depend on the velocity transfer y = v v'. From now
on we shall focus on the coefficient =s(cu, ur', y), which is
used to construct the sum rule for the subleading form
factor (s(y, p, ).

The idea of QCD sum rules is to relate a theoretical
approximation to the operator product expansion of:3
to a hadronic representation of the correlator in terms of
physical intermediate states. The lowest-lying states are
the ground-state mesons M and M' associated with the
heavy-light currents. They lead to a double pole located
at ~ = ~' = 2A. The residue is proportional to the
function (s(y, p). One finds [19]

«s(y ~) +'(~)
L~~~ ~N) = (13)

(~ —2A + ic) (cu' —2A + ie)
'

where F corresponds to the scaled meson decay constant
(F fM+mM). Both F and (s are defined in terms
of matrix elements in the effective theory and are scale-
dependent quantities. In the deep Euclidean region, the
correlator can be calculated perturbatively because of

asymptotic freedom. The idea of Shifman, Vainshtein,
and Zakharov was that, at the transition from the per-
turbative to the nonperturbative regime, confinement ef-
fects can be accounted for by including the leading power
corrections in an operator product expansion. They are
proportional to vacuum expectation values of local quark-
gluon operators, the so-called condensates [13]. Following
the standard procedure, we write the theoretical expres-
sion for =3 as a double dispersion integral and perform
a Borel transformation in u and a'. This yields an ex-
ponential damping factor in the dispersion integral and
eliminates possible subtraction polynomials. Because of
the flavor symmetry of HQET, it is natural to set the as-
sociated Borel parameters equal: 7. = ~' = 2T. Following
Ref. [20], we then introduce new variables u+ ——

2
(su+~')

and ~ = ~ —~', perform the integration over ~, and
employ quark-hadron duality to equate the remaining in-

tegral over u+ up to a threshold wo to the Borel trans-
form of the pole contribution in (13). This yields the
Borel sum rule

47p

ib(v ~)&*(~)~ ""= f&~+~ ""p(~+ v)

0

—:K(T, ~o, y) .

The effective spectral density p arises after integration
of the double spectral density over cu . For practical
purposes it is useful to notice that the su+ dependence of
each term in p(u+, y) is known on dimensional grounds
[21, 22]. It thus suffices to calculate the Borel transform
of:-s, corresponding to the limit ~o ~ oo in (14). The
dependence on wo can be reintroduced later.

As pointed out above, the theoretical expression for the
right-hand side of the sum rule consists of a perturbative
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part and condensate contributions: K = Kp„t+ K, „~.
Let us erst present the result for the nonperturbative
contributions. The leading terms are proportional to the
quark condensate (dimension d = 3), the gluon conden-
sate (d = 4), and the mixed quark-gluon condensate
(d = 5). For a consistent calculation at order n„we
calculate the Wilson coeKcients of the quark and gluon
condensates to one-loop order, and the coeKcient of the
mixed condensate at the tree level. The truncation of the
series of power corrections after the mixed condensate
seems safe. The contributions from four-quark operators
(d = 6) are suppressed relative to the quark conden-
sate by a factor i(qq)]/T 1—5%. The calculation is
most conveniently performed using the coordinate gauge
z A(x) = 0 with the origin chosen at the position of the
velocity-changing heavy quark current. We Bnd

D,

Dg D~ D~ D7

FIG. 1. One- and two-loop perturbative contributions to
the sum rule for the universal form factor (3(v v', p). Heavy
quark propagators are drawn as double lines. The wavy
line represents the velocity-changing heavy quark current
h'I'iD h.

Kcond (T1 (X)1 y)
2c2, (qq) T

3'
(n, GG) fy —1 i'

+
96vr iy+ 1)

(qg, (T pG ) q}
12T

tion. The bare quark loop is readily calculated and gives

[19]

F(-)
(4~)D (y+ I)

where

r(y) =
2 —1

ln(y+ gy~ —1) . (16)

Let us now turn to the perturbative contributions to
the sum rule. At order a„onehas to evaluate the bare
quark loop as well as the seven two-loop diagrams de-
picted in Fig. 1. A new feature of the present sum rule,
as compared to the sum rule for the Isgur-Wise function
considered in Ref. [22], is that there is a diagram (Dr)
where a gluon originates &om the covariant derivative
contained in the current. We denote the Borel trans-
formed contributions of the individual diagrams to the
function Xp„t(T,oo, y) by D;. Throughout the calcula-
tion we use Feynman gauge and dimensional regulariza-

I

where D is the dimension of space-time. The evaluation
of the two-loop corrections is more complicated. For a de-
tailed and systematic discussion of the techniques used
to calculate the two-loop integrals the reader is referred
to Ref. [22]. The present calculation proceeds very sim-
ilar to that in this reference, where the sum rule for the
Isgur-Wise function was derived at two-loop order. It is
convenient to introduce a constant

2 2T 2D —6
I (—) I'( ——1)(4~)D 2( 1).D —2 2

where C~ = (N, —1)/2N, . Once this quantity is factored
out, we And that the contributions of the first four two-
loop diagrams in Fig. 1 are the same as the corresponding
contributions to the sum rule for the Isgur-Wise function:

1 3
D; = A — ——yr(y) +2 1 —yr(y) ly 2(1+y) +2yh(y) —4+O(r)).

i=1

We have expanded the result in e = (D —4)/2 and introduced the function

(19)

h(y) = 1

gy2 —1-L2(1 —y ) —L2(1 —y ) + —24/y2 —1r (y),

wh~~~ y = y —gy2 —1, and L2(x) is the dilogarithm. The calculation of the remaining three diagrams is more
cumbersome. It requires rather elaborate techniques such as Kotikov s method of differential equations [29]. However,
remarkable simpli6cations take place as we add up the various contributions. In particular all dilogarithms, which
appear in intermediate steps of the calculation, cancel out. The 6nal result is rather simple:

1 2x) D;=A ——2—
3i=5

—(y —1)r (y) —(y+1) 2+r(y) +O(r)I .

Except for the last term, this is again the same result as for the Isgur-Wise function.
The ultraviolet-divergent terms in the s»m of the seven two-loop diagrams match with the anomalous dimensions

of the heavy-heavy and heavy-light currents contained in the three-current correlator in (12). Thus the I/e pole
disappears upon renormalization of the currents. In the modi6ed minimal subtraction scheme, the renorrnalization
factors are [3, 10]

Zap = 1+ „p(y),
2%6

s

27C6
(22)
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where

1 1 4'—= —+ p@ —ln
E P

(23)

4
~(y) =

3
y r(y) —1 . (24)

Our exact two-loop result for the renormalized perturbative part of the correlator is
7

+pert(TI oo1 y) = Zhh Z)2( Do + ) Di
i=1

3T' & 2 )' n, - - t' p 11') 4~' 17I+ —'
2 —2(y) )

In —+ye ——
)
+ + —+ ce„e(y)+ bc(y) ), (25)

87r' gy+1) 7r ~ T 6) 9 3
where

c~„t(y)= 41n2 —3+ ln —— yh(y) —1 + ln + —(y —1) r (y),
~(y) y+1 4 y+1 2 2 2

2 2 3 2 3

2 2 4
Sc{y)= —+ —(y + 1) 2 + r(y) —— y r(y) —1

3 3 9 (26)

The function cz„t(y) is the same that arises in the calculation of the sum rule for the Isgur-Wise function.
The final expression for the @CD sum rule (14) is obtained when we reintroduce the continuum threshold wo and

write the result as a dispersion integral. This gives

) F2( )
2A/T —

~
~

d
— /T 3

16~' (,y+1)
0

p 4' 17
x 1+ — 2 —p y ln + + —+cpezt y +6c

7r M+ 9 3
4PO

2ti, (qq)
.

/T (cy, GG) (y —1) (qg, cr pG Pq)2+r y dw+e + +
37r 96ir )t y + 1) 12T

(27)

p

It is instructive to compare this to the sum rule for the product A((y, p), which can be obtained from the two-loop
calculation of Ref. [22]:

42p

At(y y)F (y)e I =, I )
dec e 'I ne 1+ —'

2 —2(y) ln + + —+cc.c(y) I
s p 47r 17

162r' ~y+1) 7I (d+ 9 3

2ct, (qq)
.

37r

(a,GG) (y —1) (2y+1) (qgycr~PG Pq)

96+ (y+ 1) 3 4T

n(y) = ' = —+ &(y)
Q(y, p) 1

((y, v)

and find that A(y) obeys the sum rule

4(y) A ( ) ('yF' = ',
) II+ yy+ (2+ 2)e(y) ye{—)

— ' 2+ (2 —y)e(y) yc{ )
—.A T ~o 2cy, (qq) T &p

(n, GG) (y —1) (qg, (T pG Pq)

72~ (y+ 1) 18T

(29)

(30)

(28)

Notice that the p dependence in (27) and (28) is the same. Thus, our explicit calculation is in accordance with the
fact that the function q(y) in (6) is renormalization-group invariant. We write

where

1
b (x)= dzz eI' +r1t

Since the right-hand side of (30) is of order ct„in this
sum rule one is not sensitive to the running of the quan-
tities ((y) and I". Their )tt dependence would show up at

order a, . For the analysis of the sum rule it is, therefore,
consistent to use

(31)

(2y+ 1) (qg, a pG Pq)

3 4T {32)
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which is obtained from (28) by neglecting terms of order
Taking the ratio of (30) and (32) reduces to a min-

imum the systematic uncertainties in the calculation of
A(y).

n(1)
0.7

(a)

~ s ~ ~

I
~ ~ s ~

I
s ~ s ~

I
~ s ~ s

I
~ ~ ~OA~ 'aa'

III. NUMERICAL ANALYSIS AND
CONCLUSIONS

O.e

0.5

uo~1.7 GeV

8.0 GeV

2.3 GeV

In its final form, the sum rule for A(y) very much re-
sembles the sum rules for the other subleading Isgur-Valise
functions y2(y) and ys(y), which we derived in Ref. [21].
Accordingly, the numerical analysis proceeds in a simi-
lar way. For the QCD parameters we take the standard
values

0.4
0.4

~ ~ a I s ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ s I ~ ~ s ~

0.8 O.S 1 1.8 ls4

T [GeV]

~ ~ s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s ~ ~ ~ I ~ ~ ~ ~ih~~
I Is

(qq) = —(0.23 GeV)

(n, GG) = 0.04GeV

(qg, o' pG q) = mo (qq), mo = 0.8GeV
(33)

o.e — g(v'v )

o.e

(b)

Our results turn out to be very stable against variations
of these numbers within reasonable limits. Furthermore,
we use n, /vr = 0.1 corresponding to a scale p = 2A = 1
GeV, which is appropriate for evaluating radiative correc-
tions in the efFective theory. Combining (30) and (32),
we obtain A(y) and hence rj(y) as functions of uo and
T. These input parameters can be determined from the
analysis of a QCD sum rule for the correlator of two
heavy-light currents in the effective theory [17, 18]. One
finds good stability for ~o ——2.0 6 0.3 GeV, and the con-
sistency of the theoretical calculation requires that the
Borel parameter be in the range Os6 (T ( 1.0 GeV.

In Fig. 2(a) we show the zero recoil value of the form
factor ri(y) as a function of the Borel parameter, for three
difFerent values of the continuum threshold. For y = 1
the sum rules simplify considerably. We find

8vr 2

i4-. '(2) ~ T '(r)
3 9vr ~() 2~z mo2 (qq)

T 9 T

(34)

Neglecting the terms of order o.„wewould recover the
result g(1) = 1/3 derived in Ref. [19].However, as seen in
the figure these contributions are by no means negligible.
They enhance the form factor by almost a factor 2. It
supports the self-consistency of the sum rule approach
that we find stability in essentially the same region of
parameter space that leads to stability of the two-current
sum rules considered in Refs. [17,18], and of other three-
current sum rules analyzed in Refs. [21, 22].

Over the kinematic range accessible in B —+ D~*~lv
decays, we show in Fig. 2(b) the range of predictions for
g(y) obtained for 1.7 & ~o & 2.3 GeV and 0.6 & T & 1.2
GeV. The numerical analysis confirms our guess that g(y)
should be a slowly varying function of order unity, which
was the motivation for its introduction in the first place.
In fact, the sum rule predicts that g(y) —0.6 essentially
independent of y. The main uncertainty comes from the
values of o., and uo, which are not very accurately known.
However, one should keep in mind that there are sys-
tematic uncertainties inherent in QCD sum rules which
cannot be estimated by simply varying the input param-

0.4

0.8

0.0
i

~ I a a ~ ~ I ~ ~ ~ ~ I ~ ~ ~ s I ~ ~ ~ a I ~ ~ ~ ~

i.i i.S i.s i.4 i.5 i.e

FIG. 2. Numerical evaluation of the sum rule (30): (a)
dependence of the zero recoil form factor g(].) on the Borel
parameter for difFerent values of the continuum threshold; (h)
the function g(y) for 0.6 & T & 1.2 GeV and ]..7 & uo & 2.3
GeV.

SK 1.5+23%, (36)
i.e., at most a few percent. This is comparable to the ex-
pected size of I/m& corrections [31]. We conclude that
the theoretical uncertainty in the determination of ] V g[
from this decay mode is not worse than in B m D*Sv
transitions. Of course, the experimental measurement of
B m DE v near zero recoil is more difBcult. The reward
of such a measurement, however, would be an indepen-
dent determination of

~
V~b~ with surprisingly small theo-

retical uncertainties.

eters and, more generally, are not controlled by any small
parameter. (For a detailed discussion of the limits of ap-
plicability we refer the reader to Ref. [30].) The only way
in which one may estimate the related uncertainties is by
comparing QCD sum rule predictions to known quanti-
ties. Using such past experience and being conservative,
we quote our final result as

q(y) = 0.6 + 0.2, 1.0 & y & 1.6. (35)
This result has important implications for the extrac-

tion of
~
V,s~ from B ~ DIP decays. According to (9),

the 1/mq corrections to the decay rate are proportional
to [1.11—2.18 '(1)), and by a fortunate accident this com-
bination is strongly suppressed for iI(l) in the range (35).
For the symmetry-breaking corrections to the decay rate
in (8), we obtain (we use A = 0.5 GeV, m, = 1.45 GeV,
and ms ——4.8 GeV)
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TABLE I. Predictions for the form factor ratio Rq. The zero recoil limit w = 1 corresponds to
q = (ma —mo. ), whereas w „1.5 corresponds to q = 0.

R2(1)
+2 (tUmax)

Our results
0.80
0.84

ISGW [32]
0.91
1 ~ 14

BSW [28]
0.85
1.06

KS [33]
1.09
1.00

Sum rules [34]
0.95
1.05

Let us finally point out how our sum rule prediction
(35) can be tested experimentally, by a measurement of
the form factor ratio R2 in B ~ D E v transitions. Using
rl(y) = 0.6 in (11) we obtain

( 2

(v v'+ I) (37)

In Table I we compare this result to the predictions of
some popular quark models, as well as to a recent QCD
sum rule calculation of the weak decay form factors in the
full theory. These models give values for R2 which are
substantially larger than ours. In particular, we note that
at q = 0, corresponding to the maximal velocity trans-
fer, the models give R2 & 1, whereas we find R2 = 0.84.
This discrepancy should not be too surprising. Since we
have worked very hard to understand the origin of the
symmetry-breaking corrections, we can hope that our re-
fined sum rule analysis accounts for such effects in a much
more detailed way than the naive quark models can.

We end this paper with an interesting speculation.
Although there is no reason to believe that it makes
any sense to apply the heavy quark expansion to the
D ~ K*8v decay amplitude, we might still believe in a
"continuity of signs" and guess that the tendency R2 & 1

should persist, and most likely even become more pro-
nounced, when we imagine changing the heavy quark
masses from mb and m, to m, and m, . This tendency
is in fact very consistent with the experimental value of
the form factor ratio obtained from an analysis of the
joint angular distribution in D m K*Hv decays. Tak-
ing the weighted average of the results reported by the

experiments E691 [35], E653 [36], and E687 [37], we get
(q = 0) = 0.73 + 0.15. Although we have no right

to extrapolate (11) down to the strange quark mass, we
take this observation as a confirmation of our prediction
that symmetry-breaking corrections suppress R2.

In conclusion, we have presented the complete next-to-
leading order QCD sum rule analysis of the subleading
Isgur-Wise functions (s(v v', p) and rl(v v'), including in
particular the two-loop perturbative corrections. We find
that effects of order o., are very important and enhance
the form factors. Over the kinematic region accessible in
semileptonic decays, the renormalization-group-invariant
ratio rl(v v') turns out to be essentially constant and
equals 0.6 6 0.2. This leads to an almost complete can-
cellation of the leading symmetry-breaking corrections to
the B —+ Dfv decay rate at zero recoil, allowing for a
reliable determination of

[ V,b[ from this decay mode.
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'The authors of Ref. [38] apply HQET to D m It i* f P de-
cays and obtain q(l) = 0.3 6 0.4 (for A = 0.4 GeV) from an
overall Bt to the data.
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