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We define a number of quark fragmentation functions for spin-0, - z, and -1 hadrons, and classify them

according to their twist, spin, and chirality. As an example of their applications, we use them to analyze

semi-inclusive deep-inelastic scattering on a transversely polarized nucleon.
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I. INTRODUCTION

In high-energy processes, the structure of hadrons is
described by parton distributions, or in a broader sense,
parton correlations. In previous work [1—5], we have in-

troduced and exploited a number of low-twist parton dis-
tributions, with some producing novel spin-dependent
and chiral-flip effects in hard scattering processes. These
processes in turn allow us to gain access to these distribu-
tions experimentally and thereby help us to learn the
nonperturbative QCD physics of hadrons. Among the
distributions that we have discussed, the quark transver-
sity distribution in the nucleon, which is defined by the
following light-cone correlation [1,6],

h, (x)=—f e' (PSt~f(0}Iiy5Stg(An )~PS~ },
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is particularly interesting: it is one of the three distribu-
tions which characterize the state of quarks in the nu-

cleon in the leading-order high-energy processes; its un-

weighted sum rule measures the tensor charge of the nu-

cleon, which is identical to the axial charge in nonrela-
tivistic quark models; it is a chiral-odd distribution (con-
taining mixed left- and right-handed quark fields} so it
does not appear in many well-known inclusive hard pro-
cesses such as deep-inelastic scattering. Because of this
last feature, we find it cannot be easily measured experi-
mentally.

To see what criteria an underlying physical process has
to meet in order to measure the transversity distribution,
we consider the so-called "cut diagrams" for the cross
section of the process, which are obtained by gluing to-
gether the Feynman diagrams for the amplitude and its
complex conjugate. In a cut diagram, a quark flowing
out of a hadron will come back to it after a series of
scatterings. For h, (x) to appear, the chirality of the
quark must be flipped when it returns. This occurs if the
quark goes through some soft processes during scatter-
ing, as shown in Fig. 1(a). The only exception, a hard
process which flips chirality, is a mass insertion, shown in

Fig. 1(b). For the light (u or d} quarks, the mass insertion
is suppressed by m /AQCD and is ignorable. (Mass inser-
tions might be significant for heavy quarks but they are
not the subject of this paper. ) Chirality can be fiipped in

a parton distribution as in the Drell-Yan process shown

in Fig. 1(c), where the quark line goes through the interi-
or of another hadron, or in a quark fragmentation pro-
cess in hadron production shown in Fig. 1(d), where the
quark line goes through a fragmentation vertex. To mea-
sure the transversity distribution utilizing the second
mechanism, we must clarify the structure of fragmenta-
tion vertices.

The semi-inclusive hadron production from a quark
fragmentation is described by fragmentation functions.
As is shown in Ref. [7], parton fragmentation functions
in QCD are defined as matrix elements of quark and
gluon field operators at light-cone separations. Thus,
their twist, spin, and chirality structures shall be as rich
as parton distribution functions. In particular, there
shall be a corresponding fragmentation function for each
parton distribution function defined in Ref. [2]. As we
shall show below, there also exist additional fragmenta-
tion functions due to hadron final-state interactions.
Despite their similarity, fragmentation functions are
more difficult to calculate than distribution functions.
However, our purpose here is to define them and to study
the circumstances under which they contribute to scatter-
ing processes.

This paper is organized as follows. In Sec. II, we intro-
duce complete twist-two and -three and a part of twist-

R
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FIG. 1. Processes in which a quark changes its chirality: (a)
a generic soft QCD process, (b) mass insertion, (c) the Drell-Yan
scattering, and (d) the quark fragmentation.
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four quark fragmentation functions for production of
spin-0, -—,', and -1 hadrons. In Sec. III, we study measure-

ment of the nucleon s transversity distribution in deep-
inelastic scattering using the chiral-odd quark fragmenta-
tion functions defined in Sec. II. We specifically consider
three hadron-production processes: single-pion produc-
tion, spin- —,

' baryon production, and vector-meson and

two-pion production. The first process uses polarized
beam and target, and the double spin asymmetry vanishes
in the high-energy limit. The second process uses unpo-
larized lepton beam, but requires measurement of the
spin-polarization of the produced baryons. The third
process is a single-spin process, which utilizes a fragmen-
tation function arising from hadron Snal-state interac-
tions. We conclude the paper in Sec. IV.

II. QUARK FRAGMENTATION FUNCTIONS

Quark fragmentation functions were introduced by
Feynman to describe hadron production from the under-

lying hard parton processes [8]. In QCD, it is possible to
obtain analytical formulas for these functions in terms of
the matrix elements of the quark and gluon fields as for
quark distributions in a hadron [7]. In addition to the
well-known spin-independent, chiral-even fragmentation
function D(z) (we shall call it f, (z)] widely discussed in

literature, one can introduce various chiral-odd and
spin-dependent fragmentation functions, which are cap-
able of producing novel effects in lepton-hadron and
hadron-hadron scattering [9]. In this section, we define
fragmentation functions involving quark bilinears for
production of spin-0, -—,', and -1 hadrons. The discussion

here can be easily generalized to gluons and more compli-
cated fragmentation processes.

A. Fragmentation functions for spin-0 meson

Let us consider pion production, or equivalently, pro-
duction of any hadron whose spin is not observed. In this
case, generalizing the procedure in Refs. [2] and [7], we
can define three fragmentation functions with quark fields
alone,

z — e ' '0 0 mPX mPX n 0
—ii.zz

=4Me, (z ), (3)

i P (An) = ,', iii gi(A—n—)P+(An), (4)

where P is the four-momentum of the pion and p and n
are two lightlike vectors such that p =n =0,
p =n+=0, p n.=l, and P=p+nm /2 A. ll Dirac in-
dices on quark fields are implicitly contracted. (Our no-
tation for fragmentation functions is analogous to the no-
tation for distribution functions developed in Refs [2. ]
and [5); the caret denotes fragmentation. ) The mass M is
a generic QCD mass scale, and we avoid use of the pro-
duced hadron mass because of the singular behavior in-
troduced in the chiral limit [the left-hand side of (3) does
not vanish as m -+0]. The summation over X is imphcit
and covers all possible states which can be populated by
the quark fragmentation. The state ~n.(P)X & is an incom-
ing scattering state between m and X. The renormaliza-
tion point (p, ) dependence is suppressed in (2) and (3).
QCD radiative corrections induce in@ dependence in the
fragmentation functions, which is compensated by the
lng /p dependence of their coefficients in expressions
for observed cross sections. The resulting lng depen-
dence, or the Altarelli-Parisi evolution [10], is an impor-
tant aspect of fragmentation processes which we put
aside while we classify their spin and chirality properties.
Here we work in n A =0 gauge; otherwise gauge links
have to be added to ensure the color gauge invariance.
From a simple dimensional analysis, we see that f, (z),
ei(z), and f4(z) are twist-two, -three, and -four, respec-
tively; and from their y-matrix structure, f, (z) and f4(z)
are chiral even and e, (z) is chiral odd. Hermiticity
guarantees these fragmentation functions are real.

The chiral-odd fragmentation function ei(z) involves
both "good" and "bad" components of quark fields on
the light cone (fP=f+P +iT g+, where f+=P+P
with P+ =

—,'y y ). Using the QCD equation of motion

(neglecting the masses for light quarks),

z e ' i' Oy" 0 mPX mPX n 0—i i,/z

2K

=4[fi(z)p"+f4(z)M n"], (2)
where Di =D D.np +D pn —and iD (An)=iB
—g A (An ). We rewrite e, (z) in (3) as

e, (z)= — f e ' '[(0[li8i(0)@+(0))n(P)X& & m(P)X(@+(An ) [0&

+&Ol@,(O)l~(P)X&&~(P)XI|( (An)yfig (An)lo&], (5)

where iD (An )=i8 +g A (An ). Thus the twist-three fragmentation explicitly involves three parton fields: two quark
and one gluon. The appearance of Eq. (5) motivates us to introduce a fragmentation density matrix,

(z,z, )=f e ' 'e ' (0(iDi(pn)@ (0)~n(P)X&(n(P)X~/ (An))0&

+ — e' 'e ' 0 An mPX mPX Oia& pn 0

where a is restricted to transverse dimensions. It has the following expansion in the Dirac spin space,
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(z,z, )
1Q' (z,z, )=My gf +

where E(z, z&) is a real, chiral-odd fragmentation function involving two light-cone fractions and the ellipsis denotes
higher-twist contributions. The function E(z,z, ) can be isolated from 4 through a projection:
E (z,z, ) =z/(8M)Trdy jA' (z,z, ). From Eqs. (5)—(7), it is easy to prove,

e, (z) = —z fE(z,z, )d
Z]

Therefore, e&(z) is just a special moment of P(z, z&). As a consequence, a measurement of e&(z ) at one momentum scale
is not sufficient to determine its value at other scales, because an Altarelli-Parisi type of evolution equation exists only
for E(z,z&), not for a subset of its moments [11]. This property of e, (z) contrasts that of twist-two fragmentation func-
tions, such as f, (z).

B. Fragmentation functions arising from hadron final-state interactions

The quark fragmentations introduced above have a one-to-one correspondence with the quark distributions intro-
duced for a spin-0 meson. In practice, one can define one additional fragmentation function for the pion,

z f e ' ~'(O~cr"'iy~g(0)~~(P)X&(m(P)X~/(An) 0&=4Me"" ~p n&e , (z) . -—iA. /z (9)

If there were no final-state interactions between m and X, the state n(P)X & transforms as a free state under time-
reversal symmetry and e-, (z) vanishes identically. Thus the magnitude of e-, (z) depends crucially on the effects of had-

ron final-state interactions.
To illustrate that such fragmentation functions do exist, we consider production of an electron-positron pair from a

virtual photon of mass 4m, & q & 16m, in axial-vector quantum electrodynamics. The production cross section is pro-
portional to the vacuum tensor,

W"'= xe'" OJ~& x e+ Pe e+ Pe J5 0 01

2K

And this, according to Lorentz invariance, has the following decomposition in terms of Lorentz scalars,

(10)

)M V

W"'= —g""+ W, + +i (P"q' P "q") W—
q

If neglecting the final-state interactions between the electron and positron, one can prove immediately W6=0 due to
time-reversal invariance.

However, if taking into account one-photon exchange, one finds,

W6=C+1 —4m, /q 8(q —4m, ), (12}

where C is an unimportant numerical constant. The 0 function indicates the final-state interaction vanishes if q & 4m„
in particular, if q & 0, W" is proportional to the photon-electron scattering cross section, to which we known W6 does

not contribute.
The fragmentation function e-, (z} is chiral-odd and twist-three. It is intimately related to e, (z) introduced in Sec.

II A. It is simple to show that it contributes to W6 type of terms in semi-inclusive production of hadrons in e e an-

nihilation.

C. Fragmentation functions for spin- —' baryon

Now we turn to consider the quark fragmentation for a spin- —, baryon. Eight more fragmentation functions can be

introduced through bilinear quark fields besides these in Eqs. (2), (3), and (9). They all depend on the polarization of the

baryon: four of them are related to the longitudinal polarization and the other four to the transverse polarization,

z f e ' '(O~y"y&g(0) ~B(PS)X & (B(PS)X~&(An ) ~0& =4[g, (z }p"(S~~ n)+MgT(z)S. ~ +M g3(z)(S~~ n )n"],

z f e '" '(O~o""iy5$(0)~B(PS)X&(B(PS)X~/(An)~0&=4[h, (z)(S~" S~")+f (z)LM(p "—n" p "n")(S) n)—
+f (z)M3(S~n" S~n")+ .]—

(13)

(14}
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z e ' ' Oy" 0 B PSX B PSX n 0 =4gTZMT~~+. .—iA, /z

z f e ' '(Olysg(0)lB(PS)X ) (B(PS)Xlg(ln )l0) =4M'~(z)(S~~ n ),—u/z (16)

where ellipses denote terms which already appeared in (2), (3), and (9), B (PS) represents the spin- —, baryon with the
four-momentum P and polarization S (we write S"=S np"+S pn "+MsS~i with the baryon mass Ms), and
Tl*=e" ~Si„p n& is a transverse vector orthogonal to S~i. Again, through dimensional analysis, g, (z) and fi(z) are
twist-two; gr(z), hL (z), gT(z), and h~(z) are twist-three; and g3(z) and h3(z) are twist-four. The fragmentation func-

tions gT(z) and f~(z) vanish identically if without final-state interactions.
As was the case for e, (z), at the level of twist-three, gr(z) and fz (z) are not the most general fragmentation func-

tions. Using (4},we derive,

Z2
gr(z }= — f e ' '& OliDi(0} Siiiy51t+(0) IB(PS&)X& (B(PS& )XI''+(~n ) IO &

+ f e ' '(OlDi(0) Ting+(0)lB(PSi)X)(B(PSi)Xlg+(An )l0)+c c.
RL (z)= — f e '" '(Oligi(0)/y5@+(0)lB(PS[~ )X)(B(PS[~ )Xl/+(An )l0) +c.c. ,2'

(17)

(18)

where c.c. stands for complex conjugate. The generalization of Eqs. (17) and (18}to two-light-cone-fraction distribu-
tions can be made by defining 4 (z,zi) for the baryon just as for the pion in Eq. (6). In addition, we need to define a
new fragmentation density matrix,

8;.( ,zz)= f —""e "'e '"-"" "'&OliDi(pn)1( (0)lB(PS)X)(B(PS}Xlg(An)l0&
2~ 2~'

+ f "e""e'"""' "'&Oly, (zri)lB(PS)X&&B(PS)Xl1i.(O)iD;(iin)lO&, (19)

+iMTiIiC, (z,z, }/z+

8 (z,zi ) =MSi y+C2(z, zi )/z

+My Py58(z, zi )/z+

(20)

The fragmentation functions can be projected from the
density matrices: Gi =iz/(4M)TrpfysTi M,
62= z/(4M—)Trgy5Si N, and
H = —z/(8M )Try' WysN . It is easy to prove that

gz(z)= ——fd [Ci(z,z, )+02(z,z, )],Z 1

Z]
(21)

f (z)= —z f d u(z, z, ) .1

Z]
(22)

These relations are useful for proving electromagnetic
gauge invariance of scattering amplitudes, as an example
shows in Sec. III.

D. Fragmentation functions for spin-1 meson

Finally, we consider quark fragmentation functions for
vector-meson production. To facilitate counting, let us
define the quark-meson forward scattering amplitudes,
Al ~ I, .H., where h ( h ') .and H(H') are quark and

which is the same as 19 except for the minus sign for the
first term. Making an expansion in spin space, we have

4 (z,zi)=My PP(z, zi )lz

meson helicities, respectively. The combination
1 ). 1 ) 1 ). ] ) 1 o. 1 o p
2 P2 2 z2 2 P2

polarization, from which we define four fragmentation
functions f„ei and e-„and f4, depending on what com-

ponents of quark fields form the amplitude: good-good
(++), good-bad (+ —), or bad-bad (——). Of course,
they are what we have just defined in (2), (3), and (9).
Similarly, the combination A» + A

&

—2A
&

2 .'2 2 '2 2 '2
depends on the longitudinal-longitudinal (LL) type of ten-
sor polarization of the meson (see below for definition)
and the corresponding four fragmentation functions are
b

~
52 and b 2, and b„ the combination

A &, &,
—A &, &, depends on the transverse-transverse

2 72 2 72

(TT) type of vector polarization and the associated frag-
mentation functions are gi, kz and fz, and g3,' the com-

bination A I &

—3 1 I is related to the LT type of
~0, ~1 ~1, ~0

vector polarization and the associated fragmentation
functions are defined as f„g2 and kgb, and f3, and final-'
ly, the combination A l l + 3 1 1 is related to the

2 ' 2 2 '2
LT type of tensor polarization and the associate fragmen-
tation functions are defined as fT, gz, b,g2, and A3. The

spin and twist structures of these twenty fragmentation
functions are shown in Table I, and the ones with bar on
their subscripts arising from hadron final-state interac-
tions.

Now we relate these fragmentation functions to the
matrix elements of the bilinear quark operators. Since
the meson polarization vector e" appears in bilinear form
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TABLE I. Quark fragmentation functions for vector mesons. Note that the functions with bars van-

ish if there are no final-state interactions.

A1, +A, , +A,—1~—1
2 2 2 2

——l~ ——1 —0~—0
2 2

A1 1 +A1, —2A,—1~—1
2 2 2 2

——1~——1 —0~—0
2 2

—1 —+ —1
2 2 2 2

——1~——1

A1 1
—A—0—+ ——1

2 2
——l~ —0

2 2

A1 1 +A—0~ ——1
2 2

——1~—0
2 2

Twist-2
++

b}

e,

bl

Twist-3
+ —(5)+ —

( A)

e-,

b-,

Twist-4

b3

Meson
polarization

~LL

in all the matrix elements, we introduce a rank-two ten-
sor T""=e"e'". Its trace T"„=S, antisyrnrnetric part
T~""~=e"e' —e"e'", and traceless-symmetric part
T("')=e"6 +E E (6'E )g""/2 represent the scalar,
vector, and tensor polarization of the meson. Together
with p„and n„, they can be used to build various Lorentz
structures to expand the quark matrix elements. The
coefficients of the expansion, depending on the polariza-
tion and dimension of the associated structures, can be
uniquely identified with the fragmentation functions in
Table I.

To illustrate this, take the scalar polarization S, from
which one can form one scalar S, two vectors Sp" and
Snl", and one tensor e"' ~p nf3S, and the coefficients of

these structures shall be e„f, and f4, and e-, , respective-

ly. For the case of tensor polarization, consider the pro-
jection of T I I' I in longitudinal directions,

T( @p n~(=T)(n"p'+n'p"), which characterizes the
LL type of tensor polarization. With this one can con-
struct one scalar T, two vectors Tp" and Tn', and one
tensor e"' ~p ni3T and their coefficients are b2, b& and
b 3 and b 2, respectively. Proceeding in this way, define

A =i e ~ e e&p n& to characterize the TT type of vector
polarization, S~ =is" ~~p npT~ &jn the LT type of vec-
tor polarization, and TI~ =eI' ~~p n&TI 5I n the LT type
of tensor polarization, and construct all possible struc-
tures with them. The complete expansion of quark ma-
trix elements reads

z f e ' '(O~y"g(0)
~
V(Pe)X ) ( V(PE)X~/(An ) ~0) =4[f, (z)Sp"+f~(z)M Sn "+hgz(z)Mi T ii'")n„

+hg2(z)MTI"'~jn, +b, (z)Tp" +b4(z)M Tn "], (23)

(24)

(25)

z e ' ' 0 0 V Pe X V Pe X An 0 =4M Se& z + Tb2 z

z e ' ' Oiy5 0 V PeX V PeX A,n 0 =4MAh2z—azz

z e ' ' Oy"y5 0 VPeX VPeX An 0 =4g, z Ap"+Mgzz S~+Mgz z T~+M g3z An"

z f e ' '(0~0"'iy5$(0)~ V(PE)X i( V(PE)x~y(An)~0) =4[h, (z)(S~Jp' SJ'p")—d A, ;ggz

2m

(26)

+ f-, (z)( T~" T~")+ h~(z)M—A (p "n ' p'n ")—
+h3(z)M (S~n' S~n")+—h&(z)M (T~tn" —Ttn")

+e&(z)Me"" ~p n&S+bz(z)Me" ~p n&T] . (27}

Thus, all the twenty fragmentation functions in Table I
are expressed in terms of hght-cone correlations.

III. MEASURING THE TRANSVERSITY DISTRIBUTION
FROM DEEP-INELASTIC SCATTERING

As an example of applying the fragmentation functions
defined in the preceding section, we consider measuring

I

the nucleon's transversity distribution h
&
(x ) through

deep-inelastic scattering. Because h &(x ) is chiral odd, it
does not appear in inclusive deep-inelastic cross section if
the current quark masses are neglected. However, h, (x )

does appear in semi-inclusive hadron production if one
takes into account the e6'ects of the chiral-odd fragmen-
tation of the struck quark. For pseudoscalar meson pro-
duction, the leading chir al-odd quark fragmentation
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function is e, (z); for spin —,' baryone production, it is

fi(z); and for vector-meson production, it is f, (z-} or its

generalization to a fragmentation function for two pions.
In the following, we discuss these cases separately.

A. Single-pion production

We consider deep-inelastic scattering with longitudinal
polarized lepton on transversely polarized nucleon target,
focusing on pion production in the current fragmentation
region. Since there is no chiral-odd twist-two fragmenta-
tion function for the pion to couple with the h i (x ) distri-
bution in the nucleon, nor is there a chiral-euen twist-two
transverse-spin-dependent distribution in the nucleon to
couple with the fragmentation function fi (z) for the
pion, the spin-dependent cross section vanishes at the
leading order in Q. At the twist-three level (the order of
1/Q), h, (x ) contributes through coupling with the
chiral-odd fragmentation function e, (z), and so does the

I

8'„„= f e'v id $&P'S~Jq(()J„(0))PS&, (28)

we obtain from this diagram,

chiral-even transverse-spin distribution gr(x ) through
the fragmentation function fi(z }. Both contributions ex-
ist in Fig. 2(a}. At the same order, we have to consider
also Figs. 2(b) and 2(c), in which one radiative gluon
takes part in quark fragmentation, and Figs 2.(d) and 2(e),
in which one gluon from the nucleon participates in hard
scattering. These processes, representing coherent parton
scattering, introduce dependences on the two-light-cone-
fraction parton distributions, G, 2(x,x, ), which are the
parents of gT(x) [2], and fragmentation function, P(z,z, ),
which is the parent of e, (z). However, as we shall show
below, they can be eliminated by using QCD equations of
motion, and the final result contains only e, (z) and
gT(x ).

Let us 6rst consider the contribution from the diagram
in Fig. 2(a). Using the definition of the nucleon tensor,

2m P —m Tr M~ P Sj, „k+qP y,
1 d'k d P

4& (2m ) (2m )

where m is the pion mass,

M~(P, S~,k},=f d4ge'~ "&Ps,~yp(0)y (g)liPSg &

is the quark's spin-density matrix for the nucleon and

(29)

(30)

Q.(k,p. ).,=y fd4g e 'i'&0-(y. (0)~~(P. )X & &~(P.)XIg&(g)I0&
X

(31)

is the quark fragmentation density matrix for the pion. Here q is the four-momentum of the virtual photon, and P and
S~ are the nucleon's four-momentutn and polarization vectors, respectively. We choose our coordinate system such
that P =p+nM~/2, S~ =(0, 1,0,0), and q = —xsp+vn, where p and n are two lightlike vectors defined in the preced-
ing section, Miv is the mass of the nucleon, and xs is the Bjorken scaling variable xs =Q /(2v).

To perform the k integration in Eq. (29), we make a collinear expansion of quark momentum k along p in the frag-
mentation density matrix,

BQ„(k np+q, P )0 (k+q, P }=0 (k np+q, P .}+(k—k np) + (32)

We temporarily ignore the derivative term, whose contrition will be combined with those from Figs. 2(d) and 2(e) to

(b)

FIG. 2. The twist-two and twist-three cut
diagrams for single-pion production in deep-
inelastic scattering.
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form a gauge-invariant result. The contribution to the k integration from the leading term in Eq. (32) is

d4P
W' = f 2m5(P —m„)f dx Tr[M&(xp, S~) y„M„(xp +q, P„)y,,],4~ (2~}

(33)

where the simplified quark spin-density matrix is

M~(xp, S~) p= f e' (PSq~fp(0)g (An)~PS~},
2m'

(34)

xp' =0, xp'+=xp+, xp"= P' /z —.
(35)

the structure of which has been studied thoroughly in
Ref. [1].

To integrate out the transverse components of P„ in
Eq. (33), we make a coordinate transformation to a new
system in which P„and q have only longitudinal com-
ponents. If we label momenta in the new system with a
prime, then, to the order of our interest,

P'„=P, P'+ =0, P"=0,
q' =P /z, q'+ =q+, q"=0,

In the new system, p' has nonvanishing transverse com-
ponents and as a consequence, the spin and fragmenta-
tion density matrices in Eq. (33) are now linked through
transverse-momentum integrations. To decouple them,
we Taylor expand the spin-density matrix,

P'„aM (xp, S, )
M~(xp', Si ) =M~(xp, Si )—,+

Bxp

(36)

Here we have ignored the transverse components of n',
whose effects are beyond twist-three. The contribution
from the derivative term in Eq. (36} will be combined
with those from Figs. 2(b) and 2(c) to form a color
gauge-invariant expression, as is shown in Eq. (43). And
the leading term contribution is

f dz f dx 2m 5(( xp +q) )Tr[M&(xp, S~)y„Q„(z,p /z)y„],
1

(37)

where the simplified fragmentation density matrix is

M (z,p /z) p= g f e ' '(0~$ (0) n(p )X)(m(p )X~fp(kn )~0) .
277

(38)

Here we have neglected the pion mass and used two additional lightlike vectors p and n with p =zvn and p n = 1.
Since spin asymmetry is our main interest, we take the transverse-spin-dependent part of the spin-density matrix

from Ref. [5],

M~(x, p, S~ ) = —,'h 1 (x )yegg+ —,'gr(x )Mysgq+

From Eqs. (2) and (3), we have the fragmentation density,

e/(z) I](z)
M (z)=M +P

z z

Substituting Eqs. (39) and (40) into Eq. (37) and simplifying the latter, we have

W'„, = pe, h&(xs}f dzie" ~p S~&+ pe, gf(xs) f . dzie" S~~ p
a a

(39)

(40)

(41)

where the summation runs over different quark flavors and their charge conjugation, and e, is the electric charge of
quarks. As it stands, Eq. (41) does not satisfy electromagnetic gauge invariance, i.e., W„,q WO.

We turn to consider the contribution from Fig. 2(b), which involves an additional transversely polarized gluon. After
the collinear expansion and coordinate transformation discussed above, we find

Wb„= f dx dzdb 1 1 i[xi/ —(1/z —1/z, )gf ]
2m5((q+xp ) }Tr M~( p, Sx~ }iy y„M, (z,z, )y„

[xp —(1/z —1/z, )p ]
(42)

where the fragmentation density matrix is

M, (z,z, } = f e ' 'e " ' (O~iD~(pn)@ (0)~n(P )X)(~(P )X~/ (An)IO} .2' 277
(43)

The partial derivative in D~ comes from the collinear expansion for Fig. 2(a) as explained after Eq. (36). Because the
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state ~n(P. )X) is an incoming scattering state which changes to an outgoing scattering state after time reversal,
1Q', (z,z, ) does not have a simple Hermitian conjugation property. As a consequence, if we make an expansion,
4& =My PP& (z,z& )+,E&(z,z&) is not a real quantity. However, its imaginary part, which we are going to ignore,
contributes only to single-spin asymmetry. Its real part is just E(z,z, )/2, which was defined in the last section. Insert-
ing the expansion into Eq. (42) and using Eq. (8) to eliminate P(z,z, ), we find

W„= pe, h;(x) f dz e'(z)
2v Xgz

1
p p6 Sy~pp (44)

which is just one of the terms required to make 8'„„gauge invariant.
The contribution of Fig. 2(e) can be calculated in the same way and the result is the complex conjugate of Eq. (41)

with )M, , v indices interchanged. Combining the h&(x) term in Eq. (41), and Eq. (44) and its conjugate, we have the
chiral-odd part of the spin-dependent nucleon tensor,

M e;(z }~a+b+c y e2ha(x
2v a

ie"" ~p S + ip"e" ~rS ~ p — ip"d'~rS ~ p
1 1 1 1

a LP m l P ~ m l P my

M h;(xs) e)(z}id'"—~q S& ge, '
fdz

2V Xg
(45)

which is explicitly gauge invariant.
Now we consider the contributions from Figs. 2(d) and 2(e). The calculations here parallel those for Figs. 2(b} and

2(c), and the final result for the chiral-even part of the nucleon tensor, including the contribution from Fig. 2(a), is

8'(„+„)+'= g e,gz(xs } dz id'" ~S,~ p+ ip "e" ~rS~~pp~ — ip "e" ~ S~~pp
a

i el" iq—S,p g e2gr(xs )f dzf;(z ) .
a

(46)

Adding Eqs. (45} and (46) to the longitudinal-polarization contribution, which is considerably easy to calculate, we
have the complete spin-dependent nucleon tensor,

W""= ie"" i —[(S n)ppC. , (x,z }+S~Cr(x,z)] .
V

The two structure functions are defined as

(47}

6&(x z)= ge g&(x)f&(z) Cr(x z)= —ge, gr(x)f&(z)+
0 a

(48}

To isolate the spin-dependent cross section we take the difference of cross sections with left-handed and right-handed
leptons,

2 Qd b,a em E bl„,lY
dE'dQ Q4 EMN

(49)

where Q = —q, k =(E,k) and k'=(E', k') are the incident and outgoing momenta of the lepton, and b./"" is the spin-
dependent part of the lepton tensor, 61""=—Tr[y"it,"y"ysk'] = 4i6'" ~—

q~k& It is con. venient to express the cross sec-
tion in terms of scaling variables in a frame where the lepton beam defines the z axis and the x-z plane contains the nu-
cleon polarization vector, which has a polar angle a. In this system, the scattered lepton has polar angles (8,$) and
therefore the momentum transfer q has polar angles (e, m

—P). Defining a conventional dimensionless variable

y = 1 E'/E, we ean w—rite the cross section as

d4ao.
dx dy dz d P

2
8aem ycosa 1 ——G

&
(x,z )+cosP sinav'(a —1 }(1—y } Cr(x, z ) —0, (x,z } 1 —— (50)

where ~=1+4x M /Q in the second term signals the suppression by a factor of 1/Q associated with the structure
function Cz.. The existence of C& in the same term is due to a small longitudinal polarization of the nucleon when its
spin is perpendicular to the lepton beam.

Equation (50) is one of our main results. As a check, we multiply by z, integrate over it, and sum over all hadron
species. Using the well-known momentum sum rule,
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hadrons
f dz zf";(z)=1, (51)

and the sum rule,

hadrons
fdze;(z)=0,

which is related to the fact that the chiral condensate vanishes in the perturbative @CD vacuum, we get
2

d 60. 4aem y
dx dy dP g2

cosa 1 ——g~(x)+cosP sina&(a —1)(1—
y ) gT(x )

—g, (x) 1 ——
2 T 1 (53)

where g&(x ) = —,'g, e,g &
(x) and GT(x )=g, (x )+g2(x ) = —,'g, e, [g;(x )+g2(x )] are the two conventional spin structure

functions. The above result coincides with the same quantity in Ref. [12] if one neglects the terms of order 1/Q in the
latter. The parallelism between the inclusive and semi-inclusive cross sections suggests that both quantities can be ex-
tracted from the same set of experiments.

In using Eq. (50} to analyze experimental data, a lower cut on z must be made to ensure the detected particles emerg-
ing from the current fragmentation region. To enhance statistics one can integrate z over a region. By varying P, we
can separate out the following combinations of structure functions,

f G&dz= —ge, g;(x)N',=1
a

(54)
h i(x)fGTdz= —g e, gz.(x)N'+ E'„

where N' = fdzf;(z ) is the pion multiplicity of the quark jet with flavor a and E' = J dze'(z ) Iz.

B. Spin-2 baryon production

In this subsection we study deep-inelastic scattering of unpolarized lepton beam on transversely polarized nucleon
target, focusing on spin- —, baryon production from quark fragmentation. The spin efects in the scattering can be unrav-
eled through measuring the polarization of the produced baryon. This can be done for an unstable hyperon by measur-
ing angular distribution of its decay product. The process was first studied in Ref. [13]. Here we include a formula for
the spin-dependent cross section in the lab frame.

The process can be described as in Fig. 2(a), except the produced pion is replaced here by a spin- —, baryon. From Eq.
(14), we find the spin-dependent piece of the fragmentation density matrix,

i(z)
Qs(z)= y5Sspe+

z
(5S)

where pz =zvn and Sz are the momentum and polarization of the baryon, respectively. Thus the spin-dependent nu-
cleon tensor is

f i(z)W""=— pe, h;(x) [(S~Ss~+S~SL)p ps+(p"ps+p"ps —g" p ps)S~ Ss~] .
2v z

(S6)

Contracting it with the unpolarized lepton tensor, I„,=—,'Tr[y„ky, k'], we have

4
I "W„=——pe, h;(x)k;(z)[S~ kSs~ kp ps+k pk psS~ Ss~] .

a

(57)

Using the lab coordinate system defined in Sec. III A to
simplify (57), we find

1— 1I""8'„=—4Q cos(P+P') —g e, h;(x )f;(z ),
Q

(58)

2

dxdydzdP Q~ y 2

Xg e,h;(x )f;(z } . (59)

where P' is the azimuthal angle between k' and Ss. This
produces the following spin-dependent cross section,

This expression reaches maximum if S and S~ are the
mirror images of each other with respect to the scattering
plane.
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C. Uector-meson and two-pion production

Here we consider the same setup for deep-inelastic
scattering as in Sec. III B, but focusing on vector meson,
e.g., p, and two-pion production. Our analysis shows
that one can define a single-spin asymmetry sensitive to
the nucleon's transversity distribution at the leading or-
der in Q; however, its magnitude depends also on the un-

known final-state interactions between the detected
particle(s) and spectators. Similar ideas have also been
proposed in Refs. [14] and [15].

Let us first look at vector-meson production. Accord-
ing to our previous discussion on quark fragmentation for
a vector meson, there are two twist-two chiral-odd frag-
mentation functions f, (z) and fT(z}. The former de-

scribes the probability of producing vector mesons in vec-
tor polarization and the latter in tensor polarization. If

I

one can measure the vector polarization, f, (z) is an ideal
choice for coupling with the transversity distribution.
However, for the interesting case of p meson production,
the only way to measure polarization is through its two-
pion decay, which registers only tensor polarization.
Thus, it appears that h T(z ) is the only choice for coupling
with the transversity distribution. However, the size of
this fragmentation function depends on unknown final-
state interactions.

If one is to measure asymmetry associated with in-
clusive production of two pions, there are other underly-
ing processes which contribute besides the p decay, for
instance, the interference production of two pions in their
relative s and p waves. The contribution depends on the
difference of the phase shifts. To include all the contribu-
tions, we directly introduce quark fragmentation func-
tions for two-pion production,

4

4(k, P...l ) =f,e-"'(Oig(0) l~(l
&

)~(l&)X & & ~(l, )~(l, )XIII(g) lo&,
(2m )

(60)

where l, and lz are momenta of two observed pions and Pz =l, +lz and l=(l, —lz)/2 are the total and relative mo-

menta, respectively.
The contribution of two-pion fragmentation to the nucleon tensor is

W„„= f 2m5(l P2 /2)2m5(4l +P2 )dx Tr[M~(xp, S~)y„k(xp+q, P2, I )y„],1 dPz~ dl
4~ (2m ) (2m }

(61)

where we have neglected the pion mass and made collinear expansion for the initial quark momentum. To proceed fur-
ther, we make a restriction on the 1 integrations such that il i (M, where M is a soft scale on the order of AqcD. Mak-

ing a collinear expansion for I'2 and neglecting higher-twist contributions, we have

1 x 2m xp+q 2~ .pz 2 x Tr M& xp, S~ y„pz z, y„4~ (2n )

where p2 =zvn and the fragmentation density simplifies to

(62)

Q(p2 /z, l)= f e ' '(Oig(0)i2n(pz, l)X)(2n(p2, l)Xi/(knz )i0),2'
with n2 =p /(zv). For our purpose, we make the following expansion for the density,

(63)

Q(p2 /z, l)= P, (z, l ) P, (z, l )
rs&z.d2. + P2 + ' ' '

z
(64)

where Sz„~=e r p2 &n2~ls/ili and S2 ~ p2 =0. The fragmentation function 8, (z, 1}is real according to Hermiticity
and nonvanishing because of the final-state interactions between m's and X.

Substituting Eq. (64) into Eq. (62), we have

d4l 8)(z l)
,' Ze.'&i(x)f ' '.2~5(l pz. /2)

' ' [(Sl»":+SrSl..)p pz. +(p"p~;+.p"pz. g" p p~. )S..—»:]2v (2m) z

(65)

For this, we can calculate the spin-dependent part of the cross section,

dho
dx dy dz dP

em 1 p 1 2 z d l—g e,h;(x )f 2ir5(l pz /2)Pf(z, l )sin(/+Pl ),
Q' y 2 . (2~)'

(66)

where P& is the azimuthal angle between k' and 1.
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IV. CONCLUSION

In this paper, we define a number of low-twist quark
fragmentation functions by analyzing the matrix elements
of quark bilinears in light-cone separations and expand-
ing them in terms of various Lorentz structures. Some of
these fragmentation functions are chiral odd and polar-
ization dependent, which are not only interesting phe-
nomenologically, but also useful for describing nonper-
turbative fragmentation processes.

In the examples of using the fragmentation functions,
we study measurement of the nucleon's transversity dis-
tribution in deep-inelastic scattering, where chirality con-
servation selects those with odd chirality. Fragmentation

functions and parton distributions are frequently coupled
in cross sections; thus one can study both in experiments
by varying x and z simultaneously. The facilities at
CERN, the DESY ep collider HERA, and SLAC are par-
ticularly useful for learning these nonperturbative hadron
observables.
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