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Supersymmetry and non-Abelian Chem-Simons systems
P. Navratil* and H. B. Geyer

Institute of Theoretical Physics, University of Stellenbosch, 7599 Stellenbosch, South Africa
(Received 12 August 1993)

We study SU(n) ItI=1 supersymmetric Chem-Simons systems in 2+1 dimensions with and without
a Maxwell term. Fixing the potential in a specific way, the supersymmetry is extended to N=2
which leads to a system with nontopological soliton solutions. The central charge of the extended
supersymmetry is calculated and self-dual equations for the background Gelds are derived.
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Supersymmetric Chem-Simons systems have recently
been considered by a number of authors [1—5). Atten-
tion has in particular been given to a connection between
extended supersymmetry and the existence of self-dual
soliton solutions in the Abelian Higgs model with a pure
Chem-Simons terin [2]. The requirement of N = 2 super-
symmetry was shown to determine a potential with both
topological and nontopological soliton solutions. Simul-
taneously, the central charge of the N = 2 extended su-
persymmetry was identi6ed as the topological charge of
the theory. This latter aspect was also addressed in Refs.
[6—9]. A non-Abelian SU(n) Higgs model with the cor-
responding pure Chem-Simons term was studied as well
and it was shown that nontopological self-dual solitons
exist for a special choice of the potential [10].

In this contribution we consider the supersymmetric
generalization of this model with and without a Maxwell
term and show that, as in the Abelian case, the require-
ment of extended supersymmetry leads to a potential
with soliton solutions. Here, however, the central charge
of the N = 2 supersymmetry is the U(1) charge of the
system. Subsequently self-dual equations for the back-
ground fields are derived.

To construct a non-Abelian supersymmetric Chern-
Simons action we require the gauge 6eld connection 4~ ——

i4&T" (A = a, a with a a Lorentz index and n a spinor
index) and the gauge field strength F~~ = iF&&T"
These quantities satisfy the relations

F s =8 4s —Bs@ —[4', 4'b], (la)
F s =D 4s —Bs4' —[4,4s], (jb)
F p

——D 4p+Dp4 —(4', 4p) —2t(p ) p4 . (lc)
We use p matrices p = o. , p = io.~ and p = io
satisfying p ps = g + is ~p„ the metric g s
diag(+1, —1, —1) and follow the notation of Ref. [11].
The SU(n) Hermitian traceless generators T" satisfy
[T', T"] = if"'"T". It follows from the Bianchi iden-
tities that F g = 's g,17 (p')—~W~, F s = i(pi, )~W&, and
I'

p ——0, where the spinor superfield Wz satis6es the re-
lation 'V~A'~ = 0. Working in the Wess-Zumino gauge
we can express the spinor superfields in the form

4' =i8 (p ) A" —28 A",
4" = A" + i8 (p ) A" —-8 s G ""

W" =A" ——s "'8 (p ) Gi„CL

-i8'(p ) (8 A" + f"'"A'A"),

(2a)

(2b)

(2c)

with G"s ——DaA& —BsA" + f"'"A'As Fro. m the su-
perfields (2) the supersymmetric generalization of the
Chem-Simons action can be written as

8 = — d'zd'8~ 4"W" + f"'"I"-I "( )P4"
~

k s, f l2cs p p p

Qp
———i~ —t8 (p ) p8a+i4"T" ~,

b4" = iri~(Qp4" ),
with

Qp@" = i
~

—i8 (p ) pB —4 — f"'"4'4"—
q88& ) 2

In terms of component fields, the action (5) is

(3)
We first discuss the supersymmetric generalization of the
model introduced in Ref. [10]. As matter fields a scalar
superfield 4 in the SU(n) fundamental representation is
introduced,

@ = v+8~/~ —8 F, (4)

in terms of which the total action of the system is

s= s„+ d'~d'e --,'r etr.e-U ate,
(5)

where 17 4' = (D —iO" T")@. This action is invari-
ant under SU(n) gauge transformations, under a global
U(1) transformation corresponding to a phase transfor-
mation of the scalar super6eld, and under a supersym-
metric transformation

b@ = irl'(Q, @) (6)
with

S = d x -ke ' A"OgA" + 3
"'"A"AqA" + 2k% '"A" +i p D~ p+D (p D~y

+i(4'&"T"
v

—
v

'T"&""0-)+ F'F —&'(v 'v ) (v 'F + F'v + 0'0 )

,'&"(v'v)(@'v4'v + v'—0—v'0-+20' v v'4-) . (10)

*On leave of absence from The Institute of Nuclear Physics, Czech Academy of Sciences, Rez near Prague, Czech Republic.

0556-2821/94/49(2)/1137(4)/$06. 00 49 1137 1994 The American Physical Society



1138 BRIEF REPORTS 49

~v =n'0, ,

hg =ill~(p )p (0 —iA" T")(p —rj F,
8F = imp(p ) p (0 —iA" T")g + 2irl~A"T"(p,

bA' =ig~(p )

8A = i ,'—E. -'g~(p )p Gb. .

(lla)
(lib)
(1lc)
(11d)

(lie)

The auxiliary fields F and A can be eliminated by using
I

Similarly, the transformations (6) and (8) can be
rewritten in terms of the component fields as

their equations of motion
F = U'(v'v)v»

A" = —((ptT"gp —gtT" (p) .

(12a)

(12b)

&', TI I,
—2~~&~~A: ——b~~~&I ~n

we obtain the action in the form

Inserting these relations into Eq. (10) and rearranging
some terms using the identity

dsz 'ke '-(A" clsA; + f"'"-A"AsA", ) +inst (p )~D Qp+ D (ptD (p —U'((p (p)U'((p (p)(p (p

gt —T—"(p(ptT"Q~ —U ((pt(p)gt (p(ptg —U ((pt(p)Q g +
~

k
—2U ((p (p) l(4' (pW (p+ (p 0 'p ~ )i 4kn j

(14)

(15)

(16)

and consequently

U'(p p)= (y p —v ).
The above condition (16) implies that the resulting action

dsz 'ks s'(A"BsA-", + isf"'"A"AiA", ) +if™(p) D gp+D (p D (p

Using expressions (12) we find that the supercharge generating the transformations (lla), (lib), and (lid) can be
expressed as

q' = fd'*(v ):h');(& w'4 +4'.& v.)+~&( 'v')h'):(&@-+&.&) =—&-+&-
It is seen from Eq. (14) that, as in the Abelian case, we are in a position to require that the fermion-number-violating
terms disappear kom the action. This is achieved if we set

U"(v'v) =
2kn

I (V 'V —v')'V 'V—
g 2kn )

(18)

has an additional symmetry, namely, that of a phase
transformation of the whole fermion multiplet or, alter-
natively, a phase transformation of the whole boson mul-
tiplet. The corresponding conserved currents are, respec-
tively,

Ja ytp( a)~y (lga)

J =i (D v')v —v'D V] . (19b)

2T = d x 2iU'((pt(p)[(D (pt)(p —(ptD (p

+i/ (p )p@ ]

+k [0"(W');0 V'V —0"V (V');W'0-

(21)

It is straightforward to show that these currents are the
lowest components of the superfields D~@t(p ) D 4 and

i[(D alt)4 —@t'D @],respectively. We now consider the
first superfield. Taking its time component proportional
to 0 and integrating over space we find

Using the Gauss law

2~*~G,", — i (D (ptT" (p —(ptT—"D (p)

+ gt'T (p'), @ =—0 (22)
1

Q.' = d' j(~ )'(~');(D-V'@- —O'D-V)

+ zU (F (p)(7 ) ((p Q —Q (p)]

—= i(Q —Q ). (20)

in Eq. (21) we obtain

T= — V2Z d2X DOVt
V Vtaov

2kn
+. iQ (P )pvP ]

This is the second supercharge generating an N = 2 su-

persymmetry of the system. Repeating this for the —0
component of the superfield in question, we arrive, after
partial integration and neglecting the surface term, at

(»)
where Q is the global U(1) charge. This is, however, just
the central charge of the N = 2 supersymmetry as we

can check that
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(q qtP) (&~)Pp bOT (24)

We can similarly investigate the second supercurrent,
namely the one of which the lowest component is given
by expression (19b). In this case, however, we get exactly
the same results as for the first supercurrent after using
equations of motion and partial integration. It is now
straightforward to derive the self-dual equations for the
background fields. As in the Abelian case [2] we multiply
(24) by 2 (1 6 p ) and take the trace to obtain

Po ——kT+ (q~, (q~ )t) (25)
with

dz 2 1+/ ~
p Dpp ki(p U'y y

~ —,'(&' ~ i&')~y, (D,&t + iD, &t) ). (26)

A model related to the one studied above is a super-
symmetric non-Abelian generalization of the model dis-
cussed in Ref .[12]. It includes a Maxwell term in the
action and an additional scalar field lV in the adjoint
representation of SU(n):

+"= ¹+8~y"—8 MP

The action of this model reads

S = Scs+ d xd 8 -W '"R'" —-B4 a 4

(29)

——,'17 @'17 4 —U(@,A'),
where the potential is taken in the form

U(C, JV) = c,C JV"T"4+ ,'c2Af"A—f"+ csC 4.
The supersymmetric transformations of the compenent
fields are given by Eqs. (11) together with

As Eq. (25) contains an anticommutator of adjoint op-
erators we get a lower bound for expectation values of
Pp.

6'N" = r1~y",
by" =i'~(p )p (8 N + f"'"A'N") —rI M,
which is generated by

(32a)

(32b)

Pp) v fqi,2kn (27)

which is saturated for the states annihilated by qy
For a state built around classical background fields this
is fulfilled if the background fields obey the Gauss law
(22), with the fermion fields set to zero, as well as

D~v + ~D2v = o (28a)

Ds(p W i U'((p p) p = 0 . (28b)
The upper (lower) sign is for negative (positive) charge
Q. Equations (28) are just the self-dual equations derived
in Ref. [10]. As to the particle spectrum of the super-
symmetric model discussed, we can deduce &om action
(18) that there are n complex scalar fields and n fermions
with mass m =

z&
v2, carrying a unit of the global U(1)

charge in the symmetric phase. In the asymmetric phase
there are two neutral bosons and two neutral fermions
with mass m = 2( z&„v2), together with n —1 complex
vector bosons and fermions of mass

&& carrying „"
&

units
of U(1) charge.

q.' = f~'* (~ ):(~'(;(Dv"W.+ 0 tD.w

+gD ¹

—2A"s s,| '")

—q +qt

T" + v'
I V,2kn )

(ptT" (p —kN"—.

(34a)

(34b)

Using the above relations we obtain the action expressed
in terms of component fields:

with F and T substituted by their equations of motion.
The supersymmetry can be extended to X = 2 by

adjusting the potential parameters to cq ———1 and c2 ——

—k. The remaining parameter we set at c3-
and consequently express the auxiliary fields as

S = d x —-0 '"G'"~+ -It:ea™A" A" + — "'"A"A~A", +i p D p+D y D y
CX 0 CX CX

k „„k+ A(p ) D Ap+——y (p ) D yp+ —A '"A" + —y '"y" + 2D N"D N" —f"'"y ' A' N"

+i(4' A" T v
—v'T"A '"@ )+0' x"T"V+v'T"x '"0 +

+@1 N"T"Q~ —(pt
~

N'T'+ v
~ ~

N"T" + v ~((p
— ((ptT"(p+ kN")((p-tT" (p+ kN")

n —1,1f „„n—1,&

2kn y i 2kn )

To find the generators of the extended supersymmetry
we can make use of the fact that the special choice of the
parameters ci and c2 leads to an additional U(l) sym-
metry. Namely, we can transform the whole @ multiplet
as g' = e' Q and simultaneously transform the fields

This symmetry generates the conserved current J
@t~(p ) vP + iy~'"(p ) A" which is the 8 = 0 part of
a conserved supercurrent

&'~'(~ );&.++ '~ N" (&.);W." .
I y" cos e + A" sin c,
I

sing+ A cosE' .
(36a)

(36b)

The second generator of the N = 2 supersymmetry is
obtained by space integration of the time component (37)
proportional to 8:
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D1(p W tD2y = 0 )

n —1
Dpp +i] N"T'+ v ~y = 0,

2kn

D,¹pG,"p =0,
DpX' = 0,
G",2 p (ipt T"ip+ kN") = 0 .

(39a)

(39b)

(39c)

(39d)

(39e)

The upper (lower) sign is for negative (positive) charge
Q. Configurations saturating condition (27) must in ad-
dition to Eqs. (39) satisfy the Gauss law following from
Eq. (35) by variation of Ao:

D;G' '" +-'ks" G,", —i(D iptT"p —iptT"D (p)

+gt~T'(qo);Q. + f"'"N'D'N"

f"'"[A"——(p') A" +y~"(p') y"] = 0, (40)

with the fermion fields set to zero. The self-dual equa-
tions (39) are similar to those derived in Ref. [12] for the
Abelian version of the model. To obtain the equations
of Ref. [12], one has to start Rom the supersymmetric
potential JV(iIltiIi —v2) + 2)V . This potential, however,
cannot be generalized to the non-Abelian case, which is

why we chose to work with the potential (31).
A specific solution of the above equations may now

be investigated for the case p = (0, . . . , 0, f),
(0, . . . , 0, N ), A = (0, . . . , 0, A ). Introducing A.

A "2 +8 argf we get BoN+ = 0, Bo]f[ = 0,

t9pA' = 0, and = Ap+ 2& v . Consequently,

Q' =i fd'x [p ) ('i )p (D ti' 'ti —g D p

+ i A D N + —y"e.&,G'"
[2 )

+ (~'):(F'4- —4.'++ & ~".)
—= i(Q —Qt) . (38)

The space integration of the time component (37) pro-
portional to —8 gives the central charge. After using
the equations of motion and partial integration we find
the central charge in the same form as in expression (23).
As Eqs. (24) and (25) hold, it is straightforward to find

the self-dual equations for the background fields which
saturate the condition (27). In the same way as inferred
from Eq. (26) we get

Eqs. (39a), (39e), and (40) reduce to

A, ye;, 0,.ln. ]f] = 0,

~*&'»If['+2/ ]f[' —kN
I

= 0,

0;—O, N +k/ kN — ]f]2
/2n

(41a)

(4lb)

V2

These equations can be compared to those derived and
solved in Ref. [12] for the Abelian model.

The particle spectrum of this model is as follows. In
the symmetric phase, there are n complex scalar fields
p and n fermion fields 1ii with the mass

2&
v2 carry-

ing a unit of global U(1) charge, n —1 gauge bosons
A", and scalar bosons X", and the same number of
fermions y", A", all of which have the mass k and zero
U(1) charge. In the asymmetric phase the vacuum ex-
pectation values of the scalar fields are (p) = (0, . . . , v)

2
and (N) = (0, . . . , "&

" ). There are two scalar de-

grees of freedom with mass 2
k2+4" 'v2+ 2k and

a gauge boson with two propagating modes of the same
mass and with zero U(1) charge. Then there are 2(n —1)
gauge bosons with two propagating modes of masses z&

and k + z&. Moreover, there are 2(n —1) boson degrees
2

of freedom of mass k+ &&, both the former and the latter
carrying " units of the global U(1) charge. Finally,
there are (n —1) —1 gauge bosons and the same num-
ber of scalars, all with the mass k and zero U(1) charge.
Obviously, the number of fermion degrees of keedom and
their mass spectrum as well as the U(1) charges are ex-
actly the same as that of the bosons.

%e have discussed above the connection between ex-
tended supersymmetry and the existence of soliton solu-
tions in non-Abelian SU(n) Chem-Simons systems. The
self-dual equations and the central charge have been de-
rived for models without and with a Maxwell term. In
the former case the potential is determined completely
&om the extended supersymmetry requirement whereas
in the latter the at@ term of the potential is not fixed.
Unlike in the Abelian case, the central charge is here not
the topological charge of the system, but the global U(1)
charge and the soliton solutions are nontopological.
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