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A solution is presented for the Einstein-Cotton field equations of topologically massive gravity where

two separate fluids act as the source. Vorticity and heat flow are present, and a discussion of the thermo-

dynamics demonstrates that the temperature and coefficient of thermal conductivity are well defined and

positive and that the Gibbs relation is satisfied.
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In (2+1)-dimensional general relativity, the gravita-
tional field is locally determined by the matter sources,
and so gravitational excitations are absent. Because to-
pologically massive gravity (TMG) [1,2] does not suffer
from this shortcoming, it represents a more realistic 2+ 1

analogue of the usual higher-dimensional general relativi-
ty and has consequently attracted considerable attention
[3,4]. In the case of TMG, an SO(1,2} Chem-Simons
term is added to the action so that variation with respect
to the metric yields the Einstein-Cotton field equations

Gt,'+x 'C"„=2m.GT", ,

where the constant ~ has the dimension of mass and
where

C"„:=e" Dr(R „——,'g R)

is known as the Cotton (or Bach) tensor [5] and is analo-
gous to the %eyl tensor of 3+1 dimensions: C„ is sym-
metric, traceless, identically zero if and only if the space-
time is conformally flat, and has zero covariant diver-
gence. Gravity in 2+1 dimensions has no Newtonian
analogue, and so there are no restrictions on the constant
on the right side of the Einstein-Cotton equations. It has
been written as 2+G to agree with the convention of
Jackiw [2].

The intent of this Brief Report is to seek solutions of
the above field equations with the stress-energy tensor
taking the (imperfect) fiuid form

T"=(p+p)u "u„+p5"„+q"u +u "q 2qcr"„. —

Since rotation is present in many TMG solutions [3], the
starting point will be the combed hedgehog metric [6]

dg = —cos2adt —2r sjn2adgd 0+dr +r cos2ad 8,

'Electronic address: williarns@brandonu. ca

where a=a(r) is to be chosen so that the field equations
are satisfied. The following ansatz for the velocity vector
is convenient [6] and consistent with the requirement
u "u = —1:P

u'= —u, =cosa, u"=u, =0, u = —r u6}=r 'sina .

It follows that the heat flux vector is given by

q'=q, = —Qsina, q =r qs=r 'Qcosa,

with q" and Q still to be determined. The only mixed
components of the shear tensor not identically zero are

o'„=o,"=—
—,'sina[t}„a—(2r) 'sin2a],

oe=r o „=—,'rcosa[B„a—(2r) 'sin2a],

and the scalar vorticity and scalar curvature are

co= —,'[B„a+(2r) 'sin2a], R =2[(B„a)2+(2r) ~sin22a] .

The scalar expansion 0:=ut'„ is zero and so the isotropic
and thermodynamic pressures become identical. Both
will be denoted by p. Using the abbreviations

6:=B„a+r 'B„a—(2r } 'sin2acos2a,

4:=2r sin 2a+R,

the only nonzero mixed components of the Cotton tensor
are

C,'=cos2a[r 'r3„(rh) 4+8„]a+r 2'sin2a(t}„a)2,

C&+r C, =2sin2a[r(B„A+NB„a)+ —,'g],
C& —r C, =3[2sin2a(h —r 'B„a)+R cos2a],

C,"=—r '[cos2ab +4 sin2a(B, a) ],
Cg = cos[2aa„& 4+8, ] a2+r 'sin2a(B„a)2 .
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If the G„Einstein term were absent from the field
equations, then the Cotton tensor being traceless would
imply a traceless source term on the right-hand side of
the Cotton equations —a property that is characteristic
of the stress-energy tensor of a radiatiue (null) fiuid. With
this in mind, consider a two-fluid model [7,8] with

and a similar equation for G" but with r subscripts re-
placed by m subscripts. Since C", and 0.", are traceless
and q "u„=0, it follows, as anticipated, that p„=2p„,
which is the equation of state for a radiative fluid in 2+ 1

dimensions [9]. The equation for ~ 'C„"gives

p„=(2irGirr) '[cos2ab, +4sin2a(B„a) ]

which, combined with the equation for Ir '(C,' —Cs),
leads to

r '(1 —3 cos2a )6+28,b, +4( B„a—,
' r 'sin2a )—

X [B„a—(2r) 'sin2a]B„a=O .

Although it would be diScult to find a general solution
for this equation, a special solution can be found by not-
ing that the equation is solved by B„o,= —,

' r 'sin2o;

( whence 5=0) which implies a=tan '(r/a), where a is
an arbitrary constant. The metric is now completely
determined,

dS
2 2a r

a 2 + r 2

24ar
a2+r2

2 2

+d '+ ' d0'
a 2 + r 2

and can be shown to satisfy the remaining equations for
C"„provided p„,p„,Q and q" are chosen as

—8a —6a rQ=
vrGa(a +r ) mGa(a +r )

(q', q", q )=Q( —si a,nO, r 'cosa) .

(The shear tensor o." is zero. ) Jackiw [2] has pointed out
that the constant ~ can take either sign. The energy den-

sity p, and the pressure p, must be positive in order to be
physically reasonable. Thus the constants a and ~ are re-
quired to take opposite signs: aa. &0 (with the assump-
tion G )0). To be specific, a will be taken as positive and
~ will be taken as negative.

The 6"equations must now be checked. However, the
above metric is precisely the combed hedgehog metric [6]

Pi' P~ P

p pm+pr

7=Jm+Pr ~

where T„' ' and T„'",' refer, respectively, to the matter con-
tent and the radiation content of the spacetime. It will be
assumed that the Einstein-Cotton equations can be split
into two separate parts: namely,

'C",, = 2~G[(p„+p„)u"u„+p„6",, +q"u„+u "q, —2rto"„]

which is known to be a perfect fluid solution satisfying
the equations

G", =2vrG[(p +p )u "u, +p 5",],
with

3a
pm 37m =

G( 2+ 2)2

The mass density p and the pressure p are positive
everywhere. It follows that the metric satisfies the full
Einstein-Cotton equations

where T„' ' refers to a perfect fluid and T„",to a radiative
fluid with heat flow, and where G )0, ~(0. The scalar
vorticity and scalar curvature are

co=a(a +r )

'4=4a—(a +r )

In addition to the role it plays in the field equations, the
Cotton tensor also acts as a (2+1)-dimensional "Weyl
tensor" for the purpose of determining Petro v

classifications. The matrix ~(C"„(~ has three distinct eigen-
values, 1+3(1 r /a )'~, ——2. In the terminology of
Barrow, Hurd, and Lancaster [10], the metric is of Petrov
class A.

The above two-fluid solution clearly satisfies the weak
energy condition, p )0, and the strong energy condition,
which reduces to p )0 in 2+1 dimensions (Ref. [10], p.
560). For an imperfect fluid solution, it is also necessary
to check that the various thermodynamic quantities, such
as temperature T and coeScient of thermal conductivity
g, are positive and that the Gibbs relation leads to a
well-defined entropy [7,11]. The temperature gradient
law [11]

q" = —yh "'(T,+ Tu „)
does not lead to a well-defined temperature if the temper-
ature T is assumed to be a function only of r. However, a
stationary metric can give rise to a time-dependent T, as
demonstrated by Rebouqas and Tiomno [12] for inhomo-
geneous Godel-like spacetimes. With T = T(r, t), the
temperature gradient law implies

T=f (t)a (a +r )

y= —6a[irGa(a +r')d, f ]

for any continuous choice of f=f(t) with c),f&0. Posi-
tive T and y are ensured by requiring f (t) )0 and 8,f )0
(since ~ & 0). Letting n denote the particle density (of the
matter), it can be verified that the baryon conservation
law, (nu") „=0,is satisfi. ed for any n =n (r). The interest
in TMG stems partly from its use as a toy model for 3+ 1

gravity. Thus it is reasonable to consider the Gibbs rela-
tion in a form that is analogous to the Gibbs relation for
two-fluid matter-radiation models in 3+ 1 dimensions [7]:

s 1 pm

n T n
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where the density and pressure are for the matter only.
Since T is a function of t, the right side of the Gibbs rela-
tion is time dependent, but has no dt differential term. It
follows that both sides of the equation must be zero.
Thus S ~ n and d (p In )+p d(1/n) =0. The latter
equation leads to

n = A(a'InG)' (a'+r')
where A is a constant. Defining 8":=Su "+T 'q", the
condition y ~ 0 guarantees that entropy production 8".„is
non-negative [11]. This is also easily checked by direct
computation:

—6ar'a, f
S".„= 0.

trGa(a +r2)3f

The author would like to thank Adrian Burd and Alan
Coley for some helpful conversations and would like to
acknowledge the hospitality of the Aspen Center for
Physics, where this project was begun. This work was
supported by grants from the Brandon University
Research Committee and the Natural Sciences and En-
gineering Research Council of Canada.

[1]S. Deser, R. Jackiw, and S. Templeton, Ann. Phys. (N.Y.)
140, 372 (1982); Phys. Rev. Lett. 48, 975 (1982).

[2) R. Jackiw, in Physics, Geometry and Topology, Proceed-
ings of the Ban8' NATO Summer School, Ban8; Alberta,
1989, edited by H. C. Lee (Plenum, New York, 1990); in
Proceedings of the Sixth Marcel Grossmann Meeting on
General Relatiuity, Kyoto, 1991, edited by H. Sato and T.
Nakamura (%'orld Scienti5c, Singapore, 1992).

[3] I. Vuorio, Phys. Lett. 1638, 91 (1985); R. Percacci, P. So-
dano, and I. Vuorio, Ann. Phys. (N.Y.) 176, 344 (1987);M.
E. Ortiz, Class. Quantum Grav. 7, L9 (1990); G. Clement,
ibid. 9, 35 (1992).

[4] G. S. Hall, T. Morgan, and Z. Perjes, Gen. Relativ. Grav-
it. 19, 1137 (1987); Y. Nutku and P. Baekler, Ann. Phys.
(N.Y.) 195, 16 (1989);M. E. Ortiz, ibid 200, 34.5 (1990);S.
Deser and Z. Yang, Class. Quantum Grav. 7, 1603 (1990);
B. Keszthelyi and G. Kleppe, Phys. Lett. B 281, 33 (1992);
P. Peldan, Class. Quantum Grav. 9, 2079 (1992); G.
Clement, ibid 9, 2615 (1.992); 9, 2635 (1992);P. Valtancoli

ibid. 10, 245 (1993).
[5] E Co.tton, C. R. Acad. Sci. Paris 127, 349 (1898); Ann.

Fac. Sci. Toulouse Math. (II) 1, 385 (1899); R. Bach,
Math. Zeitschr. 9, 110 (1921);D. Lovelock and H. Rund,
Tensors, Differential Forms and Variational Principles
(Dover, New York, 1989),p. 291.

[6] J. G. Williams, Gen. Relativ. Gravit. 23, 181 (1991).
[7] A. A. Coley and B. O. J. Tupper, J. Math. Phys. 27, 406

(1986).
[8] K. A. Dunn, Gen. Relativ. Gravit. 21, 137 (1989).
[9] S. Giddings, J. Abbott, and K. Kuchar", Gen. Relativ.

Gravit. 16, 751 (1984); S. Giddings, Am. J. Phys. 52, 1125
(1984).

[10]J. D. Barrow, A. B. Burd, and D. Lancaster, Class. Quan-
tum Grav. 3, 551 (1986).

[11]A. A. Coley, Phys. Lett. A 137, 235 (1989).
[12]M. J. Rebouqas and J. Tiomno, Nuovo Cimento B 90, 204

(19853.


