PHYSICAL REVIEW D

VOLUME 49, NUMBER 2

15 JANUARY 1994

Charged global monopoles

J. R. Morris
Department of Chemistry/Physics/Astronomy, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408
(Received 6 July 1993)

A model containing a global SO(3) scalar isovector coupled to a local U(1) complex scalar field is in-
vestigated. It is argued that there exists a parameter range for which the complex scalar is coaxed out of
its vacuum state in the core of a global monopole and gives rise to a charged global monopole. The es-
timated maximum charge for a quantum mechanically stable configuration has the potential for being
quite large, and the Abelian Coulombic force can rival the strength of the Goldstone force within a finite
range outside the core of the monopole. The possibility is explored that a global antimonopole and a
global monopole with like charges can form a “meson” bound state. It is found, however, that owing to
pair creation of light charged particles the monopoles will lose charge (unless there exists a parameter
fine tuning), thus causing the mesons to decay, if they form at all.

PACS number(s): 11.15.Ex, 11.30.Qc, 14.80.Hv

I. INTRODUCTION

The speculation that phase transitions may have oc-
curred in the early Universe gives rise to the intriguing
possibility that various types of topological defects, such
as domain walls, cosmic strings [1], superconducting cos-
mic strings [2], magnetic monopoles [3], and dyons [4]
may have been created. Such objects can have important
implications for particle physics, astrophysics, and
cosmology. Recently there has also been interest in glo-
bal monopoles [5S-7] which can arise from a spontaneous
symmetry breaking of a global group such as SO(3). For
instance, global monopoles formed at the grand
unification scale may serve as seeds for galaxy and large-
scale structure formation [7]. Ordinary global mono-
poles, however, would be detectable only through a direct
coupling to global scalar fields or by gravitational effects
[6]. Although interactions associated with Goldstone bo-
son fields are long-range interactions, they may be
difficult to detect at energy scales much lower than the
symmetry breaking scale associated with the formation of
the global monopole, due to an effective decoupling at
low energies [8]. Questions regarding whether a global
monopole could possess an electric charge and what
consequences would ensue therefore become relevant. It
is interesting therefore to consider a possible model of
charged global monopoles having an associated long-
range Abelian field through which electromagnetic in-
teractions can exist, with the possibility of enhancing
detectability. In addition, there is the prospect that an
electric charge may help to stabilize a global monopole-
antimonopole pair against collapse [9] and allow meson-
like bound states to form.

Presented here is a simple model which can describe a
global monopole possessing a charge arising from a local
U(1) gauge group. A type of approach similar in spirit to
that of Witten’s [2] is presented to argue that there exists
a parameter range for which a vanishing complex scalar
field in the presence of a global monopole [which emerges
from the spontaneously broken global SO(3) group] is un-
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stable, thus coaxing the complex scalar field out of its
vacuum to form a condensate in the core of the mono-
pole. The scalar condensate can possess an Abelian
charge residing in or near the monopole core. The possi-
bility is examined that a global monopole-antimonopole
pair with electric charges of the same sign can bind to-
gether to form a charged “meson.”

The model is presented in Sec. II. In Sec. III the stabil-
ity of a charged global monopole against loss of charge
due to the pair production of light charged particles, such
as electrons, is examined. It is found that, unless an ex-
treme fine tuning of one of the coupling constants exists,
the charged global monopoles are unstable against a loss
of charge so that the charge ‘“evaporates” from the
monopole, which implies that meson states are not stable
against decay, if they form at all. A summary and discus-
sion forms Sec. IV.

II. THE MODEL

Specifically, the model consists of a scalar isovector
field y coupled to a complex scalar field ¢ and is de-
scribed by the Lagrangian

L=30"x-d,x+(D"¢)*(D,$)—V—1F*F,, , (1)
where the potential ¥ is given by
V=Aex =P+ f(xx—n")¢*¢+m¢*$+g(4*4)? ,
()
and
D,=V,+ied,, F,,=9,4,—3,4, . (3)

The coupling constants A, f, and g, as well as the ¢ parti-
cle mass m, are assumed to be positive, real quantities.
The stable vacuum state of the theory is located by
x=Ix|=7, #=0, and the x particle mass is
m, =20,

For the case whether the fields ¢ and 4 p Vanish identi-
cally, the model admits a topological stable, spherically

1105 ©1994 The American Physical Society



1106 J. R. MORRIS 49

symmetric, global monopole solution [5] y =x(r)T, where
near the origin, in the monopole core, Y =ar and asymp-
totically, at large distances outside the monopole core,
x—n. The monopole core is taken to have a radius
rozl/mxz()\l/lr])—l'

Following a similar line of reasoning that Witten [2]
has used to argue the existence of superconducting cos-
mic strings, it can be argued that for the present model
there exists a parameter range for which the complex sca-
lar field given by ¢=0, with 4,=0, is unstable in the
background field of the global monopole, and must there-
fore relax to a lower energy state for which ¢#0 in the
monopole core. Therefore, consider a global monopole
background field given by y =x(r)T with 4,=0. Upon
looking at small fluctuations of ¢ about ¢ =0, we have,
approximately,

v, o+ [f(x*—n)+m?]$=0 . (4)

Let us take ¢(r,1)=¢y(r)e ¥ and use y=~ar near the
center of the monopole core, so that (4) becomes

—V2po+(fa*r)po=Ed, E=Q>+(fn*—m?). (5)

Equation (5) is just the Schrodinger equation for a parti-
cle of mass £ =1/2 in a simple harmonic oscillator poten-
tial with an associated “spring constant” k =2fa’. The
(normalizable) ground-state “‘wave function” has an ener-

gy

3 _3 (k]
E=Jo=3—| =3aVf (6)
which implies that, for this state, Q?’=3aVf
—(fn*—m?). Therefore the solution #=0 is unstable

when Q2 <0, i.e., for a set of parameters satisfying the ap-
proximate inequality

3aV'f <(fpP—m?), (7)

in which case the scalar field ¢ is coaxed out of its vacu-
um state, with $70 in the core of the global monopole.
Furthermore, we expect, by continuity, that solutions
corresponding to excitations exist for 4,70. In particu-
lar (since there exists a conserved current
ju=il¢*(D,¢)—¢(D,¢)*]) solutions which describe a
global monopole with an Abelian “electric”’ charge are
assumed to exist for a set of parameters restricted by (7).
Adopting the ansatz

¢(r,t)=%§F(r)el’\"‘”, Y(t)=owt , (8)
x(r)=x(r)t, T=(sin6 cose,sinfsing,cosh) , 9)
1
Aﬂ(r)zz[P(r)—1]8“W=%[P(r)—1]82 : (10)
the equations of motion can be written as
18,020, — Zx— My~ +fFy=0, (1
r r

iza,(rza,F)+w2P2F—[f(x2—n2)+m2+gF2]F=0 ,
p

(12)

L8,0r%,P)—eF?P =0, (13)

’
and the current density becomes
j.=i[¢*(D,¢$)—¢(D,b)*|=—wF’PS) . (14)

The equations of motion are subjected to the boundary
conditions

x—0, F>Fo=[(fn*—m? /g1,

(15a)
P—Py=const, as r—0,
x—mn, F—0, P—const, as r— o . (15b)

Using (11)-(15) and working to O (r?), the solutions
near the origin are approximately given by

xX=ar , (163)
F~F,—1o'P}¥?, (16b)
P~P,+L1e’FpPyr?, (16¢)

where the constants a and P, are to be determined nu-
merically.
As r— o, (11)—(15) yield the asymptotic solutions

X=n I_K—nliﬁ]: l‘f—i ) (17a)
F ~(const)exp[ —(m?—w?’B*)"?r], m?>w’B?,

(17b)

~-A.4p. (17¢)

¥

where A and B are positive constants, and 8= (1'"*n) !
is the core radius.

By (3) and (10) the ‘“‘ordinary,” or “physical” radial
component of the electric field is E,=F, =—(w/e)d,P,
which by (17¢) asymptotically becomes E, =~ —(w 4 Jer?).
Consequently, the total electric charge of the global
monopole is

qg=Ne= lim fE,'rde=—4muA /e, (18)

r— o0

where N is the number of unbalanced charge carriers in
the monopole, and at asymptotic distances,

q__ Ne (19)

E = =
47r?  4mr?

r

The energy density of the charged global monopole
configuration is

Too= 20,02+ X + L3, p 2+ Lop2p?
00 2 X rz 2 r 2&)

wz
= @,PP+V(x,F) . (20)
e

+
N | —

By (14) and (17) it is seen that the charge density vanishes
rapidly at asymptotic distances, so that the monopole’s
charge is localized in or near the monopole core. For ap-
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proximation purposes let us take
F,, r<o%, P,, r=<b,
0, r>o, B, r>5%, X~

0, r<§,

P= n, r>6,

F= (21)

so that the energy density in the monopole core is rough-
ly approximated by

To0,core = Y0 F§PE+V (0,Fy) . (22)
Then by (14) and (21)

N= [ jod’x = —wF3Py8’ 23)
which implies that Py~ —N /(F38*). Therefore (22) be-

comes, for the charge state given by ¢ =Ne(N =integer),

2
(N) N

~

00,core ~ 2F(2)86

+V(0,F,) , (24)

so that the mass of the charged monopole core is roughly
NZ

~ T'N) 3o
EN"’TOOcoreS ~ 2F(2)83

+V(0,F,)8% . (25)

For a monopole with a charge Ne to be quantum mechan-
ically stable against spontaneous decay into a monopole
with a charge (N —1)e plus a free ¢ boson, we require
that

2N —1

AE=Ey—Ey_ =~ <m
NN R8s

(26)
Therefore, for AE =m, by (25) and (26) the maximum
charge number, N,,, that a stable monopole can possess
is roughly estimated to be given by

2 2
mif—m?)
Nmaxz%+mF883z%+ m‘;ls /277'3" L 27)

Thus, for N_, <1 we may infer that no quantum
mechanically stable charged global monopole exists for
this model, while, on the other hand, sufficiently small
values of gA3/? and 7/m could give rise to the existence
of highly charged monopole states. A good approxima-
tion of N,,, probably requires numerical studies.

By (19) the Coulombic force between a monopole with
charge state N, and a monopole with charge state N,
separated by a distance r > 8 is roughly

aN N, e?

=~ N

a=-—.
¢ r2 41

(28)

By (20), (21), and (25) the mass of an ordinary uncharged
SO(3) global monopole is roughly

, 2
M(r)=E,+ fa L anr?dr' ~Eq+4mn*r—8),  (29)
r

so that the attractive Goldstone force [5] between a

monopole and an antimonopole is roughly

oM(r)
ar

From (28) and (30) therefore, the magnitude of the
Coulomb force becomes comparable to that of the Gold-

Fo=~ ~dmn? . (30

stone force for a separation distance of roughly

aN,N, |'” akNN, |
ke hubatak 1 BV 31
41 47

r.= ~

1
Ui
For r >r,, of course, the constant Goldstone force dom-
inates.

The competing effects of an attractive Goldstone force
and a repulsive Coulomb force between a monopole and
an antimonopole with like charges allows for the possibil-
ity of charged global monopole bound states representing
charged “mesons.” However, it will be seen that (assum-
ing the absence of a parameter fine tuning) such meson
states, if they form at all, are unstable against decay.

III. INSTABILITY AGAINST LOSS OF CHARGE

Although it has been argued that for a sufficiently large
¢ boson mass m and a sufficiently small value of gA3/% a
charged global monopole can be quantum mechanically
stable against a loss of charge due to ¢ boson emission,
we must investigate the possibility that an instability may
develop due to the pair creation of light charged parti-
cles, such as electrons and positrons, in the strong elec-
tric field near the monopole core [10]. If a particle-
antiparticle pair is likely to be created from vacuum, then
one of the particles will be absorbed by the monopole and
hence act to neutralize the charge of the monopole, while
the antiparticle is repelled away from the monopole. The
net effect is an “evaporation” of the monopole charge due
to pair production.

In the absence of a magnetic field the critical electric
field strength for which particle-antiparticle pairs are
likely to be produced is roughly E, ~m?2/e, where here m
refers to the mass of the particle and antiparticle being
produced and e is the magnitude of the particle’s electric
charge. Let us consider a charged global monopole as a
spherical shell of charge with a charge Ne and a radius
r=§. Pair production is likely to occur in a region where
(roughly) 8 <r =<r,, where r, is the critical radius, i.e.,
E(ro)=E,~m?/e, which by (19) gives

1/2

—— (32)
m

N

g e

which implies that r,/8~(AN /41)!/%en1/m, so that for
AY2/m >>1 pair production is likely to take place
within a radius 75 >>8.

Let us consider the possibility of enhancing stability
against charge evaporation by introducing a magnetic
field B generated by a circulation of the charged ¢ con-
densate in the core of the monopole. In regions where
E2—B?>E? pairs are copiously produced, while for
E?—B?<0 there is no pair production, and for
0< E2—B? << E? pair production is suppressed. For ap-
proximation purposes consider, for simplicity, a ring of
current in the xy plane with charge Ne and ring radius
r=~§8. The magnetic moment of the current is

pziwﬁzzgzgiizw , (33)
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where o is the angular velocity associated with the
current. The magnitude of the magnetic field is
B(r)=p/r. Setting B(ro)=E,~m?/e it is determined
that

172
N

641>

e

~

;=

w=2

mé 641>

But the linear velocity for the current is v=wd =1, so
that approximately

<8 '=AVy . (35)

Equations (34) and (35) can be satisfied simultaneously
only for the case A <A, ~(647°/N)(m /2en)?, which im-
plies that for the case A > A, there does not exist a mag-
netic field strong enough to suppress pair production.
Thus, in this latter case, the charged global monopole is
expected to be charge neutralized by electrons (or posi-
trons), ending as a neutral global monopole with nonzero
lepton number. Thus (for A > A, ), mesons, if they form at
all, will be unstable against decay through neutralized
monopole-antimonopole annihilations. Since the symme-
try breaking energy scale is assumed to be extremely
large compared to the electron mass, the situation for
which A <A, would require an extreme fine tuning of the
coupling constant A.

IV. DISCUSSION

In summary, a simple model consisting of a broken
symmetric SO(3) scalar isovector coupled to a complex
scalar has been investigated, and it has been argued that
there exists a parameter range for which the model ad-
mits charged global monopoles as solutions. The electric
charge is localized within or near the monopole core and
its maximum value is determined by the model parame-
ters. The possibility exists that the maximum charge can
be quite large, and the Coulomb force can be comparable
in strength to the Goldstone force at a distance deter-
mined by the charge states of the interacting monopoles.
The situation wherein an antimonopole and a monopole
with like charges might bind together to form a multiply
charged meson state has been examined. However, for a
symmetry breaking mass scale that is much larger than
the electron mass, it is found that the Coulomb interac-
tion can provide no more than a temporary stability
against global monopole-antimonopole annihilation, at
best (unless there is an extreme fine tuning for the cou-
pling constant A); a global monopole loses electric charge
so that the meson states are unstable against decay, if
they form at all. The charge evaporation by pair produc-
tion is due to the small size of the monopole core, to
which the monopole charge is confined. Thus, if such ob-
jects were physically realized subsequent to a phase tran-
sition in the early Universe, then stable multiply charged
global monopole-antimonopole meson states would not
be expected to exist.
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