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Eigenfunctions of total angular momentum for a charged vector field interacting with a magnetic

monopole are constructed and their properties studied. In general, these eigenfunctions can be obtained

by applying vector operators to the monopole spherical harmonics in a manner similar to that often used

for the construction of the ordinary vector spherical harmonics. This construction fails for the harmon-

ics with the minimum allowed angular momentum. These latter form a set of vector fields with vanish-

ing covariant curl and covariant divergence, whose number can be determined by an index theorem.

PACS number{s): 14.80.Hv, 03.65.Ge

I. INTRODUCTION

When analyzing fields in a spherically symmetric back-
ground, it is often useful to expand the field in eigenfunc-
tions of angular momentum. In most cases these are sim-

ply the spherical harmonics for scalar fields, while for
fields of higher spin one can construct spinor, vector, or
higher harmonics. The situation is somewhat more com-
plicated when one considers charged fields in the back-
ground of a magnetic monopole. Superficially, this is be-
cause the electromagnetic vector potential is not mani-
festly spherically symmetric, even though the corre-
sponding magnetic field is. At a deeper level, it is a
consequence of the extra angular momentum associated
with a charge-monopole pair.

The monopole analogues of the ordinary spherical har-
monics were first constructed by Tamm [1) in the context
of determining the wave function of an electron in the
field of a magnetic monopole. The subject was revisited
by Wu and Yang [2], whose conventions and notation I
follow. Olsen, Oslund, and Wu [3] obtained monopole
vector harmonics from the scalar harmonics by utilizing
Clebsch-Gordan technology. In this paper I also study
monopole vector harmonics, but from a somewhat
different approach. Rather than using Clebsch-Gordan
coeKcients, I construct the vector harmonics (apart from
an exceptional case described below) by applying vector
differential operators to the scalar harmonics, in analogy
with the construction often used [4] for the ordinary
(q=0) vector harmonics. Not only are the resulting ex-
pressions simpler, but they are also more convenient for
use in further calculations. In addition, with this ap-
proach the vector harmonics can be chosen to be eigen-
functions of the radial component of the spin, rather than
of the magnitude of the orbital angular momentum, as
was done in Ref. [3]. With this choice of basis, the ex-
pressions for the curls and divergences of the vector har-
monics are easily derived and take particularly simple
forms. There is also a natural separation between radial
and transverse vectors, making this choice particularly
useful for studying fields in spherically symmetric but
curved spacetimes, such as one encounters when studying
fields about magnetically charged black holes.

I consider fields with electric charge e in the present of
a monopole with magnetic charge q/e; the Dirac quanti-
zation condition restricts q to integer or half-integer
values. ' The corresponding scalar monopole spherical
harmonics F LM(8, $) are eigenfunctions of L and L„
where

L=rX(p —e A) —qr

with r=r/r. The first term on the right-hand side is the
usual orbital angular momentum, while the second is the
extra charge-monopole angular momentum. These are
orthogonal, so classically ~L~ ~q. Correspondingly, al-
though the quantum numbers L and M have their usual
meaning, the minimum value of L is not zero, but q.

The monopole vector spherical harmonics are eigen-
functions of J and J„where the total angular momen-

turn J is the sum of L and the spin angular momentum S.
By the usual rules for adding angular momenta, one sees
that the total angular momentum quantum number J has
a minimum value of q

—1, except for the two cases q =0
and q= —,

' (where J;„=q). The vector harmonics with

J ~ q can be constructed by applying vector operators to
the scalar harmonics. The vector harmonics with the
minimum allowed angular momentum, J=q —1, cannot
be constructed in this manner (essentially, because there
are no scalar harmonics with L & q) and so must be treat-
ed specially. However, it turns out that these latter span
the space of vectors whose covariant curl and covariant
divergence both vanish. An index theorem shows that
this space has dimension 2q —1, just as one would expect
for a multiplet with angular momentum q

—1.
The remainder of this paper is organized as follows. In

Sec. II the scalar monopole harmonics are reviewed and
some general properties of the vector harmonics are de-
rived. The construction of the vector harmonics with
J~ q is described in Sec. III, where some properties of
these harmonics are derived. The exceptional case
J=q —1 is discussed in Sec. IV. The relationship be-

'Throughout this paper it will be assumed that q ~0; the ex-

tension of the analysis to negative values of q is straightforward.
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II. GENERAL CONSIDERATIONS

In the absence of spin, the angular momentum opera-
tor in the presence of a magnetic monopole may be writ-
ten as

L= —irXD —qr, (2.1)

where D=V' —ie A is the gauge covariant derivative.
One can readily verify the commutation relations
[L;,r, ]=is;,krk and [L;,D, )=ie;,„D„. It follows that
any vector constructed from r and D will obey
[L;,UJ]=is;Jkuk and, in particular, that L satisfies the
usual angular momentum commutation relation
[L, ,LJ ]=i e,jk Lk. It also obeys the useful identity

D = ——(I. —q2), (2.2)

where

tween these harmonics and those of Ref. [3] is given in an
Appendix.

The monopole vector spherical harmonics are eigen-
functions of J and J,. The allowed values of the total an-
gular momentum quantum number J are q

—1, q, . . . ,
except in the two cases q =0 and q =

—,
' where J=q —1 is

absent. In genera1, there is more than one way to obtain
a given value of J, and thus several multiplets of harmon-
ics with the same total angular momentum. If, as was
done in Ref. [3], the harmonics are chosen to be eigen-
functions of L, as we11 as of J and J„ the multiplet
structure is the following.

For J=q —1&0, one multiplet, with L =J+1.
For J=q & 0, two multiplets, with L =J+ 1 and L =J.
For J=q =0, one multiplet, with L = 1.
For J & q, three multiplets, with L =J+ 1, L =J, and

L =J—1.
An alternative approach, which I follow in this paper,

is to classify the multiplets by the eigenvalue of r S,
which will be denoted A.. In general, A, can take on the
values 1, 0, and —1. However, it is further restricted by
the requirement that

D=—D —rr D (2.3)
r J=r L+r S= —q+A, (2.7)

is the purely angular part of the covariant derivative.
The monopole spherical harmonics Y rM(8, $) obey

I- Yqr.sq =«L + I ) Yqr.sr

Lz~qLM M qL,M ~

where L and M can take on the values

(2.4)

L=q, q+1, . . . ,

M= —L, —L+1, . . . , L .
(2.5)

(2.6)

Further, they form a complete set, in that any smooth
section can be expanded as a linear combination of mono-
pole harmonics.

When Eq. (2.4) is solved to give an explicit expression
for these harmonics, one finds that they possess singulari-
ties that coincide with the Dirac string [5] of the mono-
pole. However, as was pointed out by Wu and Yang [2],
the harmonics, are in fact nonsingular, provided that
they are viewed as sections rather than as ordinary func-
tions. In this approach, one divides the space outside of
the monopole into two overlapping regions. For each re-
gion one makes a choice of the vector potential, and thus
of the monopole harmonics, which is nonsingular within
that region. In the overlap of the two regions the two
vector potentials, and the two sets of monopole harmon-
ics, are related by a nonsingular gauge transformation
characterized by q. The explicit form of the harmonics
depends on the choice of gauge and of the two regions.
Expressions for a particularly convenient choice are
given in Ref. [2], although we will not need these in this
paper.

The Fqp~ are orthonormal, with

J dQ YqzsrYqc'M'= J d8 J dP Yqr.MY''v'

r X Cq~M
= i ACqqsq— , (2.9)

From this we see that the A, =O harmonics are purely ra-
dial vectors, while those with A, =+I are transverse. It
also follows that

(I, —
A, )C zM.C'~M (irXCqzsr). C—zM

+tc,",M".(rXC,",.sr )

=0 (2.10)

so that any two vector harmonics with different values of
A, are orthogonal as vectors at every point.

Furthermore, the usual methods can be used to show
that any two harmonics with different values of J, M, or
A, are orthogonal in the functional sense. It will be con-
venient to normalize them so that

Note that a J=O mode occurs only for q=O and q=1. Thus,
for any other value of q it is impossible to construct a spherical-
ly symmetric configuration involving a charged vector field. In
the context of a spontaneously broken SU(2) gauge theory, this
explains why nonsingular spherically symmetric monopole
configurations are possible only for unit magnetic charge [6].

lie in the range —J to J. This gives the following.
For J=q —1 +0, one multiplet, with A, = l.
For J=q & 0, two multiplets, with A. =1 and 0.
For J=q=0, one multiplet, with A, =O.
For J)q, three multiplets, with A, = 1, 0, and —1.
Thus, let us denote the vector harmonics by C'zM, with

J'C'qJM =J (J +1)C'qJM

(2.8)

r S Cqz~ ACqJM

Because the spin matrices (S"),"= i e, k, the la—st o"f these
equations is equivalent to
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f d+ C(g)+ C(g') JJ' MM'6 5 6
qJM qJ'M' 2

T
(2.11)

(r.D)Cvjsr = —
C~Jm (2.12)

In addition, Eqs. (2.9) and (2.11), together with the obser-
vation that r.C' JM is a scalar, imply that

r.C'JM=5g0Y JM . (2.13)

III. HARMONICS FOR J~q

%ith this normalization, the vector harmonics are homo-
geneous of degree —1 in the Cartesian coordinates, so
that

(One might think that it would have been simpler to
choose two of the vector harmonics to be proportional to
D YqJM and r XD YqJM y by analogy wi th the common
practice in the q =0 case [4]. The problem is that these
are not orthogonal if q&0; their orthogonality for q =0
follows from parity arguments, but parity is not a good
quantum number in the presence of the monopole. )

It is useful to have formulas for the covariant curls and
divergences of these vectors. For A, =O,

D X CqJM

1= ——rXDYqJM

= —2(L Sv)k —2uq . (3.1)

Hence,

(L+S) vY ~M vL Y sM K(K+1)vYq~M (3 2)

The ordinary vector harmonics can be constructed by
applying vector operators to the YIM. In this section I
generalize this construction to obtain the monopole vec-
tor harmonics for J~q. To begin, let v be any vector
operator constructed from r and D. The commutation
relation [l.;,U~ ]= t e;~k v k implies that

[L,va ]— 2i Eiq kL; U; '2u

i cP+q
T 2

1/2 ~2
' 1/2

(1) ~ q (-1)
CqJM CqJM

and

(0) 1
D CqJM q

——
2 qJM

T T

For A. =+1 we first note that

rX(DXC'qM')=D(r C'qs'r')

—
Czech (r D)C~g~

(3.7)

(3.8)

(3.9)

Thus if v& is a vector satisfying r X v&= —i A,v&, then the
desired C~zM will be given, up to a (possibly r-dependent)
normalization factor, by v& YqJM A set of such vectors is

v+, =TD+i r XD,
vp=r . (3.3)

The normalization factor for the harmonics with
A, =+1 can be determined by using Eq. (2.2), together
with the fact that D and D are equivalent when acting on
the Y JM, to obtain

f d&lv+, r„Ml

= f dAl(rD+irXD)Y JMl

= f d 0 Y JM [—2r D +2irr D X D] YzM

= f dQ F,*~M[2(L' q')+2«elk—1/Fjk]Y JM

=0,
where the vanishing of the first term on the right-hand

side follows from Eq. (2.13), while the cancellation of the

last two terms is a consequence of Eq. (2.12). [This was

the motivation for choosing the normalization condition

(2.11).] Thus, the covariant curl of C'zM' is a vector in

the radial direction with magnitude r DXCqJM The

latter quantity is a scalar and can therefore be expanded

in scalar harmonics, with the coefficient functions deter-

mined by the integrals

f d0 Yq'~l. r DXCqgf =f dQ Yq~.M. r DXCqgf'

= r f d 0 C~~i~M" D X Cq

d 0 D X CqJ'M 'CqJM
(0)» . (+1)

r dQ DXCqJ'M' CzzM
(0)» . (21)

' 1/2

=2r [8 +q],
where

4:—J(J+1)—q

(3.4)

Hence

i 8+q
2 2

~JJ'~MM'

(3.10)

[Note that the integral in Eq. (3.4) vanishes for 1=q )0
and A, = —1 and for J=q =0 and k=+1, in accord with

the earlier statement that the corresponding harmonics
should be absent. ] For A, =O, the normalization integral
simply reduces to Eq. (2.6). Thus, the properly normal-
ized vector harmonics are

Cqj~ = [2(8 +q )] [D+ir XD]YJ~, I & q )0,

1/2

DXC( ) + d"—q C(
+2+

qJM
T 2 qJM (3.11)

The formula for the divergence is obtained by observ-

ing that

D.CqJM E D.r X C'qJM'

(0)
CqJM

= r YqJM
T

J)q )0, (3.6)

C'q~'=[2(cP —q)] '~ [D—irXD]YqM, J&q &0 .

+EI DXC JM
1/2

1 cf +q
T

2 YqJM (3-12)
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These results for the covariant divergences and curls
can be compactly summarized by

vanishing of r D XUM, while, from Eq. (3.9},
r X(DXUM }=0.Therefore,

1
D CqJM= 2a~Yq

(&)

T

with

' 1/2
g2+

aP=1, Qg1=

and

(A,')D X CqZM
= —&bi.i. C,'m

(3.13}

(3.14)

(3.15)

DXUM=Q . (4.4)

B. An index theorem

The UM are thus a set of 2q —1 linearly independent
curl-free and divergenceless vector fields. Conversely,
any vector field whose covariant curl and divergence both
vanish is a linear combination of the UM. To see this, ex-
pand the field in vector harmonics and then use Eqs.
(3.7}, (3.8}, (3.11), and (3.12) to show that the coefficients
of the CqJM vanish for J & q.

where the only nonvanishing b &&. are b +, p
=

ho+, =+a+, . Furthermore, although they have only
been derived thus far for J~ q, we will see in the next sec-
tion that the covariant curls and divergences of the
Cq ( q 1 )M vanish, in agreement with the above equations,
so that these expressions are in fact valid for aH allowed
values of J, M, and A..

Any vector field with vanishing curl and divergence is
fixed uniquely by its values on the unit two-sphere. Since,
in addition, the UM are orthogonal to r, they are
equivalent to a set of curl-free and divergenceless vector
fields on this two-dimensional manifold. Let the metric
on the two-sphere be denoted g,b, and the coordinate
plus gauge covariant derivative be S,. One can define a
duality transformation, with the dual of vector V' being

IV. VECTOR HARMONICS FOR J=q —1

A. Curls and divergences

ab Vb,
g

(4.5)

For J=q —1 there is a single multiplet of vector har-
monics, with I.=q and A, = 1. These cannot be construct-
ed by the methods of the previous section, since there are
no scalar harmonics for J & q. In this section I first show
that the covariant curls and divergences of these harmon-
ics vanish. I then prove an index theorem showing that
the space of such curl-free and divergenceless vectors on
the unit two-sphere has dimension 2q —1, and is thus
spanned by the J=q —1 multiplet. Finally, the harmon-
ics are displayed explicitly for a particular gauge choice
of the vector potential. To simplify notation, let

(1)
Cq(q 1)M

=—UM
Consider first the divergence of UM. Since this is a

scalar, it will vanish if

where g=detg, b and e' is the antisymmetric symbol
with e' =e ~=1. Three-dimensional vectors with A, = 1

(A, = —1} correspond to self-dual (anti-self-dual) vectors
on the two-sphere. The operators P+ (P ) projecting
onto the space of self-dual (anti-self-dual) vectors are

pah g ah+ Cabi
2 v'g

(4.6)

With the aid of the identity e' eb, = —g,'g, one can verify
that P+bP~, =P+, . Furthermore, 2),P~ =0.

The space of curl-free self-dual (anti-self-dual) vectors
may be identified as the kernel of the operator 6+(8 )

mapping such vector fields onto the space of scalar fields
according to

I~.M. —— dQ YJ.M. D UM (4.1} 1ggV= —e' S,Pgb, V'=+i2), Pgb Vb .
g

(4.7)

I@M = —f dQ(DYi M) -UM'

' 1/28' +q
2

g (1)+
CqJ'M'

1/2

2
( —1)e

Cq~'M' .U (4.2)

But the last integral must vanish, since J' q while UM is
a vector harmonic with angular momentum J=q —1.
Hence,

D.UM=0 . (4.3}

Proceeding as in Eq. (3.12) we see that this implies the

vanishes for all possible values of J' and M'. To this end,
note that the fact that A, = 1 implies that r UM =0, from
which it follows that D UM =D.UM. Hence,

S(8+)—=dim(kernel 8~)—dim(kernel 8+) . (4.8)

Here the adjoint operators 8& mapping scalar fields onto
self-dual or anti-self-dual vector fields, are

The second equality shows that any curl-free self-dual or
anti-self-dual vector must also be divergenceless. Con-
versely, it is easy to see that any vector with vanishing
curl and divergence must be either self-dual or anti-self-
dual.

Angular momentum considerations suggest that the di-
mension of the kernel of 8+ should be 2q —1 for q &0,
and that the kernel should vanish for q=O. Further-
more, since an anti-self-dual curl-free vector field would
correspond to a field with the forbidden values k= —1
and J=q —1, the kernel of 8 should vanish. These re-
sults correspond to index theorems relating the magnetic
charge to the index:
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(6+S)'= i—(P+ )*X)bS= —iP+"2)bS . (4.9)

The first step in deriving these theorerns is to note that
the kernels of 8+ and 8+ are the same as those of 6+8+
and 8+8+, respectively. Furthermore, if g is an eigen-
function of 8+8+ with nonzero eigenvalue, then 8+/ is
an eigenfunction of 8+8+ with the same eigenvalue. As-

suming that these eigenfunctions form a complete basis,
it follows that

M2(8 )=Tr
26', 6 +M' 26+8++M

(4.10)

P bP d =P'"P'+ + + +

one finds that

(4.11)

(6+8, )'b = PgbP+S—dS

where M is an arbitrary parameter. (The somewhat un-

conventional factors of 2 are for later convenience. ) We
will find it most convenient to evaluate this expression in

the limit M ~~.
With the aid of the identities P+ =P+ and

6+8,=
—,
'

(
—2)'2), +q ) . (4.17)

The factors of q enter with the opposite sign for 8+ and
6 because the magnetic field is parity violating and so
distinguishes between self-dua1 and anti-self-dual fields.
There is no such asymmetry as far as the geometry of the
sphere is concerned, and so the factor of 1 arising from
the curvature displays no sign change.

Equation (4.16) shows that 8 8 is positive definite
for q )0. Hence, the kernel of 8 vanishes, and there
are no curl-free anti-self-dual vector fields, as expected.
Furthermore, since 2)'Xl, is equivalent to —(L —

q )

when acting on scalar fields, Eq. (4.17) may be rewritten
as

8+8+=—,'[(L —
q )+q] . (4.18)

The eigenfunction of 8+8+ are thus the scalar monopole
harmonics Y'~LE, with eigenvalues L(L+1) q(q+—1).
For the lower signs, a zero eigenvalue is obtained only for
L =q. Since there are 2L+1=2q+1 possible values of
M, the kernel of 8 has dimension 2q+1, and

2(6 )= —2q —1 . (4.19)

and

P+b S'X—l, + e'"[2)„2)d]
2 g

8+8+— P+ S,Xld—

(4.12)

For the upper signs, a zero eigenvalue is possible only for

q =0, L =0. Thus, for q )0, the kernel of 8+ vanishes,

and the dimension of the kernel of 6+ is equal to l(8+ ).
To calculate this last quantity, substitute Eqs. (4.16)

and (4.17) into Eq. (4.10), and expand the denominators
about —2)'2), +M . Thus,

S'2), + e'"[2),@id ]
2 2 g

(4.13) J(6+ )

The commutator of two coordinate and gauge covariant
derivatives S, is the sum of the commutator of the corre-

sponding gauge covariant derivatives D, and the cornmu-

tator of the corresponding coordinate covariant deriva-

tives V, . Acting on charged fields, the former is
—M'Tr 1

—2)'S, +M

(q + 1)P+=M Tr +—&'& +M' (
—X'2) +M')'

[D„Db ]= ieF,b
= — ——e,b,lq (4.14) q + ~ ~ ~

( —2)'2) +M )

(4.20)

=+2iv'g V', (4. 15)

where the explicit form of the curvature tensor on the
two-sphere has been used on the third line. %'e thus have

(6+6+)' b
= ,'P+b( —2)'1), + q—+1) (4.16)

where the second equality follows from the expression for
the magnetic field at unit radius from the monopole. The
latter commutator vanishes when acting on scalar fields,
while on self-dual or anti-self-dual vector fields

e' [V' Vd ]V'=e' [V„V„]P+„V"

kb eed
&cdpa g b Ve

=~'"P'+b(g', g,d g'd g„)V'—
=+2i &g P+, V'

where the ellipsis represents terms which vanish in the
limit M ~ oo. The contributions from the first terms in

the two expansions cancel. To deal with the second
terms in the expansions, note that replacing 2)'S, by the
Hat-space two-dimensional Laplacian 5 gives an error of
order M . Therefore

3This is less obvious than it might seem, since the operator
—1)'2), is understood to be acting on vectors fields in one case

and scalar fields in the other, and so in curved space will take

two di6'erent forms. However, one can verify the cancellation

by comparing the result for J(6 ) obtained below with that

given in Eq. (4.19).
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g(6+)=(+2q —1} lim f d x M (xl( ~+M )
M2~ oo

d k M
=(+2q —1) 1™ ~ ~ z k2+Mz z(21r k +M

=+2q —1 . (4.21)

C. Explicit expressions

To obtain explicit expressions for the UM, we must first
fix the vector potential. Following Wu and Yang [2], let
R, be the region 0& 8& (qr/2)+5 and R& be the region
(n/2) —5 &8& qr A. nonsingular choice for the vector
potential which maintains the manifest rotational symme-
try about the z axis is A, = Ae=0 and IM(8)

1 —cosg
1+cos8

M/2

sin

(
—

1 ~~+q }«M}e=M«M }e

Hence (UM }()must be of the form

—ei(M+q)Py (g)

The self-duality condition then gives

(UM)&=ie' q)(singf M(8} .qM

Substituting Eq. (4.25) into Eq. (4.3) we obtain

Be(singf M ) (M+—q cosg)f M =0

whose solution is

(4.24)

(4.25)

(4.26)

(4.27}

A&= (1—cosg) in R, ,

A&= —+(1+cosg) in R„.
(4.22) (1qM ( 1 cosg ) sin™I g

=aqM(1+ cosg) ™sinq+ '8 . (4.28}

The action of J, on a scalar function is then

g, y=L,,y=( t a& + q )—y, (4.23)
The normalization constant a M is determined (up to an
arbitrary phase) by Eq. (2.11) to be

1/2
where the upper (lower} sign refers to region R, (Rb).
Applying this to the scalar z UM, and using the fact that
z is invariant under rotations about the z axis, we find
that the eigenvalue equation J,UM =MUM implies

1 (2q —1)!
2qV'2' (q +M —1)!(q—M —1)!

Thus, the UM may be written as

(4.29)

~ M
(U ) =(C'" ) = e' +q'( sinq+ '8(1+cosg)™M e

—
q(q —1)M e

T

lQ M
(U ) =(C"' ) = e' +q'~sinq+ 8(1+cosg)M P q(q —1)M P

in R, ,

~qM
(U ) =(C'" ) = e' q'~sin' '8(1—cosg)q(q —1)M e

~~qM
(U ) (C( )

)
(M q)ysi q Mg (1 g)MM P q(q —1)M P

in'& .

(4.30)

For these expressions to be single-valued, q
—M and

q+M must be integers. To avoid a singularity at 8=0
(in region R, ), we must require q+M —1~0, while at
8=m. (in region R&) we have the condition q

—M —1 ~ 0.
This leaves 2q —1 allowed values of M, thus confirming
the index calculation and giving the full J=q —1 angular
momentum multiplet.

APPENDIX

Olsen et al. [3] define monopole vector harmonics

YJLM which are eigenfunctions of I,L, and J,. In this
(q) 2 2

appendix I obtain the relationship between these harmon-
(A. ) (q)

ics and the CqJM defined in this paper. Because the YJLM
(A, )

are orthonormal, while the C JM are normalized accord-
ing to Eq. (2.11), the two sets of harmonics are related by
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where the matrices M1L (q, J,M ) are unitary.
For J=q —1, there is only one allowed value each for

A, and for I., and so M(q, q
—1,M) is simply a complex

number of unit magnitude. Carrying out explicitly the
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construction of Ref. [3] and comparing with Eq. (4.30),
one finds that

M(q, q
—1,M) =( —I)™. (A2)

For larger values of J the M&L(q, J,M) are either 2X2
(if J=q) or 3 X 3 (if J & q). The OI. elements of
M&L (q, J,M ) can be obtained directly from Eq. (4.13) of

(q)
Ref. [3], which expresses r Y~LM in terms of the YJLM.
Explicitly,

M, J(qJM)=e'

M, J(qJM )=e'~

' 1/2
4+q

2J(J+1)
1/2

2J(J+1)
The next step is to use Eq. (4.14) of Ref. [3]:

(q)LI' JM= J(J+ I )YJt.t)r .

(A6)

(A7)

Mo(J )) qJM
Substituting Eqs. (Al), (A4), and (A6) into this and equat-

(q)
ing coeScients of YJJM yields

MoJ(qJM) = q

J(J+1) (A3)

e' (cP +q) —e'~(d" —q)+2ot =0

whose only solution is e' = —e'~= —1. Hence,

(A8)

Mo(J+, )(qJM) =— (J+1) —
q

(2J+ 1)(J+1)

' 1/2 1/2
8 +q

2J(J+1)
The first step in obtaining the remaining elements of

M&I (q, J,M ) is to use Eq. (4.5) of Ref. [3]:
from which one obtains

(q) . (q) (q)rXYJIM=ir g AJILYJLM
L

(A4)
M+, (J+,)(qJM )

(q)
where the matrices AJtL are given explicitly in Ref. [3].
Together with Eqs. (2.9) and (Al), this leads to

1/2 1/2
8 +q J+1+q

4J(J+1) (J+1)(J+1+q)
(A10)

g Mgt AtL = —A,Mgt
l

(A5) M+)) J ))(qJM ) =
' 1/2 1/28 +q J+q

4J(J+1) J(J+q)
This, together with the unitarity of M&L, determines the

M&(J+, )
in terms of the M~, and fixes the latter up to a

A,-dependent phase. Specifically,
Note that if J=q, both M, L and Mg( J 1) vanish, so
that M&L is actually a 2 X 2 matrix, as required.
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