
PHYSICAL REVIEW D VOLUME 49, NUMBER 2 15 JANUARY 1994

BRST quantization of the chiral Schwinger model in the extended field-antifieM space
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It is shown that the quantization of the chiral Schwinger model in the Batalin-Vilkovisky framework
can be carried out in an extended space of fields and antifields, where the master equation has a local
solution. The Wess-Zumino term is generated in this way, avoiding the use of nonlocal expressions. The
nilpotency of the new BRST charge is proven explicitly.
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The Batalin-Vilkovisky (BV) Lagrangian BRST quanti-
zation [1] is a powerful method of quantization of field
theories. It is very useful for the treatment of a wide
range of theories, including those gauge theories whose
constraints do not close an algebra. However, when
anomalous gauge theories are concerned, the pathological
problems of this kind of theories emerge troubling the
construction of a gauge-independent generating function-
al. As was shown recently by Troost, van
Nieuwenhuizen, and Van Proeyen, the presence of
anomalies corresponds to the nonexistence of local solu-
tions to the master equation [2]. This fact is the BRST
reNection of those original perturbative calculations of
Feynman diagrams that gave rise to the so-called anoma-
lous Ward identities and that, from the current algebra
point of view, appear as a failure of the chiral generators
in closing an algebra in perturbation theory [3,4].

The chiral Schwinger model (CSM) is a two-
dimensional theory that is very useful for understanding
several features of anomalous models. Jackiw and Ra-
jaraman [5] showed that a unitary and consistent
efFective theory can be constructed for this model, in spite
of losing the gauge invariance. On the other hand, fol-
lowing the idea of Faddeev and Shatashvili [6] of intro-
ducing additional degrees of freedom through the Wess-
Zumino term, in Ref. [7] the Faddeev-Popov procedure
was applied to obtain a gauge-independent vacuum func-
tional. In Ref. [8] we showed that a gauge-independent
generating functional for the CSM can be built up using
the BV procedure. In this case a nonlocal solution for
the master equation was considered. Afterwards, the in-
troduction of an auxiliary field (the so called Wess-
Zumino field) makes it possible to write out a local gen-
erating functional. The same procedure is worthless in
the non-Abelian case, where one is not able to build a
nonlocal solution for the master equation. The naive ap-
plication of the BV procedure to this model would not
work, in the sense that the equation that defines the
method, the so-called master equation, has no solution.

In the same spirit of the Faddeev-Shatashvili works, re-
cently we proposed in Ref. [9] the introduction of extra
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As usual, the quantum action 8'in the BV scheme must
satisfy the master equation
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8'can be expanded in powers of A:

(2)

(3)

W=S+ g fi'MJ. .
j=1

(4)

The standard zero order term corresponds to So plus the
field-antifield terms, which become the gauge-fixing terms
when the antifields are restricted to the gauge surface
P' =8+/BP, 4 being the gauge fermion. Thus, one gets

degrees of freedom in the BV formalism. We showed
that an enlargement of the field-antifield space of the
chiral two-dimensional QCD (QCD2) model makes possi-
ble the construction of local so1utions for the master
equation. There, by the introduction of a field-antifield
pair associated with the gauge symmetry group we got a
gauge-independent generating functional for chiral
QCD2, obtaining the Wess-Zumino-Witten action cou-
pled to the gauge field as a solution for the master equa-
tion at first order in A. More recently, a generalization of
this procedure to treat in a generic way anomalous gauge
theories with a closed, irreducible classical gauge algebra
was proposed by Gomis and Paris [10].

The aim of the present work is first to show that the
quantization of the chiral Schwinger model (CSM) also
can be held in an extended space where the master equa-
tion has a local solution. Then we will build up the
BRST generator and prove, in the canonical quantization
framework, that the inclusion of the new field-antifie1d
pair associated with the gauge group leads to the nilpo-
tency of this generator.

Let us consider the classical action for the CSM:
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S=S,+ f d'xI ~„'a~c+iq*pc &—yy*c] .

The master Eq. (2) at first order in A' is

(M, ,S)=ibS, (6)

local solutions. It is easy to verify that the usual Wess-
Zumino term for the chiral Schwinger model,

M, = ' jd'x ' 'a 8a~8
2

where e is the BRST Jacobian, thus bearing the anoma-
lous properties of the path integral measure. The direct
action of the operator

a„al
gy

A
gym

on the action (5) would lead to b,S being proportional to
5(0), because of the two functional derivatives. This ill-

defined expression makes evident the need of a regulari-
zation scheme [2]. In the present case, the only effective
contribution to hS comes from the fermion-antifermion
terms of the gauge-fixing action S~F.

I d x(f'cP+gcf*) .

As explained in Ref. [8], we temporarily transform it in a
nonlocal expression by doing a point splitting using a ker-
nel K(x —y). By means of this kernel we introduce the
Fujikawa regularization method [11],which leads to the
regularized expression

bS= f d xc[(1—a)B A"—e"'8 A ] .
4~ P p v

As already mentioned, the master Eq. (6) with the ac-
tion (5) will not admit local solutions.

In order to remove this obstacle, we propose to enlarge
the field-antifield configuration space including, in addi-
tion to the fields that are present at the classical level,
also the field 0 associated with the Lie algebra of gauge
group U(1) together with the corresponding antifield 8*.
The 0 field will become dynamical only at the quantum
level. Since the classical action So is independent of 0,
the model is invariant under arbitrary variations of 0,

0~0+k,
besides the usual gauge symmetry of this model. Now,
the generator of this extra symmetry must be included in
the Hessian matrix of the extended action solution of the
master equation at the classical level. This is attained
simply adding to the action (5) the corresponding term

S=S + I d xI &„*a"c+iy*qc i qq*c+8*cj . '

Observe that now the action S depends on 0* through the
inclusion of the term 0*c, and this extra term plays a fun-
damental role modifying the master Eq. (6), in such a way
that one can construct a local solution, depending also on
the field 0.

The modified master equation at order I is

a„M, a,S a,M, a,S
(M, ,S)= + =ibS .

aA~ aA* &0 a0'
P

It is worth remarking the inclusion of 0 field leaves
b,S=ES, as can easily be seen from (9). Now, in this
framework, the master equation at first order in A admits

—8„8[(a—1 ) A "+e" A, ] ',

satisfies the master equation (10). The higher order con-
tributions to the master equation (2) vanish; so the quan-
turn action is just

8 =S+AMi . (12)

n, = rr, =o,
1 —

y50, —=
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——IIi+/ 1(70 /=0,
2

(13)

where & is the Hamiltonian density corresponding to the
action S, Eq. (5), and the prime means 8, .

In order to construct the canonical generator of the
BRST transformations, we now study the transformation
of the fields and antifields, which are defined by

5@=(N, JY)ix p . (14}

Here, W' is the quantum action given in Eq. (4) and p is

the parameter of the transformation. So, before adding
the M, term to action (5), the BRST transformation of
the fields and antifields are given by

64=(4,S)i~ p .

This result is the same as that of Ref. [6], thus showing
that it is possible to build up an action that leads to a
gauge-independent vacuum functional for the chir al
Schwinger model, without making use of the Faddeev-
Popov trick as in Ref. [7] or using nonlocal expressions as
in [3].

Let us now study the above procedure from the canoni-
cal point of view. It is well known that the presence of
anomalies breaks down the nilpotency of Q. We will now
investigate the operator Q to understand the effect of the
enlargement in the configuration space of fields and
antifields. What we are really going to calculate is the
anticommutator [Q, Q]+=2Q .

Both actions (5) and (12) represent, from the Hamil-
tonian point of view, constrained systems. Their quanti-
zation can be obtained, when there is no operator order-
ing problem, calculating the Dirac (anti)brackets for the
classical theory, and then associating them with the
(anti)commutators of the quantum fields as usual:

[ A, B]DB—+( —i/A)[A, B]+. There is a pair of con-
straints that is especially important in our analysis of the
effect of the inclusion of the 0 field in the canonical alge-
bra: the primary constraint associated with the momen-
tum conjugate to Ao and the secondary constraint that
comes from the time evolution of the former, namely the
Gauss law.

So, for action (5), where 8 and 8" are not present, the
classical Hamiltonian analysis leads to the constraints
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As the action S depends linearly on the antifields, the
BRST transformation are independent of the gauge con-
dition. Thus,

5,A~=a~cp,
5og= i Pcp,

5oP= —i4cp

The Noether's current associated with these transforma-
tions is easily calculated:

1 psJ„= B—F„c+gy„fc .
2

So, the generator Qo of transformations (15) is thus

o& =0
1 —ys

5oA„' =d F„,p gy„—
2

5of' = ,' f JJ—'(1 y5—)p i/—'cp,

5opo = —
—,'8(1 y5—)gp+ig'cp,

5oc = ApcPp+g gp pP~p—.

(15)
1 —

ys
Q, =f dx, iIi+6

Observe that Qo is exactly the Gauss law times the ghost, ,
as one hopes from the canonical structure of the model.

The only contribution to [Qo, Qo]+ comes from the
fermionic current term

1 —
Xs

[Qo Qo]+ = f dx, f dy, c(x) p(x)1 o g(x), g(y)yo p(y) c(y}
xO =yo

(18)

So, Qo is essentially proportional to the equal time
commutator of the chira1 current:

Jo =Ax)ro
2

The calculation of this current algebra requires a careful
management at the quantum level as it involves the prod-
uct of operators at the same point. To overcome this
problem a regularization scheme is needed. As is well
known, the calculation of this commutator generates the
Schwinger term, transforming the current algebra into a
Kac-Moody one. The Bjorken-Johnson-Low limit [12)
enables one to relate the vacuum expectation value of this
current commutator to the second functional derivative
of the effective action, obtained from the fermionic in-
tegration [4,13—15]. In fact, following Ref. [15],defining

5 S,a[A]
G „(x,y)=

5A "(x)5A "(y)

the vacuum expectation value of the current commutator
1S

([J (x),J (y)] ) =lim[G, (x„xo,yi, yo+c)''
m~0

G„(xi «o y i yo

As is well known, the efFective action (S,ir) is equivalent
to the logarithm of the determinant of the fermionic
chiral operator [8+A(1 —y~)/2]. This result was first
obtained by Jackiw [16,5] from the previously
Schwinger's calculation [17] for the standard Schwinger
model. Alternatively, by means of a decoupling gauge
transformation, one can relate this determinant to the
corresponding Jacobian [18]. The regularization of this
Jacobian is analogous to that previously used in the cal-
culation of 6$. So, it can be performed following
Fujikawa's prescription also, finally, getting, for the
current commutator,

fii[Jo(x),Jo(y)] = Bi5(xi —yi) .

Now, we will analyze in the same way what happens
with the extended action (12). The addition of the Wess-
Zumino term Mi, Eq. (11),obtained as a solution of the A'

order master equation, comes mainly to modify the con-
straints (13), leaving

QO —=IIO=0,

0,=—[Qo,&+&,]

&
—

Xs= IIi+igyo Q
— [(a —1)Ao+ A i ]

(20)

— rr, —— e' =0.
4n.

%& is the Hamiltonian density corresponding to the AlV,
term and II& is the momentum conjugate to the field 0.
We can see that, as a consequence of the introduction of
the M, term, the chiral constraint [II&—(ii/4n)0'] ap-
pears in the modified Gauss law. Now, at quantum level,
the commutator of the modified Gauss law with itself is
zero because the additional terms came to cancel the
Schwinger term arising from the fermionic chiral current.

Let us now see how does the inclusion of the extra pair
0,0' and the M, term contribute to the BRST transfor-
mations. According to Eq. (14),

5@=(4,S)~x p+&(@,~i)lx p .

For the field 0, the only contribution comes from the 8'c

The appearance of the Schwinger term means the break-
down of the gauge symmetry which also leads, as we shall
see, to the breakdown of the Qo nilpotency. Introducing
the above commutator in Eq. (18},we obtain

l
[Q„Q,],=—f dx, c(x)a,c(x) .
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term in the action S, then

As the M i given in (11) does not depend on the antifields,
it does not modify the transformations corresponding to
the fields, given in Eq. (15). However, it gives rise to ad-
ditional terms in transformation of the antifields:

QA„* =5oA„*+ [(1—a)8„8+@"'B,8]p,

Finally, the BRST generator Q is nilpotent:

Q'= —,
' [Q, Q ]+ =O

Thus, the physical states of the theory are defined by the
cohomology class of the generator of BRST transforma-
tions:

V5Q= f dx, c BF—o +gy'o
2

5c *=5oc*+O*p

58'= I(1—a)B t)"8—[(1—a)B A "+e""tj"A„]].fi

4m. p II,

[(a —1)Ao+ A, ]+ IIe — 8'

(27)

It is worth remarking that the BRST variation of the
antifields are proportional to the equations of motion;
thus, from the canonical point of view, they can be con-
sidered as being zero. So, the generator of these transfor-
mations is Q =Qo+ Q' with

Q'= —f dx, c [(a —1)Ao+ A, ]+ II&— 8'

[8'(x), lie(y)] =ifiB,6(x, —y, ),
[II',(x), A, (y)] = —iirtc), gx, —y, ) .

(24)

These Schwinger-like terms come to cancel the analogous
contribution of Qo. Thus,

[Q', Q']+ =2[Qo, Q']+ = — f dx, c(x)B,c(x) . (25)

(23)
The canonical commutation relations for the model de-

scribed by the action (12) can be calculated taking into
account that now the modified Gauss law is a first class
constraint at the quantum level. The nonvanishing equal
time commutators that will contribute to the anticommu-
tator [Q', Q']+ are

Observe that since the physical state must be annihilated
by this BRST operator, the new term added in order to
restore the nilpotency impose the chiral constraint
II&= (A'/4m. )8', on the enlarged Hilbert space.

Concluding, we saw that it is possible to generalize the
Batalin-Vilkovisky Lagrangian method including a field
associated with the gauge group element (the Wess-
Zumino field). Thus, a gauge-independent formulation
for an anomalous theory can b~ built up without using
any nonlocal expressions. As can be easily realized, for
nonanomalous theories, this extension in the space of
fields and antifields will not affect the theory, as the
%ess-Zumino field would not become dynamical, since
M, =0 is a solution of the master equation in this case.
From the canonical point of view, it was shown that the
BRST charge has its nilpotency restored in the extended
space. Also, a relevant fact is the presence of the chiral
constraint in the new BRST generator. This means that
the physical sector of the extended Hilbert space includes
only one chiral sector of the extra bosonic field. Its
nongauge invariance comes to compensate the anomalous
behavior of the fermionic measure.
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