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Renormalization af gauge-invariant compasite operators in the light-cene gauge
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We generalize to composite operators concepts and techniques which have been successful in

proving renormalization of the efFective action in the light-cone gauge. Gauge-invariant operators
can be grouped into classes, closed under a matrixwise renormalization. In spite of the presence
of nonlocal counterterms, an "efFective" dimensional hierarchy still guarantees that any class is

endowed with a 6nite number of elements. The main result we 6nd is that gauge-invariant operators
under renormalization mix only among themselves, thanks to the very simple structure of Lee-Ward
identities in this gauge, contrary to their behavior in covariant gauges.

PACS number(s): 11.10.Gh, 11.15.Bt

I. INTRODUCTION

Composite operators often occur in calculations of
physical cross sections. A celebrated example is deep-
inelastic scattering where short-distance products of cur-
rents are expressed in terms of local operators by means
of a Wilson expansion [1]. But, strictly speaking, the
Lagrangian density itself is an instance of composite op-
erator.

As quantum fields are distribution-valued operators,
one can easily realize that, taking products at the same
space-time point, gives rise to singularities. Hence we see
the need of first considering a procedure of regularization
and then performing the necessary subtractions in a con-
sistent way to operatively define their finite parts [2], at
least in a perturbative context.

The peculiar phenomenon occurring in composite oper-
ator renormalization is their mixing. Locality and poly-
nomiality in the masses of counterterms guarantee the
presence of a dimensional hierarchy: counterterms can
only have canonical dimensions less than or equal to the
ones of the operators we are considering. Therefore, the
number of counterterms which mix is finite [2].

All those concepts and techniques naturally apply to
gauge theories with the proviso that they have to com-

ply with Ward identities taking care of redundant de-
grees of freedom. In covariant gauges (typically in gen-
eralized Feynman gauges) the relevant Slavnov-Taylor
identities involve unphysical operators (Faddeev-Popov
ghosts): As a consequence, a deep thorough analysis [3]
has shown that gauge-invariant operators do mix with
unphysical ones under renormalization.

The situation radically changes in the so-called physical
gauges n„A~ = 0, n~ being a constant vector, where
there is no need of Faddeev-Popov fields and Lee-Ward
identities are straightforward [4]. This is the reason why
such gauges have been largely adopted in the past for
phenomenological applications [5].

Only recently however has a systematic approach been
developed with a sound basis on the axioms of canonical
quantum field theory. Effective action renormalization

has been proven, so far, at any order in the loop expan-
sion, only in the the light-cone (LC) gauge (nz = 0) [6].
Essential to this goal is to endow the "spurious" singu-
larity, occurring in the vector propagator, with a causal
prescription [Mandelstarn-Leibbrandt (ML) prescription
[7,8]], as suggested by a careful canonical quantization
[9]. This prescription in turn is the source of a potentially
serious diificulty: nonlocal counterterms are needed, al-
ready at the one loop level, to make one particle irre-
ducible vertices finite [8].

It is clear that nonlocality could in principle destroy
dimensional hierarchy. Should the mixing involve an in-
finite number of independent counterterms, even for a
single insertion, the very program of composite operator
renormalization would be in jeopardy.

Happily this is not the case. Generalizing concepts and
techniques which have been successful in proving renor-
malization of the effective action, in the next sections we
show that a new kind of "effective" dimensional hierar-
chy can be established which is enough to prove renor-
malization at any order in the loop expansion, at least for
gauge-invariant composite operators, which are the ones
directly involved in phenomenological applications [10).
Actually the very simple structure of Lee-Ward identities,
which survives renormalization in this case, will allow us
to reach a rather strong result: in the LC gauge, un-
der renormalization gauge invariant operators mix only
among themselves, in classes with finite numbers of ele-
ments.

The problems one encounters when treating more gen-
eral operators will be brie8y discussed in the Conclusions.

In Sec. II we introduce our notation, we define the
generating functionals with composite operators inser-
tions, and derive the Lee-Ward identities they have
to satisfy. Section III is devoted to generalize the
Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) sub-
traction method [11—13) to our problem and prove the
gauge invariance of renormalized composite operators. In
Sec. IV we discuss power counting in the LC gauge and
the need of introducing a more general criterion of su-
perficial degree of divergence, in relation to Weinberg's
theorem [14]. In Sec. V we explore all the constraints
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the counterterms have to satisfy and in Sec. VI we prove
that in the mixing of gauge-invariant operators a unique
independent nonlocal structure can appear with a mass
dimension equal to one, the same one encounters when
renormalizing the effective action. Concrete examples of
mixing are presented in Sec. VII, while remarks and com-
ments concerning further developments are contained in
the Conclusions.

27p = (9~ —xgA@ . (6)

h ~ ~ g(x) = ig u) (z)g(x),
h~ jA„(x) = D„ur(z),

(7a)

(7b)

The Lagrangian density in Eq. (1) is invariant under
gauge transformations, as is well known. Their in6nites-
imal form is

II. THE GENERATING FUNCTIONALS WITH
COMPOSITE OPERATORS

We start by de6ning our Lagrangian and our notation,

CGi = —iTr (F„„F"")+ Q (i'p —m) g

where I"„ is the usual field tensor in the adjoint repre-
sentation of the algebra su(N):

F„=o]„A„—c]]„A„—ig[A„, A„],

TI'('TaTb) 1(ab

7 a, Tb = 'Lfabcrc

(2)

(3)

(4)

(5)

f ' being the structure constants of the group which are
completely antisymmetric in this basis. B„is the covari-
ant derivative acting on the fundamental representation:

where D„ is the covariant derivative acting on the adjoint
representation

D„=0„—ig[A„, ]

and a(z) are the infinitesimal parameters of the trans-
formation. In order to quantize the theory, we introduce
the light-cone gauge fixing

CGF = —A(z) n„A"(z), (9)

A(z) being Lagrange multipliers and n„a fixed lightlike
four-vector n = 0.

In the following, dimensional regularization will be un-
derstood in the framework of perturbation theory. In 2u
dimensions the coupling constant g will be replaced with
gp where p is a mass scale.

From Eqs. (1) and (9) we can construct the usual
functional W which generates the Green's functions of
the theory

W]J Kp, d] = A/ f]dd]]dA]]dc/r]]dd]exp e jd x]car + Cap+ Ce) (10)

where
I

path integral entails the condition

Cs = Jp A" yK A+ng —Qrl.

Then we can de6ne in the usual way the functional Z =
—, ln W which generates the connected Green's functions;
from Z we get the "classical " fields A„, A, 4, @, and,
eventually, the functional I' which generates the proper
vertices of the theory:

I'[A, A, iI', 4] = Z [J, K, il, il]

d4x J +K A+4g —g4 .

The derivatives with respect to Grassmann variables are
understood as left derivatives; with our conventions we

get, in particular,

which in turn guarantees that any Green's function con-
taining nA, but no A, vanishes.

In this section we are mainly concerned with the gen-
eralization of such generating functionals to the case in
which composite operators are considered. Such a gener-
alization is presented, for instance, in Refs. [15,16]. We
denote by X = X[A, g, Q] a polynomial built from the
original fields and their derivatives taken at the same
space-time point; Green's functions with insertions of
such operators usually exhibit further singularities. The
technique one uses to take those insertions into account
is to introduce, in the definition of 8, a source term re-
lated to X. In the general case we shall consider a set of
operators X; each associated to a source Z;, by adding
the Lagrangian density

zz br C~=) K, X;. (15)

sz sr'-bg " be

We also notice that invariance under a shift in A of the

In the following we shall not be concerned with composite
operators involving Lagrange multipliers as they would
afFect the equations of motion of the Geld A that enter
in the derivation of the Lee identities. Moreover we shall
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limit ourselves to gauge-invariant composite operators,
but in the 6nal section where we shall briefly dwell on
possible generalizations.

A crucial point to remark ls that the functional I with
insertions is defined by means of a Legendre transforxna-
tion involving only the classical fields we have already
considered:

I'[A, A, 4, i', Z;] = Z[J, K, rI, rl, Z;]

d4z J +K A+ Cq —gC

(i6)

As a consequence, one can prove the equality

where on the left-hand side (right-hand side) "classical"
fields (original sources) are kept fixed beside the sources

~~~' ~

By solving the equations of motion of the Lagrange
multiplier it is possible to make explicit the dependence
ofI'on A,

r]A, A, e, i', Z, ] = r]A i, &, Z;] —f d *A.~A

and to convince oneself that the gauge-6xing term does
not renormalize. I' is customarily called the "reduced
generating functional. "

As we are concerned with gauge-invariant operators,
Lee-Ward identities, which have a very simple form in
light-cone gauge, will not entail further difIlculties in
presence of insertions. In order to derive the Ward iden-
tities, we follow the standard technique of performing
a change of variable in the path integral corresponding
to an infinitesimal gauge transformation. The related
functional determinant in this gauge is independent of
the fields, as is well known. As we are here considering
gauge-invariant insertions, they cannot affect the form of
the Ward identity

.bW bW. )
+igp g7 + r g

~

=0, (19)
ihg ibg

where TV depends also on sources E; related to composite
operators. We can get rid of the term with a second-order
functional derivative in Eq. (19), using the equations
of motion for the Lagrange multiplier. Then we derive
from Eq. (19) the following I ee identity for the reduced
functional I':

being the functional differential operator which de-
scribes an infinitesimal gauge transformation of the "clas-
sical" fields. We shall use the same symbol also for the
analogous operator acting on functionals of elementary
fields. Equation (20) means that F is gauge invariant.
We stress the fact that I' depends also on possible sources
related to gauge-invariant composite operators.

III. GAUGE INVARIANCE OF RENORMALIZED
OPERATORS

In order to renormalize either the action or a compos-
ite operator, we adopt the graph-by-graph subtraction
method (or BPHZ method) summarized by Bogoliubov's
8 operator on Feynman graphs [11—13]. We just stress
the fact here that in the presence of diagrams with op-
erator insertions the de6nition of one-particle irreducible
(1PI) diagrams remains the same if the operator vertices
are treated just like ordinary interaction vertices.

In the following we shall work in the minimal subtrac-
tion scheme (MS) on dimensionally regularized diagrams:
we denote by KG the singular part of the Laurent expan-
sion of the graph G in the neighborhood of u = 2. The
renormalized graph BG is obtained by subtracting the
singular part &om the subdivergence-free diagram RG:

RG = (1 —K)BG.

We shall also use the notation

+Ex.[A, @,vP, Z, ]), (23)

as the unrenormalized action. In this definition the
gauge-fixing term is excluded as it does not renormalize;
hence, S& & is gauge invariant. We denote by I'& & the
reduced generating functional obtained &om the action
S&~& and perform the loopwise expansion

(22)

to indicate the specific counterterm necessary to renor-
malize the graph G. CG is different &om zero if and only
if G is 1PI and super6cially divergent. In this case a spe-
ci6c counterterm chosen to produce CG as an additional
Feynman rule has to be added to the Lagrangian. If G
involves composite operator vertices it contributes to the
renormalization of the Z-dependent terms; otherwise it
renormalizes the original Lagrangian.

By performing this procedure for every 1PI diagram up
to the order of l loop, one builds an action 8& & renormal-
ized to this order. A synthetic and completely equivalent
description of this method is given through the generat-
ing functional I'. We define

S~ ~]A, d, d, E;] = f d'T(Car]A, d, d]

br, (br . .br &D„' [A], + igp' ~ @+ 4~
bAs (b@ b4

r&'& = ) r~'I;
m=O

(24)

:—b, F=O, (20)
I' represents the m-loop contribution to I'~ &. Now we
are able to de6ne iteratively the renormalized action
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SI'&[A, y, y, z, ] = SI'-'&[A, y, y, z, ]

—&cr," '&[A, @,@,z,], (25)

Let us start from Eq. (30). The form of Lee identities is
not afFected by renormalization:

where )C picks up just the singular part at ~ = 2 of the
regularized expression r& [A, g, g, Z;]; in this func-~

~

tional, the fields A, g, and g take the place of the corre-
sponding classical fields.

In general, even in a covariant theory, if the dimen-
sion of X, is & 4, an infinite number of counterterms of
arbitrarily high degree in Z, are introduced in the renor-
malized action by Eq. (25). The "renormalized operator"
[Xy]&'& is defined by

s rf'&[A, e, 4] = o. (32)

a &Cr~'&[A, e, 4] = o.

From Eq. (25) we finally obtain the desired result

a SI'+'&[A y j] =o. (34)

The same equation must hold for the singular part of the
Laurent expansion in ~ = 2 and for each contribution in
the loopwise expansion:

Z, =O Vi

the operator is renormalized only in the sense that
Green's functions with at most one single insertion of
[Xi,]&'& are finite in the renormalized theory I.f fi-

nite Green's functions with more operator insertions are
needed one has to consider the whole renormalized action
S&'& whose functional W&'&[J, K, rj, r&, Z, ] is finite up to
order t at any degree in Z, .

A "weak" form of renormalization will also be consid-
ered in which only counterterms at most linear in the
sources Z, are introduced. To this purpose we define

r = I' + cI, z ) ~
Zi(x), (27)

. t' ar

the part of I linear in the sources Z, . Then we define
recursively as weakly renormalized action

s~'&[A, @,@,z, ] = s~'-'&[A, q, @,z, ]

-xr,"' '[A, y, y, z;]. (28)

Of course one gets

s&'&[A, p, p, z;] = s&'&[A, &,@]+) z, [x,]&'&, (29)

where the first term on the right-hand side (RHS) is the
renormalized action one would obtain if operator inser-
tions were absent. Only the linear parts in the Z, 's of
the generating functionals obtained &om S are Gnite.
We shall now prove the following proposition.

Proposition 2. Let S& & be the action with insertions
of gauge invariant operators X, , defined by Eq. (23) and
S&'& the action renormalized up to l loops according to
Eq. (25); then (1) S& & is gauge invariant Vl,

Of course, Rom Eq. (29) it also follows that the weakly

renormalized action S~ ~ is gauge invariant.

IV. POWER COUNTING IN THE LIGHT-CONE
GAUGE

The main feature of Feynman graphs in the light-cone
gauge is the presence of spurious poles introduced by the
particular form of the free gauge field propagator:

(0]TA„{x)A (y}]0)—

d k —zb n'"Jl" + n k"~

~

ik(x-y) y v

{2z.)4 k2 + ie [[nk]]

(35)

The prescription of the spurious pole is the so-called
Mandelstam-Leibbrandt (ML) prescription [7—9]

1 Man

[[nk]]

1 r.e1 n*k

nk + incr(n*k) (nk) (n'k) + i e
' (36)

1

[[nk]]

1

k+ + iso(k )
' (37)

where we have introduced the light-cone coordinates
(LCC's)

cr( ) being the sign function and n„' a new four-vector on
the light-cone independent &om n„. The choice of n„*

represents a further violation of Lorentz covariance. We
choose n„= ~(1,0, 0, 1) and n„" = ~(1,0, 0, —1) in a
particular Lorentz frame. Therefore

a SI'&[A, y, q] = o, (3o)
k +k3

and (2) the renormalized operators [X,]&'& are gauge in-
variant, Vl,

~.[X,]I'&[A, @,@] = o.

One can prove that the derivative of the ML distribution
with respect to p" is given by

Proof (2) follows directly from (1) and Eq. (26). Let
us show (1) by induction on /; as obviously the thesis
holds if jt' = 0, we have just to prove the inductive step.

We take here the opportunity of correcting Eq. (A6.2} of
reference [17].
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0 1 n~
~p" [[ pl] [[ pl]'

or in the cases

b~(d k) = 2, (41)

0 1 1
Bn~ [[np)] [[np))

' (40)

and that Eq (3.6) is manifestly invariant under dilation
of the vector n„*. As a consequence, the homogeneity de-
grees of a composite operator with respect to both gauge
vectors are preserved under renormalization.

One can show [6,17] that using the ML prescription,
the Euclidean UV power counting is a good convergence
criterion for the corresponding minkowskian integrals.
On the other hand, the spurious poles behave as con-
vergence factors only for the "longitudinal" variables k
and k and not for the "transverse" ones k and k . It
follows that in light-cone gauge a diagram may have a
divergence associated to certain proper subsets of the in-
tegration variables yet involving all integration momenta.
From an analytical point of view, i.e., as for Weinberg's
theorem, these divergences are subdivergences, but &om
a graphical point of view they are to be considered as
overall divergences because they are not related to sub-
diagrams and therefore they are not removed by counter-
terms in the graph-by-graph subtraction method. Hence
we shall call "superficially divergent" a graph G if it ex-
hibits positive power counting on some subset (proper or
not) of its integration variables not limited to a proper
subdiagram of G. In the following we introduce an ap-
propriate superficial degree of divergence consistent with
this definition.

First we consider a one-loop diagram G~ ~. We denote
by bv(G~il) the usual degree of divergence one obtains
by a dilation of all the variables (k ) = {ko,ki, k2, ks)
and we define the analogous quantity b~(G~ii) obtained
considering just the transverse variables (k+) = (k, k2).
b~ difFers from bv on difFerentials,

This result will be useful when discussing the form of
nonpolynomial counterterms in Sec. V.

The ML distribution has also correct homogeneity
properties with respect to both n„and n„*; this can be
seen observing that

( 1
b~(nk) =b~(n*k) =b~

~
~

=0,
&[[nkl])

while we shall keep, for a single component,

(42)

b~(k") = bv(k") = 1,

E(G~ ~) =max(bx(Gt ~), b (Gx~ ~)). (44)

It is easy to show that b(G~il) is the maximum degree
among the ones related to all possible subsets of integra-
tion variables.

Now we consider a graph G with l integration momenta
kq, . . . , k~. We still define

{k;)= (k, , k;, k;, k;),
{k~)=(k,', k,'), i=1, , t,. ., .

(45)

and denote by

b„, „,(G), v; q (V, J ), (46)

the degree of divergence of G related to the variables

(k",') u (k,"') u . u (k,"') . (47)

The superficial degree of divergence of G is now defined
as

b(G) = max (b„, „,(G)) .
~, ~~v, i~ (48)

It is easy to realize that this definition leads to a sufficient
condition for convergence. To show that it is not too
cautious, we look at the following two-loop example: for
the integral

since the result of integrals will always be written in four-
vector notation.

The "superficial degree of divergence" of G~ ~ is then
defined as

I = d kid k
k" k" k'

1 1 2

'(ki —V)'(ki —k2) k2 [[n(ki + k2+ s)]] [[n(ki + p)]] [[nki]l'
(49)

one finds

b(I) = max (
Vj (50)

and hence I may diverge in the variables (ki ) u (k2).
We remark that I has negative mass dimension and no
subdiver gene es.

We say that a diagram G is superficially convergent
(divergent) if b(G) ( 0 [b(G) ) 0]. We say that G
has a subdivergence if it has a superficially divergent 1PI

proper subdiagram.
It is crucial to notice that, while in covariant gauges the

usual degree h(G) has a dimensional meaning because it
equals the dimension of the 1PI momentum-space graph,
in the light-cone gauge h(G) depends on the particular
topological structure of the graph. As a consequence,
difFerent graphs contributing to the same proper vertex
have in general a difFerent degree and any proper ver-
tex, whatever its dimension, can have superficially diver-
gent graphs. Therefore, in the light-cone gauge power
counting arguments do not limit; the type of counter-
terms entering the Lagrangian or a composite operator
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under renormalization. In particular, as even diagrams
with negative mass dimension may be superficially diver-
gent, nonlocal, i.e., nonpolynomial in external momenta,
counterterms are generally expected.

V. GENERAL FORM OF NONPOLYNOMIAL
COUN TERTERMS

In a covariant field theory and in particular in Yang-
Mills theories with covariant gauges, the so-called BPH
theorem holds. The counterterm CG of a 1PI graph
G is polynomial in the external momenta and thereby
the locality of the Lagrangian or a composite operator
is preserved under renormalization. The theorem does
not hold in the light-cone gauge: the lacking argument
in the proof is that in a covariant theory the action of
the derivative with respect to an external momentum on
a graph G lowers its degree of divergence. In the light-
cone gauge this is not true. Consider for instance a graph
G with l integration momenta kq, . . . , kt. Suppose that
G has a spurious pole of the form

1

[[n(» + k)]] [[n(» + k) 11

1 ( 1 1

[[n(» —»)I] [[n(»+ k)]] [[n(»+ k)]]

G=) II„
k

where each Ik is of the form

(55)

r
(53)

Proposition 8. Let G be a 1PI graph in light-cone
gauge. Without loss of generality we can consider

d ky. . . d k( f(p, k)n, n, g~~) 54
II;= (t,'(» ) ™,') Il = [[ (»p)l]

where p, are the external momenta, p~. (j = 1, . . . , P) are

linear combination of the p;, f (f) is a polynomial in its
arguments, tz(t~) are linear combinations of the p, and
k, , sI, (s~) are linear combinations of the k, and p, , and
mz(mz) are possible fermionic masses. Then G can be
expressed as a sum

1

[[n(kq + r + other momenta)]]
' (51)

r being an external momentum. The degree b(G) is not
necessarily lowered by a differentiation with respect to
r", as the degrees b~ „, , are not. As a consequence,
CG is not in general a polynomial in r". However it is
easy to see that a suitable number of derivatives,

(52)

acting on a graph G, does indeed make it converge [see
Eq. (39)]. Therefore the BPH theorem is modified as
follows.

Proposition 2. Let G be a 1PI diagram in light-cone
gauge and p an external momentum. If b(G) ) 0, then
CG is a polynomial in the components p, n F (—,1, 2).

Possible nonlocalities of counterterms are therefore
limited to nonpolynomial functions of p,

+ = np;. We
shall see that the nonlocalities can only appear as spuri-
ous poles [[np]] in the external momenta.

By the same arguments one can show that in light-cone
gauge, as in covariant gauges, for a 1PI graph G, the
counterterm CG is polynomial in the fermionic masses.

Some results about the most general form of nonlocal
counterterms prove to be very important in renormaliza-
tion theory. The following proposition states that the
only possible nonlocalities of a counterterm are spurious
poles —in the external momenta. In the proof, the
following "splitting formula" hoMing for the ML distri-
bution is used:

(56)".ns, (p)r=l
d kg d k) f(p k n n*, g„)

Q, , (t,'. (k, p) —m,') Q, [[nk ])~-

with P ) 0 Vm and
t,

Qp + p=p w p&p. (»)
m=1

Corollary g. CG is a meromorphic function in the
variables p,+. = np, with poles at most of order P.

Proof: (corollary) it follows directly from the form of
the integrals I observing that CI is polynomial in the
external momenta as the spurious poles are p, indepen-
dent.

Proof: (proposition) by induction on l. We first show
the thesis for l = 1. If no spurious poles depend on kq,
then G is already of the form I with Pq ——0 and p = P.
Otherwise, by using formula (53), one can factor out of
the integrand all spurious poles but one [[n(p + kq)]]
that can possibly be of higher order (Pj ) 1) if multiple
poles were originally present in G. By shifting kz these
poles become [[nkvd]]

~' and therefore G is decomposed
as in Eq. (55).

Let us now assume that the thesis holds for l —l loops;
we can apply to the integral in d k~ the same proce-
dure above considering as "external momenta" also the
variables k,. i = l, . . . , l —1.

G is therefore reduced to a sum of terms of the form

II.= '[[ns. (» k~ k~-~)1]

d2 k( f(p, k, n, g„„)
II,=, (t,'(k p) —,') [[ k]1'

d' k)

[["k~)I~'

d2 kg . d2 k( g f(p, k, n, g„„)
II;=, (t (k, p) --,') II'.=,'[[-..(p—,k. , 'k-. )]]



49 RENORMALIZATION OF GAUGE-INVARIANT COMPOSITE. . . 1073

We can now apply the inductive hypothesis to the multiple integral on the RHS considering p; and k~ as external
momenta but remembering that the variables p; do not depend on k~. As a consequence, the spurious poles extracted
from the multiple integral can be factorized out of the integral in d2 kt giving only terms of the form (56). 0

We now discuss a feature of Feynman integrals in the light-cone gauge that is fundamental in selecting the possible
structures involved in operator renormalization. To this purpose let us consider the following peculiar property of the
ML prescription under the algebraic splitting:

1 1 1 1 1

nk + iso (n*k) n(k —s) + iso [n'(k —s)] ns + iso (n's) n(k —s) + iur[n*(k —s)] nk+ iver(n'k)
(58)

In the limit s„~ 0, no singularity is present in either
term of the equality; in particular at the left-hand side we
have a double pole at nk = 0 with causal prescription and
at the right-hand side the pole at ns = 0 is canceled by
a corresponding zero of the quantity in square brackets.
However, would we consider the limit ns ~ 0 with n's j
0, a singularity at ns = 0 would persist owing to the
dependence on n'.

This is at variance with the behavior of a prescrip-
tion involving only one gauge vector, after the disposal
of Poincare-Bertrand terms [17], and is at the root of
the nonlocal behavior of some counterterms in light-cone
gauge with the ML prescription.

It is however clear that, should we restrict the spurious
denominators to the subregions n*s; = —ns;, s; being
any generic four-vector, we would get

1 ns 1= CPV —,
ns + 2eo'(n s) (ns) —2E ns

(50)

VI. CONSTRUCTION OF RENORMALIZATION
CLASSES

In covariant Yang-Mills theories, the renormalization
of gauge invariant composite operators is governed by the

and would recover locality by the very same argument
which is used in the proof in the one-vector spacelike
case [17]. We stress that this restriction must be un-
derstood in the sense of the theory of distributions. In
particular multiple poles should always be interpreted as
derivatives; otherwise one immediately runs into powers
of CPV prescription, i.e., meaningless quantities.

Having the above discussed property in mind, we now
require that all acceptable nonlocal structures in coun-
terterms have to become local when n'8 is replaced by
—nB.

Actually a replacement of the kind n*O —+ e nO, with
any constant ~, would do the job. Our previous choice
is reminiscent of the condition n + —n, advocated in
Ref. [6] to recover locality in analogy with the spacelike
planar gauge. We stress however that the present con-
dition is imposed in a form of a phase-space restriction
while standing on the light cone; in this sense it is closer
to the spirit of the discussion in Ref. [18].

We shall show in the next section that this criterion
is extremely efBcient in selecting among a priori possible
nonlocal structures the only acceptable one: 0, the same
already present when renormalizing the effective action
[61.

BPH theorem; the locality of counterterms guarantees
that a composite operator can only mix with operators
of lower or equal canonical dimension. This dimensional
hierarchy automatically limits the number of renormal-
ization constants needed by a single renormalized opera-
tor. Nevertheless, in covariant gauges, the renormaliza-
tion of composite operators is a very complicated matter
because of the presence of nonphysical degrees of &ee-
dom that contribute nontrivially to renormalized opera-
tors. For this reason the gauge invariance of a composite
operator is generally lost under renormalization [3].

In light cone gauge the situation is opposite. Renor-
malization preserves gauge invariance of the operator,
but the presence of nonlocal counterterms could allow
in principle an in6nite number of independent structures
to appear.

Our aim is to show that on the contrary the renor-
malization of a gauge invariant composite operator in-
volves only a Gnite number of renormalization constants
and that nonlocal terms do not affect physical quantities.
From now on we will focus on weak renormalization (a
single insertion) because, in the more general case, an
in6nite number of counterterms is expected on general
grounds also in covariant theories if the operator has di-
mension & 4.

Let us consider a local gauge invariant operator X be-
ing a Lorentz tensor of rank i (i f'ree Lorentz indices),
with homogeneity degrees O„and O„with respect to
the gauge vectors and mass dimension d . The most gen-
eral form of the renormalized operator [X] is a structure
having the same characteristics of X mentioned above
but locality since poles of the form nO may be present;
however the structure has to become local if the substi-
tution n*O -+ nO is performed. Such structures will be
called quasilocal. We observe that the canonical dimen-
sion of the Geld A„cannot be de6ned in light-cone gauge
as the UV behavior of its propagator does depend on the
gauge vector; the only well-defined dimension of opera-
tors in light-cone gauge is mass dimension. As a conse-
quence in the expression of the renormalized operator [X]
we shall consider mass parameters as part of mixed oper-
ators and shall work with dimensionless renormalization
constants. Hence we can state the following.

Proposition b. Local or quasilocal gauge invariant com-
posite operators with the same mass dimension d, the
same homogeneity degrees 0 and 0„, and the same
tensorial rank i form a class that is closed under renor-
maliz ation.

We want to show that each of these renormalization
classes contain a finite number of independent operators.
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In the construction of quasilocal gauge invariant struc-
tures, in addition to the usual covariant tensors, spinors
and derivatives, the following covariant nonlocal integral
operator can be used as a building block:

[nD
—1]ab bab g facd (nAc[nD

—1]db)
1 1

[[n~]l [[n~]]

(6O)

the formula has to be understood recursively and can
easily be expanded in powers of g. Because of the neg-
ative mass dimension of nD, for any given composite
operator, an in6nite set of possible independent counter-
terms can be obtained still satisfying the requirements
of correct mass dimension, homogeneity, and tensorial
structure. On the contrary, only very few structures con-
taining nD become local when n*O —+ nB; by explicit
construction one realizes that the only acceptable ones
are those in which nD is carried by the following com-
bination trasforming in the adjoint representation:

(61)

This structure is peculiar since n„n'„I"" develops a fac-

tor nD in the numerator when n*O —+ nO:

~ll..s .a = 1 1
(nB n* A —nB nA —ig [nA, n* A] )n*n nD

1 1
(nD n'A —nD nA)n*n nD

1
(n'A —nA).n*n (62)

Such a condition is indeed stronger than the one consid-
ered in Ref. [6] as structures like

n„n*„F" x (nonlocal), (63)

OI

1 n*D x (anything), (64)

become local if one replaces n* ~ n but not if n*O ~ n6.
The crucial point here to observe is that 0 has positive

mass dimension; hence, for any given operator the num-
ber of possible independent gauge invariant counterterms
built &om local covariant objects and 0, is automatically
limited by dimensionality arguments. Equivalently, each
renormalization class is finite. Moreover, by directly in-
specting the expansion of 0,

=Q +P g&fl Q =n'A —"snAa

ga ( 1)k+1 fab&ha 1 fh& 1b& 1h& & fh&b&h1 f'h1b1c 1 nAbg I nAba 1 1 1 nAb1 n BnAc
k

—
~ I n8 n8 n8 n8 n8 '7

(65)

one learns that all nonlocal terms appearing in the renor-
malized operator [X] will be proportional to the field nA;
therefore only the local part of the renormalized operator
[X] will contribute to A-independent Green's functions
[see Eq. (14)].

What we have said before can be summarized as follows
Proposition 6. Let X be a local or quasilocal gauge

invariant composite operator; then (1) [X] involves a fi-

nite number of renormalization constants and (2) pos-
sible nonlocal terms of [X] are proportional to nA and
therefore do not contribute to physical quantities.

Let us see how to build a basis of independent oper-
ators for a given renormalization class characterized by
the mass dimension d, the homogeneity degrees O„and
0 -, and the tensor rank i of its gauge invariant opera-
tors. In the following table we list the "blocks" that can
be used to build a local or quasilocal operator:

3f + 2q+ p+ (u+ m = d (67a)

j —(u —I, = 0„, (67b)

k —l= 0„». (67c)

where of course g" is understood only with free indices.
The positive integer variables f, q, . . . , r denote the mul-

tiplicity of a single factor inside a given operator. Of
course, as already anticipated in (66), derivatives act-
ing on gauge invariant quantities are also allowed, each
one entailing a unit dimension in mass. The values the
variables can assume are subject to the costraints due to
mass dimension and homogeneity with respect to n and
n'.

f = No[/
q = No[
p = No. [
(u = No. [j=No[
k = No[

No. [
g = No. [

= No. [
m = No. [

0],F„=F„„7.],

A=Or ],
n„],
n„'],
(n'n) '],
+i]
gP, I/]

masses m or derivatives 0„],

(66)

Eq. (67a) gives an upper limit to all the variables on
the LHS; the remaining variables are always limited by
imposing the correct rank i of the operators and their
independence.

Of course more operators can correspond to the same
combination of variables. Starting &om the table above,
one has first to build all possible combinations, whose
number is however finite for a given composite operator,
and then to check their independence. Some examples
are discussed in the next section.
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VII. EXAMPLES

In this section we discuss two simple examples of mix-

jng.
The first gauge invariant composite operator we con-

sider is gg. One can easily realize that the only allowed
counterterms are

These relations agree with the general result [2) that
the renormalized current [vga"g]& & coincides with the
Noether current derived &om the renormalized action
8& ~. An explicit one-loop calculation fully confirms Eqs.
(72) and reproduces the values [6]

[A] = (i&+(242, 4 + j,'sm'. (68) (73)

In this case renormalization involves only local gauge in-

variant fermionic bilinears, in addition to the mass term.
The renormalization of this operator is related to the one
of the mass term in the Lagrangian [6]; the ensuing con-
straints on (i and (2 are

t' 8
(i ——Zz~ 1 — bm ~,Bm )'

(4 ——(s ——(s ——0+ O(g ).

Finally a last example, definitely requiring nonlocal coun-
terterms, is the Lagrangian density itself, as discussed in

[6]; of course further structures involving total derivatives
must be considered in this case.

2
——0, (69) VIII. CONCLUSIONS

while no restriction is imposed on (s. An explicit one-

loop calculation confirms this prediction and gives

(z ——0+0(g ), (70)

As a second example we consider the fermionic U(1)
conserved current Qp„g. There are several independent

gauge invariant structures with mass dimension 3 with
which it can a priori mix

g+ (s n"F„„O

cr @vcr,aga
nn' (71)

(z ———(s = ZzZz(l —Zz '),
1,'4 =(s =(s = o

(72)

Some of them are nonlocal, i.e., involve O. However, this
current is related to the fermion propagator by the U(1)
Ward identity which sets constraints between t,

' s and the
wave function renormalization constants Z2 and Zz [6]:

In this paper we have solved the problem of renor-
malizing at any order in the loop expansion gauge invari-
ant composite operators in Yang-Mills theories quantized
in light-cone gauge with the correct causal ML prescrip-
tion in vector propagator. We have here generalized the
treatment developed in Refs. [6,17], concerning effective
action.

The main results are the proof that renormalization
preserves the gauge invariance of composite operators
(Sec. III) and the full characterization of admissible non-
local structures in counterterms, which can be only car-
ried by the quantity 0, and therefore cannot contribute
to physical quantities; hence we get the proof that the
renormalization of a composite operator always entails a
finite number of renormalization constants (Sec. VI).

Specific examples of mixing under renormalization are
presented in Sec. VII; in particular we have found quite
instructive the behavior of the U(1) conserved fermionic
current, which is endowed with a direct physical interest.

Generalizations to gauge-dependent operators are a
priori possible; however, one is immediately faced with a
basic difficulty concerning Lee-Ward identities, which are
no longer form-invariant under renormalization. In ad-
dition, physical applications are usually concerned with
gauge invariant composite operators.

A few preliminary results have already appeared in the
literature [19], while a pedagogical review on the whole
subject will be reported elsewhere [20].
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