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Renormalization group study of the soliton mass in the (1+1)-dimensional A,4 lattice model

J. C. Ciria and A. Tarancon

(Received 22 March 1993)

We compute, in the {1+1)-dimensional {A,4 ) model on the lattice, the soliton mass by means of two
very different numerical methods. First, we make use of a "creation operator" formalism, measuring the
decay of a certain correlation function. Second, we measure the shift of the vacuum energy between the
symmetric and the antiperiodic systems. The obtained results are fully compatible. We compute the
continuum limit of the mass from the perturbative renormalization group equations. Special attention is

paid to ensure that we are working in the scaling region, where physical quantities remain unchanged
along any renormalization group trajectory. We compare the continuum value of the soliton mass with
its perturbative value up to one-loop calculation. Both quantities show a quite satisfactory agreement.
The first is slightly bigger than the perturbative one; this may be due to the contributions of higher-order
corrections.

PACS number(s): 05.50.+q, 11.10.Gh

I. INTRODUCTION

Standard perturbation is known to be a useful tool for
the formulation of quantum field theory starting from
classical field theory. It has, however, serious handicaps
such as the fact that nonperturbative effects are not taken
into account. An alternative possibility is the quantiza-
tion of nontrivial, nonperturbative solutions to the classi-
cal equations, such as solitons.

The study of such topologically nontrivial vacua in
field theories presents several problems when the model is
formulated in the continuum or on the lattice. In the
continuum it is very difficult to extract nonperturbative
quantities, such as mass, and on the lattice, where this is
possible with Monte Carlo simulations, other problems
are present.

First, on the lattice the analysis of this kind of
configuration is made difficult by the trivial topology of
the lattice, and because the concept of continuity is lost
[1]. Second, it is of fundamental importance to define
how to measure quantities on these topologically non-
trivial vacua [2]. We can consider how to compute the
mass, for instance. As is known, solitons are character-
ized by a topological charge, related to their behavior
when spatial coordinates tend to infinity

[Q -4(x ~ ~ )
—4(x ~ —oo )]. This charge is con-

served with time. When we quantize a soliton, we obtain
a quantum soliton particle and a series of excitations of
this particle, a so-called soliton sector. Topological
charge becomes then a quantum number characterizing
the sector. Its conservation prevents the soliton from fal-
ling to the vacuum, ensuring its stability. The standard
way of calculating the mass is considering an operator
with nonvanishing projection on this sector, then com-
puting the connected correlation to large distance, and
finally extracting the mass from the coefficient of the ex-
ponential decay.

In the general ease, for topologically nontrivial sectors,
the definition of such an operator is very ambiguous. It is

possible to define many operators on the lattice sharing
the same continuum limit, although their behavior far
from this limit differs from each other. On the lattice,
the region where we can obtain results within reasonable
computation times is generally far from the continuum
limit, where very big sizes would be necessary, and all
those continuum-equivalent operators give us different re-
sults [3].

In four-dimensional theories computer limitations have
made this point particularly difficult. Fortunately, some
interesting facts can be studied quite satisfactorily in less
than four dimensions. We consider on this paper the
(1+1)-dimensional A,4 [(A,P ), +, ] model, where solitons

are also present.
On a finite lattice the boundary conditions fix up the

topological sector. Periodic conditions fix the trivial va-

cua, for instance. Antiperiodic conditions fix vacua with
nontrivial topology (if the symmetry is broken). Only
free boundary conditions allow us to have different topo-
logical sectors; however the finiteness of the system al-
lows us to travel between vacua, and we finish always in
the trivial sector, the energy of which is lower.

In this model it is possible to carry out the computa-
tion of the soliton mass by using two different, related,
methods.

First, we have made use of the operator defined by Ka-
danoff and Ceva [5]; in spin systems, its effect can be seen
as the introduction of a twist: a topological excitations in-

duced by a specific dislocation of the lattice. It has a to-
pological charge different from zero. Consequently, we
expect a nonzero projection onto the soliton sector.

On the other hand, we can consider the system with
antiperiodic spatial conditions for the scalar field. This
system can be considered as the periodic one after the in-

troduction of a twist along the whole lattice time. The
difference of the energies of the periodic and antiperiodic
systems, which is a local, easy to measure quantity, pro-
vides us with another method to compute the soliton
mass.
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We always keep in mind that a theory in a lattice ac-
quires physical meaning only when we make its spacing
tend to zero. In order to get to the continuum limit [4]
we use the renormalization group (RG) equations, which
are known in this model. We must consider the limit of
zero lattice spacing. A change in this spacing, and a
change in the coupling constants in such a way that the
physical observables remain unchanged, can be carried
out by using the RG equations.

Iterating RG transformations, we obtain a series of
points in the parameter space, a renormalization group
trajectory (RGT), which can be characterized by a pa-
rameter l. Different points of a trajectory, corresponding
to different values of the parameters, are obtained after
integrating over successive energy scales. Thus, when we
move on any RGT, the physics remains the same. In this
way, for example, as we evolve on a RGT, we see
different values of the correlation length on lattice units,
go(l), but this correlation in physical units (=a(lg'o(l)
remains constant.

A. A,$4 model

We study the A,P model in d =2 dimensions, the Eu-
clidean Lagrangian density of which is given by

2

where @ is dimensionless, [A,]=l, [r]=I
In order to adapt our Lagrangian to the lattice, we

proceed as usual:

4[(n +p)a] 4—[na]
t

p n=0 Q

where L is the lattice extension. We conclude

SE„,= —g4„4„„+g d+ 4„+,4„. (3)
n, p,

We introduce the following notation: the dimensionaless
parameters defined on the lattice are subscripted; thus we
use A o, ro (respectively equal to la, ra ).

Making the spatial coordinates discrete implies impos-
ing a momentum cutoff A=2m. /a. After scaling the mo-
menta q~p=q/A we can express (3) in momentum
space [4]:

p + p @p @ p +
(

@p~ @p2 @' p3 @ p] p2 p3
A.p

(4)

with f = f od "p/(2n ) . In d =2 we have two fixed points [4].
(i) The Gaussian point, So,„„=f uz (p)4(p)4( —p), with uz (p)-p, that is to say, taking just the kinetic part of

P
the Lagrangian.

(ii) A nontrivial point, which is built adding to the Lagrangian the term

S= u* q„q,q, —q, —
q

—
q 4q, 4q 4q 4 —q, —

q
—

q

with u f (q, . q4)-(qi+ +q~).
The A,4" model in less than four dimensions is super-

renormalizable. The only divergent graph is that of one
vertex with two external legs and a loop. We can get rid
of this divergence simply by renormalizing the mass, and
therefore it is not necessary to renormalize A, ; we can
keep it fixed all the time as we make a go to 0 (equivalent-
ly, A~ ao ). Since A, =A,oa, it implies A,o

—+0 as a . In
our lattice, consequently, in the continuum limit
u 4 =kp =0, we are considering the Gaussian fixed point.
Our RGT will evolve in its attraction domain.

We follow the renormalization group scheme; in order
to permit a continuous evolution in the parameter space,
we allow integrations of the variable p between 1/s and 1.
Linearizing the resulting equations near the critical point,
we obtain [7]

I

On the other hand, for small values of the parameters, we
are very near the Gaussian point, the correlation length
becomes very large, and if it is of the order of the lattice
size, finite-size effects mask our results. We refer to the
intermediate region where the continuum is reproduced
as the scaling region.

We remark that the fact of staying in the basin of at-
traction of a Gaussian fixed point does not prevent at all
the possibility of spontaneous symmetry breaking. Given
one point (Ao, ro) in th, e parameter space, the renormal-
ization group trajectory starting from it cannot cross the
transition line between the (4 ) =0 and (4& )%0
phases; it remains in the phase to which the initial point
belongs. Thus, if we start in the symmetry broken phase,
the continuum limit of our theory presents symmetry
breaking.

A,p=s "A,p, 9p =s rp+ ln s
II. COMPUTATION OF THE SOLITON
AND FUNDAMENTAL BOSON MASSES

where kp and 9p are the transforms of A,p and rp.
These expressions have a limited region of validity: for

big values of A,p, rp, the linear approximation is not valid.

A. Fundamental boson

In order to calculate the mass of the fundamental bo-
son m we use the connected correlation function be-
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tween the Higgs fields, (4(x,O)@(x,t)). In order to
avoid contributions from states with nonzero momenta,
we integrate on x and consider [6]

C&(t) = (P(t)P(0) ),
where P(t) = J dx P(x, t ). For large t, and if the correla-
tion length is different from zero, C&(t) behaves, on an
infinite lattice, as C&(t)-exp( —mt).

We consider periodic boundary conditions in our lat-
tice, I. being its extent. Consequently, the point n is
equivalent to n+L. Given two points at a distance t,
there are two possible paths connecting them: one of
length t and the other, resulting from the boundary con-
ditions, the length of which is I.—t. Thus, the mass is
given by

( y(+)y(0) ) e
—mt+ e

—m(L —t)

so that

where S is the original action.
We can alternatively express the correlation function

in terms of a "twisted action" S, =S —2 g„'„J„„4„4„„,
with it corresponding partition function
Z, = g(~}exp [

—S, ], that is to say,

(12)

In our case, with a Lagrangian given by (3), we can ex-
press it in a similar way, depending on link variables Jn „,
after making a change of variable 4—+&J g. Now,
Jn „=const=J & 0. This causes the appearance of a
twist: the fields placed in the points n, n +p connected
by a link where Jn „has changed to —Jn „tend to change
their signs: we have given rise to a topological excitation,
with a nonzero topological charge 4(x = ao )—4(x = —ap ).

We now define
C&(n +1} cosh[m (n +1 L/2)]-

C&(n) cosh[m (n L/2)]— (9)
C„(t ) = (p( n, t ) }Lt(n +r ) ), (13}

where a is the time spacing of the lattice. We can solve
(9) and obtain a series of values of m (n) depending on n.
For small n they have contributions from large mass
states, and for large n the signal is small; there is an inter-
mediate region of n where m (n) is nearly constant. We
take it as the actual value of the mass.

B. Soliton mass

Kadanoff [5] introduces the correlation function be-
tween two points in the dual space R ~, R 2, (p~ pz ) in

1 2

the following way: we start from a Lagrangian
S=g„„J„„4„4„+„+Q„O(4&„); we draw a path in the
dual space connecting the dual points R, and R2, and

change the sign of the coupling constants J's placed on
the links crossed by our path. We have

1
(pR pa ) =—g exp —g' J„„4„4„„

IP] n p

+g' J„„4„4„„
n, p

(10)

where g(~} runs over all the configurations of the field,

g„„takes into account the links with their signs changed
and g'„refers to the rest of the links. Equivalently,

(p& p~ ) =—+exp S—2g* J„@„C&„1

[+] n p

exp —2g* J„
n, p

C„(t)
C (t+1) (14)

When we study (exp( —2g„*„4„4„„)),we must con-
sider the risks of our method: we study a strongly nonlo-
cal quantity, which is seriously affected by the finite size
of our lattice. In addition, the use of an exponential func-
tion implies a magnification of errors.

In principle, we do not know to what point these
effects will spoil our results. In order to control these
risks, we look for an alternative way of calculating the
soliton mass from local nonexponential variables. Fol-
lowing Groeneveld, Jurkiewicz, and Korthals Altes [8],
we introduce a local parameter Q(P), which accounts for
the energy response to the appearance of the twist.

First, it will be useful to change the variables the action
depends on. We note tha~tmaking the following change
of variable, 4~(=4/QPp with }F1=0=1/Ap, we obtain

where our path in the dual lattice will be the minimum
length path connecting them, i.e., straight vertical lines.

The topological excitation (with nonzero projection on
the soliton sector} appears at the time t, and annihilates
at t +~. Thus, we expect an exponential behavior, simi-
lar to that of C&(t). In this case, one of the two paths
connecting the points R

&
and R 2 has a much bigger con-

tribution to C„: that which crosses the dislocation. In
fact, we have observed a clear exponential decay,
(p~, , ~}Lt~, ,+,~)-exp[ Cr], an—d therefore we obtain
the soliton mass as

Z(rp Ap):Z(lp Pp)

=Pp f (Ii„dg„)exp —
Pp

. —gg„g +g
n, p n

1

f'o
d+ —g +—

gn 4) n
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where V=L is the volume of the system. The Po deriva-

tive of Z(ro, ko) is

("OA) V ( 0 ~o)

~&o 2 &o
(16)

1 Z, (ro, kp)= ——ln
T Z(rp Ap)

(17)

where p, is the value for which our trajectory cuts the
transition line between the ( 4 ) =0 and ( 4 )%0
phases, and

a & (ro Po)
Q(Pp) = —— ln

T 8 p (rp, Pp)

(18)

where ( ) and ( ), stand for expectation values with Z
(periodic boundary conditions) and Z, (twisted or an-

tiperiodic), respectively. We remark that in the Z, sys-
tem (4) =0 in both the symmetric and broken phases.
The integration in (17) implies defining a trajectory in the
parameter space with ro fixed, and P starting from P, .
For higher values of P, we have no symmetry breaking,
and the soliton mass vanishes. We will check the masses
obtained with the exponential function by comparing
them with those resulting from using Q.

where S(ro, )Io) is the action resulting from the integra-
tion of our Lagrangian (3).

If we impose antiperiodic boundary conditions in the
spatia1 direction, we introduce a twist the length of which
is the temporal dimension of the lattice, T. We can define
the "twisted" partition function corresponding to this
twist, Z, (r, A, )—=2, (r,P). Keeping in mind (12) we can
now calculate the soliton mass as

m, = ——ln( p(n, T) tu(n, 0) )
1

IV. PHASE DIAGRAM AND THE SCALING REGION

Our model exhibits two phases. Classically„ for posi-
tive values of ro the minimum energy configuration is
4=0; for negative ro, a spontaneous symmetry breaking
occurs, and the new minima are 4=++6

~ ro ~
/)I, o.

When we consider the contributions of all the
configurations, each weighted with exp[ —SE„,I, for
small negative values of ro both minima are very close to
each other and are not deep enough to stop fluctuations
from restoring the symmetry. More negative values of ro
are necessary to ensure that we are in the broken phase.
Therefore, in the semiplane with negative ro there is a
transition line separating both phases.

In order to determine the transition line, we choose
several values of A,o. For each of them, we decrease ro
until (4 ) becomes different from zero; in the limit of an
infinite volume, its value passes from zero to a finite
nonzero value when crossing the transition line; in a
finite-volume system in the symmetric phase,
(4 ) = 1/&V, and what we see is a sharp rise of (4 )
(technically, in a finite lattice (4 ) is not a good order pa-
rameter because tunneling between states with positive
and negative values of the field cause it to be equal to
zero all over the parameter space). Another useful quan-
tity as an order parameter is the soliton mass. When
computing (exp I

—2J+4„CI„+„)), if we are in the
(4 ) =0 phase, the values of 4„ fluctuate around zero,
and their sum over the path vanishes; the expected values
appearing in (14) become independent of the length of the

12.5— I
[

I I I I

]
I I I I

i

I I I I

correlations, especially those defined by Kadanoff's
operator, as a consequence of its strong nonlocality and
its exponential form. As we have mentioned earlier, we
cannot rely on the small-length correlations because of
the contribution of large mass states; on the other hand,
long-distance correlations are seriously affected by the
finiteness of our lattice. Thus, in order to obtain a precise
value for the mass from Kadanoff's operator we have
needed bigger and bigger lattices.

III. DETAILS OF THE SIMULATION

We have made use of a specially designed transputer-
based parallel machine, RTN, including 64 T-805 proces-
sors distributed in 8 boards with 8 each. As an individual
board calculates one point in the parameter space, we get
eight absolutely independent groups of measurements for
every (A,o, ro). The error for every magnitude has been
calculated averaging its eight independent predictions.
We have used an adaptative Monte Carlo (MC) process
so as to keep the rate of acceptance between 40 and 60 go.

We have simulated different lattice sizes (16,24, 48 )

with (1000, 3000, 7000) iterations of thermalization and
(2000, 22500, 30000) measurements. Within each tran-
sputer, we have taken (20, 10,5) decorrelation MC itera-
tions between two consecutive measurements. We have
observed no relevant finite-size effects in the local quanti-
ties. However, big sizes are needed when computing

10.0—

7.5—

5.0—

2.5—
&& transition line

0

FIG. 1. The renormalization group trajectory followed start-

ing from the initial values rp = 0. 105 Ap=0. 25 is shown. The
transition line between the (4~) =0 and (4')%0 phases is

drawn.
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'

is ances i we are near
h aussian point. Thus, we expect the value
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path and equal to 1 and m„l is zero. On the other hand
we expect nonzero m foror the symmetry broken phas
where the ~4 4 is

ase,
h ~~ „„+„is different from 0. We determ' d

the transition
e ermine

'
ion line using both parameters ( ( 4 ) and

m „i). It is shown in Fig. l.
In the region where ~roj/k, o is large enough we

p with mean-field predictions. Theoretical-
ly, /0&/ =+6iro[/A. o. In this region the fiuctua

exp —2J g 4„C&„+„
L

-exp[ 2JI. ~4'—
~ I,

where L is the length of the summation ath an
(r) —i4

~
and therefore m„, =ZJirIi I.

Our results agree with these predictions.
Now we pass to determine the scaling region. We kee

p ase, where m and m„l are
ifferent from zero. The reason for this is that r

correspond to the symmetry broken phase of the continu-

um problem whichh is the one we are interested in. Thus
our next step is findin the re i
w ere qs. (6) are valid.

'

g e region in the parameter space

p to find constant values for theAlong a RGT we ex ect
p ysical meaningful variables such has t e correlation

g ~~, the physical masses M, etc. In th 1

work with
n e attice we
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'
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m 1'p& p)&. . . )& related
to the physical ones by M =m /=m a, =a(o. . . . Cons-
quently, although our lattice-defined uanti

m pm pjmp /Aomj /Aowhichareequal to the
physical expressions M /M, M /A, M
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p,.l p M..l/~ remain
iistant along these trajectories.
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ormations Ef '

[ q. (6), where we choose s =1.08], we et
further and further away from th
h

rom t e origin (and thus from
t e continuum limit), drawin
Al

wing a series of trajectories.
ong each one of them , we calculate the previously

e ned ratios in the different points obtained by the

' -48

L=-24

A

+
Z

V
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()
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I i i T

l(i )&

FIG. 3. L~ . ogarithm of the correlation fn unc-
ion pp) or three difFerent points in the pa-

rameter space: for the small window at right,
. 105. The two other points

are Xp =2.934, ro = —0.945 and A.o
=5.431,

ro= —1.616. Both are inside the scaling re-

gion. The latter is the one with the largest
slope (the biggest mass).

l0



RENORMALIZATION GROUP STUDY OF THE SOLITON MASS. . . 1025

1.6

1.4—

1.2 -y gI

1.0—

0.8—

0.6

I I I I
I

I I I I
I

I I I I
I

I I I I

m /m, ((L=48)

1.4—
1.2—
1.0

0.8—
0.6

0
I I I I I I I I I I I I I I

10 15

Alp

m /m, l
(L=24)

I & & t i I

20 25 30

FIG. 4. Evolution of the ratio m p lm„& along the RGT previ-
ously drawn in Fig. 1. From the results in the 48' lattice, we see
that the ratio becomes constant from A,O-1.5, a fact which is
not apparent in the 24 lattice. This gives us a lower limit for
the section of our RGT inside the scaling region.

transformations. For every trajectory, we find a segment
where these quantities remain approximately constant;
the union of all the segments gives us the scaling region.

Initially, we follow curves near the transition line
separating the (4 )=0 and (4 )WO phases. As we
move away from it, we find that the length of the segment
reduces. This is clear because we need a large lattice
correlation length in order to reproduce the continuum
limit, and the region close to the line transition is ap-
propriate to that. Far from this line the correlation
length is small, and the discretization is important.

Finally, we choose a curve near that line, with the ini-
tial values (ro= —0. 105, An=0. 25} (see Fig. 1). At this
point we can illustrate our comments about the
difficulties derived from the use of Kadanoff's operator.
In Fig. 2 we represent the correlations of the fields 4 and

p for some points of this trajectory. As expected, when
we get near the Gaussian point, the correlation length in-

creases, the mass is lower and the correlation decreases
more and more slowly. For small enough values of the
parameters, the correlation function (pz pz+„), for dis-
tances of the order of the length of the lattice, is not com-
patible with zero. (n is the distance in units of the lattice
spacing. ) Thus, we must be very careful when we calcu-
late masses in this region.

There is another reason that makes it desirable to work
with big lattices. Our method for calculating the masses
consists basically of finding a certain correlation function,
and fitting it to an exponential, or to a hyperbolic cosine.
We expect this fit to be reasonably good for a set of inter-
mediate values of n. When n approaches the length of
the lattice —in our case, half this length, because of the
periodic boundary conditions —the fit is not possible any
longer. The bigger our lattice is, the longer this well-
fitting segment becomes, and we have more points to fit
our theoretically predicted behavior, and so calculate the
mass with higher precision. This is clearly shown in Fig.
3: in the plot at left we draw the logarithm of the corre-
lation function (JM& pz+„) for 24 and 48 lattices, in a
region far from the Gaussian point. In the small lattice,
when n -9, the fitting to a straight line is no longer possi-
ble, while in the big one we can still include some more
points and get a good fit to a straight line. In the small
picture at right, the parameters are A,p

=0.25,
ro= —0. 105; we have seen in Fig. 2 that, for these values,
the correlation length is comparable with the lattice
length, and we expect serious corrections. In fact, for the
small lattice, the agreement region is smaller.

In Fig. 2 we see that the function (4~4~+„) is much
smaller than the JM correlation, and we expect that the
values obtained for the boson mass are not so strongly
affected by the size of the lattice. Our results confirm this
prediction.

Now we can estimate the scaling region. From Fig. 4,
we see that it begins at X0-2, the value from which
m /m„~ can be considered as a constant. The upper
boundary of this region can be more clearly inferred from
Fig. 5. We expect m /QA, o to be constant or, equivalent-

2.0 ) ) ) )
I

) ) ) )
I

) ) ) )
I

T
0 m ol(L =24)

~ m (L =48)sol

1.5—

1.0—

0.5—

0 I I I I I I

0 2

oo

0.5—

0

6

(~ )I/2

x m {L=48}
P

I i i i i (

10

FIG. 5. m and m„, vs QA, O along the
RGT, for 24 and 48 lattices. We determine
the scaling region by selecting the points
which give a reasonable fit to a function

y =ax. In this way, we find the upper limit of
this region, given by A,{}-14.For m p only the
results from the 48 lattice are drawn because
they coincide with those from the small lattice.
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ly, a linear behavior of m with QA«, m tending to zero as
Qk«does. Thus, for the RGT starting from the initial
values A,0=0.25, ro= —1.05, the scaling region corre-
sponds to the interval 1.5 (ko ( 14.

V. RESULTS

1/2

tanh
V'2

X —Ut

+(I—U')
(19)

The energy density is e(x), the expression of which
coincides with the Euclidean Lagrangian. The classical
absolute minimum is 4 =+&6~ r~ /k. At a classical level,
we can define the soliton mass as

A. Results from the operators

First of all, we want to check that what we call soliton
mass, calculated using Kadanoff's operator, really
behaves as a mass. We will compare its evolution under
the renormalization group equations to that of the funda-
mental boson mass. On the other hand, we compare its
value to previous theoretical predictions.

A quantity 8&i,„, with dimension [8] is related to its
equivalent in the lattice 8iatt by 8~hys a 81att. As we
are working in less than four dimensions, we can keep k
fixed, and A.O-A, a tends to 0 as a when we approach the
continuum limit (Gaussian fixed point) along a RGT. We
also expect finite values for M, M„~, so our value of the
masses in the lattice m -Ma tends to 0 as a.

From that we deduce, as we approach the continuum
limit, m„, —gA, «. Figure 5 shows that, within the limit
of the scaling region, that is the behavior of m and m,,~.

In a system with only one relevant direction, the renor-
malized trajectory coincides with that direction. In our
case we have a twice-unstable point, and there is a con-
tinuous family of renormalized trajectories leaving it,
each of them corresponding to a different continuum
theory. In the previous section we have chosen one of
those trajectories; once we give an arbitrary value of A. ,

M, and M„, can be calculated as M =(m /QA, «)&A, . In
our RGT, M =0.453&k and M„,=0.356&A, . Next we

study the evolution of M,„~ when, starting from a point
on the transition line, we move further and further into
the symmetry broken phase. First, let us summarize
some qualitative basic ideas. When we quantize the clas-
sical absolute minimum, we obtain the vacuum of the
quantum theory; quantization around the solition gives
us the soliton sector. If this local minimum is broad
(which, in our case, corresponds to a point near the tran-
sition line between ( 4 ) WO and ( 4' ) =0), a great num-

ber of configurations different from the classical solution
will contribute to the value of any observable. But as we
move away from this zone, the potential well gets deeper
and deeper, and a moment comes when we have contribu-
tions only from the minimum and configurations very
close to it; we are recovering the classical solution.

In order to explore these ideas, we trace a trajectory in

(Xo, ro) space fixing ro= —2. 2 and letting ko move from
the vicinity of the transition line (A.o-—12) deeper and
deeper into the ( 4 )WO phase. This path cuts a
different RGT in each of its points (with different physi-
cal masses for a value of A. ),

To calculate the classical continuous limit for the soli-
ton mass, we make use of the fact that, in a continuous
Euclidean space, a soliton of the kN classical theory in
1+1 dimensions propagating with a velocity v is given by
[71

E;„being the energy of the absolute minimum, and F.
that of the soliton solution.

When we quantize the soliton, in the weak-coupling
approximation (ail, /r ((I), the mass obtained is, up to
an order 0(AA, //r/ ) [7],

M „,„,„=M„„,+A&r —&3/2 ——&2
6

(21)

We have taken all along I equal to 1.
Comparing our results for m„~ to those predicted by

expression (21) (see, e.g. , Fig. 7), we see a clear linear
behavior with P«=l/k«. That behavior is intermediate
between the order 0 and 0(fi) theoretical predictions,
closer to this second one. That displacement with respect
the 0(A') predictions may be attributed to the contribu-
tion of higher orders in iris'«/~ r« ~.

B. Results from twisted system

The use of twists is known to be, in a computer-
simulated theory, a good help for studying the phase
structure. Our main motivation for introducing it is to
calculate I,.„ in an alternative way to the use of
Kadanoff's operator, so avoiding its risks, already men-
tioned in Sec. II.

We impose antiperiodic boundary conditions in the
spatial coordinate. In this way, we introduce a twist in

the lattice that lasts from t =0 to T. We evaluate the ex-
pected value of the action under these conditions, (S, )„
following the notation introduced in Sec. II. In the
(ip ) =—0 phase, because of its +4 symmetry, changing
the signs of some J's does not cause the expected value of
the action to change, and (S)=(S, ), . That means

M„,~
=0, or we can also see the vacuum as a "soliton con-

densate. " However, in the ( 4 )WO phase things are not
so any longer. By inducing the twist, we favor the ap-
pearance of a soliton propagating through time.
6S = (S, ), —(S) is the energetic response of the lattice
to the introduction of the twist; it must be related to the
Euclidean energy of the soliton, as we will see.

As we did in the previous section, we follow the path
fixing the value of ro= —2.2. 6S must increase its value
from 0 near the transition line to the classically predicted
one. Again, we plot 5S against ~r«~ /A, «. In Fig. 6, we

can see that it grows up steeply and soon stabilizes at the
classical value (20): ~6S~'/A«=32~r«~ /A«. Instead of 1«
we have drawn /3«= 1/A. «.

Intuitively, there is a relationship between 5S and the
soliton mass, which is its minimum energy level. In the
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where we have taken p, =0.0826, the first value of p for
which 5S is clearly nonzero. We fit our values of m, &

to
a straight line, and take m„&(p;) to be the height of the
line at P;.

We compare the results obtained applying (17) with
those from Kadanoff's operator (see Fig. 7). Both values
coincide with a precision up to 3 in the 1east favorable
point.

VI. CONCLUSIONS

FIG. 6. In a 48 X48 lattice, along the ro = —2.2 vertical path,
the evolution of the quantities (5S/T}(AO/~ro ~') and

m„&(AO/~ro~') vs Pa=1/Ao is shown. The classical value for
both ratios is 32. The results are compared to those for the per-
turbative calculation up to an order 0 (Ao/~ra ~ ). While all these
results coincide in the limit (Ao/~ro~}~0, (5S/T) soon stabi-
lizes at the classical value, while m„& keeps closer to the 6rst-
order calculation.

classical limit, 5S/T is equal to m„~. In Fig. 6, we see
that, as we increase po, both values tend to coincide. In
general, the expression relating both quantities can be ob-
tained if we keep in mind (17) and (18):

1 f u 5S(P')
sol T JP Pt

(22)
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I I I I
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I I I I
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I
I I
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FIG. 7. For the 48X48 lattice, along the vertical path with
ro= —2.2, the results for m„& obtained from Kadanoff's opera-
tor aud the mass given after the integration of Q(Po) are com-
pared. We compare them with the classical and the theoretical
perturbative value up to first order in O(Ao/~ro). The x coordi-
nate is Po= 1/A, o.

From Fig. 6, we see that 5S/T suffers a sharp increase
around po=0. 0826 (A,&=12.1), indicating that we have
crossed the transition line. We deduce
P =0.0804+0.0022 A, =12.45+0.35. In order to avoid
errors coming from the estitnate of p, and 5S in the vi-

cinity of that line, we take, instead of (22),

We have studied topological excitations in the (A,P ),+,
model on the lattice using a "disorder parameter, " from
the decay of which we can compute the soliton mass.
The results obtained have a well-defined continuum limit,
which we have computed with the renormalization group
equations. We have paid special attention to make sure
that we are working in the scaling region, where physical
quantities are unchanged along the RGT. We have also
computed the soliton mass from the difference of the vac-
uum energy between the twisted and untwisted systems,
where quantities are local, and we found this result agrees
with the previous one.

Now we would like to compare both methods: the first
has the disadvantage that it implies the calculus of opera-
tors which are strongly nonlocal and exponential, and
thus the method is very sensitive to finite-size effects and
systematic errors. A lot of statistics is necessary to ob-
tain results within a reasonable margin of error. On the
other hand, the method using twisted systems decreases
considerably the computation time required. The statis-
tic errors are small, and thus we conclude that imposing
twisted conditions is a very satisfactory alternative in or-
der to calculate the soliton mass. However, twisted con-
ditions modify the vacuum of the theory, and make the
calculation of other masses to which to compare the re-
sults (such as, e.g. , the fundamental boson mass) impossi-
ble.

We have compared our nonperturbative result for the
mass of the topological excitations in the continuum limit
with the theoretical perturbative result up to first order.
Our results show a systematic lineal raise, which may be
due to higher-order corrections not considered in the per-
turbative prediction.

The inclusion of fermions with a Yukawa coupling to
the scalar fields is a very interesting future work. In this
case we have a three-parameter space and a very rich
model. The problem is simplified by the fact that bosoni-
zation is possible, and so Monte Carlo simulation is
simpler than when fermions are considered directly.
Therefore, it must be also possible to compute the soliton
mass and the continuum limit.
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