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We obtain an effective field theory of an internal string by constructing a gauge theory of the
Virasoro-Kac-Moody symmetry associated with I' 6, where I' is the Poincare group and 6 is the grand
unification group. The theory automatically breaks the Virasoro-Kac-Moody group down to
PH(3) U(1), where H is a subgroup of 6 and U(1) is the Cartan subgroup of the Virasoro group. After
the spontaneous symmetry breaking the mass spectrum of the theory is characterized by two completely
different mass scales: the Planck scale which is responsible for the harmonic oscillator spectrum of the
string and the elementary particle scale which is responsible for the fine structure of the mass spectrum.
The theory allows a straightforward supersymmetric generalization.

PACS number(s): 11.25.—w, 11.10.Lm, 11.15.Ex, 11.25.Mj

Recently the string theory [1,2] has become a leading
candidate of the theory of everything, the ultimate theory
which unifies all the interactions in nature, and has been
studied extensively. In spite of the extensive studies,
however, an effective field of theory of string which could
describe the dynamics of a propagating colored string in
the four-dimensional curved space-time has not been
available so far. The purpose of this paper is to present a
gauge theory of the Virasoro-Kac-Moody symmetry asso-
ciated with the Poincare group P and the grand
unification group 6, which could provide a field-theoretic
description of a colored string. After an inevitable spon-
taneous symmetry breaking the particle spectrum of the
theory at the pre-confinement level consists of an infinite
tower of massive spin-two and spin-one particles and a
finite number of the massless particles made of the gravi-
ton as well as the gauge fields of the unbroken subgroup
HU(1), where H is a subgroup of 6 and U(l) is the Car-
tan subgroup of the Virasoro group. In addition, the
theory contains light scalar particles, the dilaton, and an
adjacent multiplet of H, as the pseudo Goldstone parti-
cles of the symmetry breaking.

In the limit where the size of the string can be neglect-
ed, an effective field theory of string must satisfy the fol-
lowing minimal requirements. First of all, such a theory
must have the Virasoro invariance before an inevitable
spontaneous symmetry breaking [3,4]. This is so because
in this limit the Virasoro group becomes an internal sym-
metry of the string theory which assures the reparametri-
zation invariance of the string. Second, it must have the
general invariance to accommodate the gravitational in-
teraction. In fact, it is more likely that the theory must
have the Virasoro-Kac-Moody symmetry associated with
the Poincare group P, if it can successfully describe the
propagation of the string in a four-dimensional curved
space-time [4,5]. Finally it must have the Kac-Moody
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symmetry associated with the color SU(3) to accommo-
date the strong interaction [6,7]. Indeed it must have the
Kac-Moody symmetry associated with the grand
unification group 6 to achieve the full unification of all
the interactions. So what we need for an effective field
theory of string (in the limit that the string can be ap-
proximated to a point) is a gauge theory of the Virasoro-
Kac-Moody symmetry associated with the Poincare
group and the grand unification group.

So far nobody has proposed to consider the gauge
theory of the Virasoro-Kac-Moody group as a possible
string field theory. The reason probably is that there are
two serious objections that one can raise to this type of
theory. First, this type of theory must be nonunitary,
since the gauge fields of the Virasoro group (which
should form an adjoint representation) do not form a uni-

tary representation. Second, it should be nonrenormaliz-
able, because it should include nonrenormalizable in-
teractions (in particular, the gravitational interaction).
It, therefore, seems useless to consider such a theory.
Nevertheless, we find that these objections are not insur-
mountable. First, this type of theory could easily be
made unitary with a spontaneous symmetry breaking, al-
though this has not been so well known to the physics
community. In fact, we have recently shown that the
gauge theory of the Virasoro group does become unitary
after the gauge group is broken down to the Cartan sub-
group [3]. Similarly, we. will show in the following that
a11 the physical fields of the gauge theory of the
Virasoro-Kac-Moody group become explicitly unitary
after the desired spontaneous symmetry breaking, al-
though they certainly do not form unitary representa-
tions under the full symmetry group. This will resolve
the nonunitarity problem completely.

The second objection looks more serious, since the
theory does not seem to satisfy the usual conditions of the
renormalizability. But notice that the gauge theory of
the Virasoro-Kae-Moody group is expected to become
the string theory in the point limit of the string, although
it probably does not describe the full string theory itself.
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(L )„"= [(a+ 1)m +P—k]5" +„,
( T, )p„"= ( T, )p( T )„"= ( T, )p5" +„.

(2)

Notice that L forms an arbitrary (a,P) representation
of the Virasoro group [3,8] and T, forms a representa-
tion of the Kac-Moody group made of two matrices T,
and T, where T, is an arbitrary matrix representation
of G which acts only on the indices of the associated
group and T is an infinite-dimensional matrix which

acts only on the indices of the Virasoro group. When T,
forms an adjoint representation, we obtain the following
product representation P'":

fipck gm(L )kycn
& [( +1)~ +p k]gmyck

—m

hack
&am( T )ck ybn fc &amybk —m

(3)

where g and a' are the infinitesimal parameters of the
Virasoro-Kac-Moody group.

With this preliminary we now show how to construct a
gauge theory of the Virasoro-Kac-Moody symmetry asso-
ciated with the Poincare group and the grand unification
group. The simplest way to construct such a theory is to
start from the Einstein-Yang-Mills theory based on the
principal fiber bundle P (M&, G), whose fiber is the grand
unification group 6 and the base manifo1d is a five-

dimensional manifold M5 which itself forms a fiber bun-

dle 8 (M4, S ') made of the closed string S ' and the four-
dimensional space-time M4. In a coordinate basis
(() S c)~) the most general metric on M~ can be written as

[4,9]

) „+e b (t A„A,, elcA„(t
V AB y2A y2

where e is the coupling constant of the Virasoro group
and ~ is a scale parameter which characterizes the size of

Qn the other hand, the full string theory is supposed to
be finite. This implies that, with the help of the higher-
order corrections coming from the full string theory, one
could make the theory renormalizable or even finite.
With this reservation one could regard the gauge theory
of the Virasoro-Kac-Moody group as an acceptable can-
didate of string field theory.

To construct such a theory we need a general represen-
tation of the Virasoro-Kac-Moody symmetry associated
with an arbitrary non-Abelian group G. We first present
a representation, which we call the product representation

[6]. The Virasoro-Kac-Moody group is the semidirect
product group of the Virasoro group and the Kac-Moody
group whose algebra is given by

[L,L„]=f"„Lk=(m —n)L

[Lm ~ an ]=fman Tck =
am +n r

[ Tam i Tbn ] fambn ck fab Tcm +n

where k, m, and n are the indices of the Virasoro group
and a, b, and c are the indices of the associated group G.
Notice that here we do not consider the central extension
for simplicity. The product representation is given by

r

P1'

AB 0 (6)

Notice that here we have identified x with a.8, where 0 is
the dimensionless string coordinate of S'.

Let the gauge potentials of G in the coordinate basis
(B„ec),) be A „' and P'. Clearly the field strengths of the
potentials are given by

F„'„=B„A',—d„A„'+gf,'b A„'A, ,

F„5=ii„p +gf b A„Q ——BeA„'
l

In the basis ($„c), ), however, we have [10]

F„',, =5 A ', ,
—d, A „' +gf,'b A „' A, +exF„„P', .

F,', = c3„$'+gf,' A „' P
——BeA „' —e ( c)e A „)P',

(8)

where A„'= A„' —eirA„P' is the gauge potential in the
basis f„. Notice that

F„'„=F„'„+e~ A „(D,P') e i~ A „(D„cd'—),
I'„'5 =I"„'5 .

Obviously, the Einstein-Yang-Mills theory on M5 must
be invariant under the (infinitesimal) general coordinate
transformation

x"~x" =x"+P(x,8),
8~8' =8+g(x, 8) .

(10)

The coordinate transformation generated by P describes
the gauge transformation of the Kac-Moody symmetry
associated with the Poincare group (or more precisely the

group of the four-dimensional general coordinate trans-
formation), and the one generated by g describes the

gauge transformation of the Virasoro group [4,11]. Un-
der the Virasoro transformation we have

fi, A„= ——'a„g+(a,g) A„—ga, A„,
e

fiy = —(ag)(t —(a/,
5,.A „' = —gc}eA „',

from which we obtain

the string. But in the block-diagonal basis (S„ec)~) where
[4 9]

$~ c)~ eK A c)g

[$„,5,]= elrF—„,r)5, [f„,c)5]=e(BeA„)c)5,

F„„=a„A. a.—A„e(—A„a,A. A—.a,A„),
we have
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5&F„=(Bg)F„)—dQ„

5(F„'„= (—3eF „'„,
5&(D„Q')= —(dg)D„P' g—d (D„P') .

(12)

Upon the Fourier decomposition (11) can be written as
[4 6]

5~y„"„=i(m —k)g y„"™,

from which we have

5~k 0

Fck fc amFbk —m
a PV ah+ PV

hack ) f—c am(D ybk —m
)

(17)

5&A „"= — B—„g"+i (2m —k)g A „"

5pk kgmyk
—m

5(A„'"=i (m —k)g A„'"

5pck lk gmyck
—m

(13)

The results shows that y„"„, A„'", P", and P'" form (0,0),
(0,0), ( —1,0), and (

—1,0) representations of the Virasoro
group, respectively. More importantly it shows that 3„
transforms exactly as the gauge potential of the Virasoro
group. From (13) we have

5 Fk l (2m k)gmFk
—m

5tP„'", =i (m k)g P„'",—™, (14)

hack) l g (Dmyck —
m)

which shows that F„"„P„'„,and D„ltd'" form (1,0), (0,0),
and ( —1,0) representations of the Virasoro group, re-
spectively.

Under the infinitesimal gauge transformation of 6 gen-
erated by a(x, 8), we have

5ay„,=o, 5aA„=O, 5ap=o,

5 A „' = — f„a'+f,'b a'—A „,
1 a~ +f:,a yb.

gK

Fck 5 Ack g Ack
PV jLL V V ]X

+g [i ( e lg )(f'",„A„A '„"+f,'m„A p A "„)

+f,'"b„A „' A „"]

Pck elm yck —m
PV PV (18)

Notice that the above definition of F„' explicitly incorpo-
rates the semidirect product structure of the Virasoro-
Kac-Moody group. From (18) we have

Obviously, the gauge transformation corresponds to the
Kac-Moody symmetry associated with G. But there are
two points to be emphasized here. First (16) tells us that
the gauge transformation is nonlinearly realized. The sca-
lar multiplet P'" transforms nonlinearly, but nevertheless
admits the unique covariant derivative which transforms
linearly under the Kac-Moody transformation. The non-
linear realization has a very important physical implica-
tion as we will see in the following. Second (16) tells us
that, up to the normalization factor i(elg) which can
easily be absorbed to A„", A„and A „'"form the gauge po-
tentials of the Virasoro-Kac-Moody symmetry associated
with G. The corresponding field strengths of the
Virasoro-Kac-Moody group are given by F„", and F„'„,
where F„' is defined by

This can be written as 5~ck —
l (e lg)m acmFk m +fc aamFbk —m (19)

5.y„"„=O, 5.A„"=O, 5.gk=O,

g ack+l macmA k —mck
a p p P

+f c am A
bk —m

abdal

p

yck l ack+f c aamybk —m. k
gK

(16)

which indeed confirms the fact that, again up to the nor-
malization factor i(e/g), F„"„and F„'"„ form the field

strengths of the Virasoro-Kac-Moody group.
Now we are ready to write down the gauge theory of

the Virasoro-Kac-Moody group. After the dimensional
reduction of the five-dimensional Einstein- Yang-Mills La-
grangian X3 down to M4, we obtain

k —lg l+ ( 3)k —m —n —p —q pvm aPnFp q Pl
(

—I)" " pvm aPn p q p q
4 r r „.p —, r r r„.r'.p r„.r.p—

(~ )
—

k[ |yk
—m —n —p —q pvm apnFappaq & (y

—
& )k

—l —m —n pvl(D yam)(D pan)] (20)
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where R is the Fourier components of the four-
dimensional scalar curvature R in the basis 5„. Notice
that X i describes a gauge theory of the Virasoro-Kac-
Moody symmetry associated with P [4,11], and X2 de-
scribes a gauge theory of the Kac-Moody symmetry asso-
ciated with G [6]. Remarkably the Lagrangian does not,
in fact cannot, contain any Higgs type-potential for the
scalar multiplets P" and P'". The gauge invariance sim-

ply forbids any polynomial potential for the scalar multi-
plets from the Lagrangian.

To discuss the physical content of the theory notice

that L& has the unique vacuum

(21)

V AB

The vacuum breaks the Virasoro-Kac-Moody group
down to PS GSU(1), where U(1) is the Cartan subgroup
of the Virasoro group. This must be clear from (13) and
(16). Expanding the fields around the vacuum and setting

'gp~+ eKhp~, eKA

eKA, 1+2eKy (22)

we obtain, with e t~ = 16irG, [4]

X,= —
—,'[(c)~ &")(B~"&)—(B~ ")(~3~ti&)+2(B~„,,")(B~" )

—2(B~„")(B~,",)
—(n /tr )(p &p,"& p "p—&&")]

——', (i3„y )
—

—,'(c)„A,—B„A„) + interactions, (23)

where all the four-dimensional contractions are made
with the Rat metric g„and

0 0 0
pp, v h pv+'Ops'

2

p„",, =h„",+i (B„A"„+B„'—A„")— B„B„y" ( &n0) .

(24)

grangian (20) in general has the vacuum

( k ) fik (yk) fik (yak) afik (27)

Remarkably, this vacuum breaks the Kac-Moody group
down to H, where H is the subgroup of G which forms
the little group of p'. More significantly, the symmetry
breaking generates the following mass matrix for the
gauge fields A„'" [6]:

So, after the symmetry breaking, X, contains an infinite
tower of massive spin-two particles p„", (n@0), the mass-

less graviton p„„, the massless gauge fields A„of U(1),
and the massless dilaton y . Notice that it is not h „,but

p„„, ivhich describes the massless spin two gravi-ton [4,12].
Now, expanding X2 around the vacuum (21) we obtain

2
Mam, bn

=
'2

b.b 2tg f:bp'— —

+g facfbdP P fim+n . (28)

[6]

1 Ha —nHan i (n /&)2Ca
—nCan

4 pv pv P P

—
—,'(D„P' ) +interactions,

where H„' is the field strength of C„' given by

Cao ~ ao

C„'"= A„'"+i d„i''" —(n&0) .
(26)

So L2 contains an infinite tower of the massive spin-one
fields C„'" (nWO), the massless gauge fields C„' of G, and
the massless scalar inultiplet p' which forms an adjoint
representation of G. This shows that the mass spectrum
of the Lagrangian (20) becomes that of a harmonic oscilla
tor urhose mass scale is determined by the Planck scale.
Furthermore, all the massive modes are doubly degen-
erate. The degeneracy follows from the Hermiticity of
the Lagrangian (20), which guarantees the charge conju-
gation invariance of the theory under the unbroken sub-

group U(1) of the Virasoro group. These are precisely
what one expects from a string theory.

Certainly the vacuum (21) is unique from the 5-

dimensional point of view. After the dimensional reduc-
tion, however, there is nothing which can forbid P' to
acquire a nonvanishing expectation value. So the La-

So the mass spectrum of the vector fields is characterized
by two completely di6'erent mass scales: the Planck scale
which is responsible for the harmonic-oscillator spectrum
of the string and the elementary particle scale which is
responsible for the fine structure of the mass spectrum.
The mass spectrum of the spin-two particles remains un-
changed and is characterized by the Planck scale.

In summary we have succeeded in constructing a pro-
totype gauge theory of the Virasoro-Kac-Moody symme-
try associated with the Poincare group and the grand
unification group, which is capable of describing the dy-
namics of a propagating colored string in the four-
dimensional curved space-time. We conclude with the
following remarks.

(1) A most remarkable characteristics of the theory is
that it describes a theory which is not based on the unitary
representations of the underlying symmetry group Indeed.
none of the fields which appear in the Lagrangian (20)
form a unitary representation under the Virasoro group
[3,4]. Nevertheless, the Hamiltonian of the theory be-
comes explicitly positive-definite as we have demonstrat-
ed. This is because after the symmetry breaking all the
physical fields become explicitly unitary under the unbro-
ken subgroup. This guarantees the unitary of the theory.

(2) Another remarkable characteristics of the theory is
that It is a nonlinearly realized gauge theory. Notice that
the nonlinear realization described by (16) is of a novel
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type, totally different from the standard Callan-
Coleman-Wess-Zumino nonlinear realization [13]. Fur-
thermore the nonlinear reahzation makes the spontaneous
symmetry bre-aking geometric [14). In spite of the fact
that the nonlinear gauge invariance precludes any Higgs-
type potential from the Lagrangian, the symmetry break-
ing must take place. The theory simply does not admit a
vacuum which remains invariant under the gauge trans-
formation.

(3) The spontaneous symmetry breaking must leave the
gauge fields of the unbroken subgroup massless. But the
theory also has the massless scalar fields which can be in-
terpreted as the Nambu-Goldstone fields of the symmetry
breaking. The interpretation follows from the fact that
the vacuum of the theory is degenerate, because there is
no potential for the scalar fields. Notice, however, that
after the symmetry breaking there is nothing which can
guarantee the scalar fields to remain massless. So the sca-
lar fields become the pseudo Goldstone ftelds of the sym
metry breaking.

(4) Notice that when the ftve dimens-ional metric (4) be
comes flat, the Lagrangian (20) describes a gauge theory of
the Kac Moody-group associated with G, which is non-
linearly realized. The gauge theory of the Kac-Moody
group is very interesting in its own right, and could be
made to be renormalizable as we have suggested at the
beginning of this paper. Assuming the renormalizability
one may be able to calculate the masses of the pseudo
Goldstone particles through the quantum correction.

(5) The theory may be capable of generating a second-
step symmetry breaking through the higher-order quan-

turn correction. Indeed it is quite possible that one may
start from the vacuum (21) but end up with the vacuum
(27) through the quantum correction which induces a
Coleman-Weinberg-type effective potential. According
to this scenario the quantum correction can generate the
elementary particle scale which provides the fine struc-
ture to the mass spectrum.

(6) As we have emphasized, the physical metric of the
unified theory which describes the massless graviton is
p„„defined by (24). Furthermore the dilaton P becomes
a pseudo Goldstone particle which should acquire a small
mass after the quantum correction. These facts should
have important physical implications in the cosmology
and the fifth force [12,15].

(7) So far we have not considered the central extension
of the theory. One might need the central extension if
the theory develops an anomaly which necessitates the
central extension. At this moment, however, we find no
compelling reason for the central extension of the theory.

(8) Obviously, the theory allows a straightforward su-

persymmetric generalization. With the supersymmetric
generalization the theory becomes an effective field
theory of an internal superstring.

A detailed discussion of the subject with a supersym-
metric generalization will be published elsewhere [16].
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