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Black hole entropy is the Noether charge
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We consider a general, classical theory of gravity in n dimensions, arising from a di8'eomorphism-
invariant Lagrangian. In any such theory, to each vector field ( on spacetime one can associate
a local symmetry and, hence, a Noether current (n —1)-form j and (for solutions to the field
equations) a Noether charge (n —2)-form Q, both of which are locally constructed from ( and
the fields appearing in the Lagrangian. Assuming only that the theory admits stationary black
hole solutions with a bifurcate Killing horizon (with bifurcation surface Z), and that the canonical
mass and angular momentum of solutions are well defined at infinity, we show that the first law of
black hole mechanics always holds for perturbations to nearby stationary black hole solutions. The
quantity playing the role of black hole entropy in this formula is simply 2m times the integral over
Z of the Noether charge (n —2)-form associated with the horizon Killing field. Furthermore, we
show that this black hole entropy always is given by a local geometrical expression on the horizon
of the black hole. We thereby obtain a natural candidate for the entropy of a dynamical black hole
in a general theory of gravity. Our results show that the validity of the "second law" of black hole
mechanics in dynamical evolution from an initially stationary black hole to a final stationary state
is equivalent to the positivity of a total Noether Qux, and thus may be intimately related to the
positive energy properties of the theory. The relationship between the derivation of our formula for
black hole entropy and the derivation via "Euclidean methods" also is explained.

PACS number(s): 04.20.Cv, 97.60.Lf

One of the most remarkable developments in the theory
of black holes in classical general relativity was the dis-
covery of a close mathematical analogy between certain
laws of "black hole mechanics" and the ordinary laws of
thermodynamics. When the eKects of quantum particle
creation by black holes [1] were taken into account, this
analogy was seen to be of a physical nature, and it has
given rise to some deep insights into phenomena which
may be expected to occur in a quantum theory of gravity.

The original derivation of the laws of black hole me-
chanics in classical general relativity [2] used many de-
tailed properties of the Einstein field equations, and,
thus, appeared to be very special to general relativity.
However, recently it has become clear that at least some
of the laws of classical black hole mechanics hold in a
much more general context [3—5]. In particular, it has
been shown that a version of the first law of black hole
mechanics holds in any theory of gravity derivable from a
Hamiltonian [3). However, there remains one unsatisfac-
tory aspect of this derivation [6]: Although the deriva-
tion shows that for a perturbation of a stationary black
hole, a surface integral at the black hole horizon (involv-
ing the unperturbed metric and its variation) is equal to
terms involving the variation of mass and angular mo-
mentum (and possibly other asymptotic quantities) at
infinity, the derivation does not show that this surface
term at the horizon can be expressed as K/2' (where ic

denotes the unperturbed surface gravity) times the vari-
ation of a surface integral of the form S = J& I", where I"
is locally constructed out of the metric and other dynam-
ical fields appearing in the theory. It is necessary that
the horizon surface term be expressible in this form in
order to be able to identify a local, geometrical quantity
S as playing the role of the entropy of the black hole.

The main purpose of this paper is to remedy this de-
ficiency by showing that in a general theory of gravity
derivable from a Lagrangian, the form of the first law
of black hole mechanics for perturbations to nearby sta-
tionary black holes is such that the surface term at the
horizon always takes the form 2" bS, where 8 is a local ge-
ometrical quantity, and is equal to 2m times the Noether
charge at the horizon of the horizon Killing field (nor-
malized so as to have unit surface gravity). The local,
geometrical character of S suggests a possible general-
ization of the definition of entropy to dynamical black
holes. The relationship between black hole entropy and
Noether charge also suggests the possibility of a general
relationship between the validity of the second law of
black hole mechanics (i.e. , increase of black hole entropy)
and positive energy properties of a theory. An additional
by-product of our analysis is that it will enable us to
demonstrate equivalence of the "Euclidean derivation" of
formulas for black hole entropy with other approaches —a
fact that is not at all easy to see by a direct comparison
of, say, Refs. [3] and [7].

Before presenting our new derivation of the first law,
we comment upon the status of other "preliminary laws"
of black hole mechanics in a general theory of gravity.
We consider theories defined on an n-dimensional mani-
fold M with dynamical fields consisting of a (Lorentzian)
spacetime metric g p and possibly other matter fields.
We assume that a suitable notion of "asymptotic Qat-
ness" is defined in the theory. The black hole region of
an asymptotically fIat spacetime then is defined to be the
complement of the past of the asymptotic region. In or-
der to begin consideration of the classical laws of black
hole mechanics, it is necessary that the event horizon of
a stationary black hole be a Killing horizon, i.e., a null
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surface to which a Killing vector Geld is normal. This
property is known to be true in general relativity by a
nontrivial argument using the null initial value formula-
tion [8], so it is not obvious that it would hold in more
general theories of gravity. Nevertheless, this property
automatically holds for all static black holes since the
static Killing field must be normal to the event horizon.

The surface gravity r at any point p of a Killing horizon
'8 is defined by (see, e.g. , [9])

$V'(
where ( is the Killing field normal to 'R. The zeroth law
of black hole mechanics asserts that K is constant over
the event horizon of a stationary black hole. The proof
of this law does make direct use of the specific form of
the Einstein field equations [2], and, thus, does not ap-
pear likely to generalize to other theories of gravity [10].
Nevertheless, the zeroth law trivially holds for spherically
symmetric black holes.

It is worth noting that the validity of the zeroth law
is, in essence, equivalent to the statement that, apart
from the "degenerate case" of vanishing surface gravity,
the event horizon of a stationary black hole must be of
bifurcate type. Namely, it is easily proven that a bifur-
cate Killing horizon must have constant, nonzero surface
gravity, whereas it can be shown [11] that any Killing
horizon with constant, nonzero surface gravity can be
locally extended (if necessary) to a bifurcate horizon.

It also should be noted that in an arbitrary theory of
gravity, a black hole with constant surface gravity will
"Hawking radiate" at temperature r/2m when quantum
particle creation efFects are taken into account, i.e., the
Einstein field equations play no role in the derivation of
the Hawking efFect or the theorems of [12]. Thus, r/2vr al-
ways represents the physical temperature of a black hole.

We turn, now, to the presentation of a new derivation
of the first law of black hole mechanics for stationary
black holes with bifurcate horizons in a general theory of
gravity in n dimensions derived from a diffeomorphism-
invariant Lagrangian. We shall follow closely the frame-
work of Lagrangian field theories developed in [13], with
one small change: We shall view the Lagrangian as an
n-form L rather than as a scalar density; similarly, other
tensor densities of [13] will appear here in their dual-
ized version as difFerential forms. In order to define L,
it is necessary to introduce a fixed (i.e. , "nondynami-
cal") derivative operator V on spacetime. It also may
be necessary to introduce other "nondynamical, back-
ground fields" p such as the curvature of V' (if V' is
nonfiat); we shall assume, however, that any such addi-
tional fields p are uniquely determined by V', and that p
changes by a difFeomorphism under the change induced
in V' by the action of that diffeomorphism. At each
point p of spacetime, L then is required to be a function
of the spacetime metric g g (or, alternatively, of a tetrad
or soldering form) and finitely many of its (symmetrized)
derivatives at p, as well as of other matter Gelds present
in the theory and their (symmetrized) derivatives at p,
and of p at p. Note that no restriction is placed upon the
number of derivatives of the metric or other fields upon
which L can depend (other than that this number be fi-

nite), so "higher derivative" gravity theories are included
in this framework.

In order to reduce the number of symbols and indices
appearing in formulas, I shall use the symbol "gV' to de-
note all of the dynamical fields, including the spacetime
metric. We shall restrict attention to diffeomorphism-
invariant theories, by which we mean that for any diffeo-
morphism, vP: M M M, we have

LX*(&)]= @*L[&]. (2)
Note that on the left side of this equation, g* is not
applied to V' or any other nondynamical Fields p which
may appear in L. Equation (2) can be interpreted as
stating that, although it may be necessary to introduce

and/or p to define L, L actually depends only upon
the dynamical fields P.

Under a Grst order variation of the dynamical Gelds,
the variation of L can be put in the form (see, e.g. , [13])

j = 8(& &t&) —( L

so that j is locally constructed out of the fields appearing
in L and ( . A standard calculation [13] shows that

where summation over the dynamical fields (and con-
traction of their tensor indices with corresponding dual
tensor indices of E) is understood in the first term on the
right side of this equation. The (n —1)-form O is locally
constructed from P and hP, but is determined by Eq. (3)
only up to addition of a closed (and, hence, exact [14])
form locally constructed from the fields appearing in L;
we shall adopt Eq. (2.12) of [13] as our definition of O.
The symplectic current (n 1)-form A—is defined in terms
of the variation of e by

n(y, h, y, h, y) = h, [O(y, h, y)] —h, [O(y, h, y)]. (4)

It should be noted that O and 0 will depend upon the
choice of V' in sufficiently high derivative theories [13],
although they change only by an exact form, i.e., a "sur-
face term, " under a change of derivative operator, and
they need not be di8'eomorphism invariant in the sense
of Eq. (2). Furthermore, O and 0 will change when an
exact form is added to L, with the change in 0 being
given by an exact form, even though such a modification
of L has no efFect upon the equations of motion, E = 0.

Now, let ( be any vector field on M and consider the
field variation hP = l:gP. The difFeomorphism invariance
of L implies that under this variation, we have

hL = ZtL = d(( L) (5)
where here and below, we make frequent use of the gen-
eral identity

EgA = ( . dA + d(( . A) (6)
holding for any difFerential form A and vector field $
where the centered dot denotes the contraction of a vec-
tor Field with the first index of a difFerential form. Equa-
tion (5) shows that the vector fields on M constitute a
collection of infinitesimal local symmetries in the sense
of [13]. Hence, to each ( we may associate a Noether
current (n —1)-form j defined by
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dj = —El:gP

so that j is closed whenever the equations of motion are
satisfied. Since j is closed for all (, it follows [14] that
there exists an (n —2)-form, Q—locally constructed out
of the fields appearing in L and ( —such that when eval-
uated on solutions to the equations of motion, we have

(9)
Since j depends linearly on (,we adopt the explicit algo-
rithin provided by lemina 1 of [14] to uniquely define Q,
&om which it follows that Q depends on no more than
(k —1) derivatives of (, where k denotes the highest
derivative of any dynamical field occurring in L. [Note,
however, that Q is unique up to addition of a closed,
and, hence, exact [14), (n —2)-form locally constructed
from the fields appearing in L and &om (, so the inte-
gral of Q over any closed (n —2)-dimensional surface Z
is uniquely defined by Eq. (9) alone. ] We shall refer to
Q as the Noether charge (n —2) form [15]-relative to (,
and its integral over a closed surface Z will be referred
to as the Noether charge of E relative to (

The key identity upon which our derivation of the first
law of black hole mechanics will be based is obtained
by considering the variation of Eq. (7) resulting &om an
arbitrary variation bP of the dynamical fields off of an
arbitrary solution P. We have

bj = b[D(g, Egg)] —( bL. (10)
(Note that ( is held fixed in this variation, i.e. , we re-
quire that b( = 0.) However, by Eq. (3), we have

bL = (.[Ebg+ dD]
= Z(O —d(( 0) (»)

where the equations of motion, E = 0, for P and the
identity (6) were used in the second line. Thus, we obtain

bj = b[e(g, Q~g )) —gt'[O(g, 8g )] + d(( O). (12)
Note that in Eq. (12), no restrictions have been placed
upon bP or (

Our next step is to identify certain "surface terms"
appearing in Eq. (12). First, we require V' to be invari-
ant under the diffeomorphisms generated by ( . This
requirement holds in the usual case where ( is taken to
be a coordinate vector field and I7 is taken to be the co-
ordinate derivative operator of that coordinate system;
it also will hold. in our main application below where V
will be taken to be the derivative operator of the unper-
turbed metric and ( is a Killing field of that metric. In
that case, the first two terms on the right side of Eq. (12)
combine to yield

b[O(g, ZgP)] —Cg[™(P,hP)] = A(P, bP, Egg) (13)
and Eq. (12) becomes simply

bj = A(P, bP, ZgQ) + d((. O). (14)
When integrated over a Cauchy surface C of the unper-
turbed solution, Eq. (14) corresponds to Eq. (3.22) of
[13], but Eq. (14) contains vital additional information
concerning the "surface term" d(( . D), which did not
appear in [13), since attention there was restricted to the
case of compact C. Comparison of Eq. (14) with Hamil-
ton's equations of motion shows that if a Hamiltonian H

corresponding to evolution by ( exists on phase space,
then H must satisfy

d(( 8)

where, in this equation, projection of the right side to
phase space (in the manner discussed in [13]) should be
understood. This shows that apart from the "surface
term" d(( O), the Noether current j acts as a Hamilto-
nian density.

We now further restrict attention to the case where bP
satisfies the linearized equations of motion, so that both
P and its variation are solutions. Then we may replace j
and its variation by dQ in Eqs. (14) and (15). It then can
be seen immediately &om Eq. (15) that the Hamiltonian,
if it exists, is purely a "surface term. " In an asymptoti-
cally Hat spacetime, it is natural to associate the value of
the surface contribution to the Hamiltonian from infinity
with the corresponding "conserved quantity" associated
with ( in the manner of [16]. In other words, if the
theory admits a suitable definition of the "canonical en-
ergy" F associated with an asymptotic time translation
t and of the "canonical angular momentum" Q associ-
ated with an asymptotic rotation p, the variations of
these quantities should be given by the formulas

(bg[t] —t O), (i6)

b t B = t O

the canonical energy and angular momentum can be de-
fined by

t —t-B, (i9)

&= —f Qfvl (20)

Note that E' corresponds to the "Arnowitt-Deser-Misner
(ADM) mass" of general relativity plus possible addi-
tional contributions &om any long-range matter fields
that may be present; see [3] for explicit discussion of the
case of the Yang-Mills field. Note also that for the Hilbert
Lagrangian of general relativity, the expressions f Q[t]
and —I Q[y] correspond, up to numerical factors, to
the Komar expressions for mass and angular momentum.
The presence of the "extra term" t B in Eq. (19) accounts
for why diferent relative numerical factors must be cho-
sen in the Komar formulas for these quantities. It is, of
course, a nontrivial condition on a theory that it admit a
notion of asymptotic fiatness such that E' and g are well

defined. In the following, I shall assume that this is the
case, and derive the first law of black hole mechanics for
such a theory.

Consider, now, a stationary black hole solution with a

&& = —J &QI~I,

where the integrals are taken over an (n —2)-dimensional
sphere at infinity and the term p O does not appear
in Eq. (17) because p is assumed to be tangent to this
sphere. Thus, if one can find an (n —1)-form B such that



R3430 ROBERT M. WALD 48

bifurcate Killing horizon, with bifurcation (n 2—)-surface
Z. Choose ( to be the Killing field which vanishes on
Z, normalized so that

( =t +n'")pa &(p)&

d(b'Q) = d((. 0). (22)

where t is the stationary Killing field (with unit norm
at infinity) and summation over p, is understood. (This
equation both picks out a particular family of axial
Killing fields p~„) acting in orthogonal planes, and de-

fines the "angular velocity of the horizon" B~).) Choose
V to be the derivative operator of this solution, so that

is invariant under the isometrics generated by (
Then Eq. (13) holds, and, in addition, the right side now
vanishes since CgP = 0. Let bP be an arbitrary, asymp-
totically Bat solution of the linearized equations. Then,
the fundamental identity Eq. (12) yields simply

cal quantity" on Z. Finally, it is worth noting that Q is
just the Noether charge (n —2)-form associated with the
Killing field ( = ~(, i.e. , ( is the horizon Killing field
normalized so as to have unit surface gravity.

Now identify the unperturbed and perturbed station-
ary black hole spacetirnes in such a way that the Killing
horizons of the two spacetimes coincide, and the unit sur-
face gravity horizon Killing fields ( coincide in a neigh-
borhood of the horizons. [That this always can be done
follows from the general formula for Kruskal-type coor-
dinates given in [11].Note, however, that for a perturba-
tion which changes the surface gravity, we cannot identify
the two spacetimes so that the two horizon Killing fields
coincide on the horizon when normalized via Eq. (21);
in addition, since we take bt = by~ )

——0 near infinity,

for a perturbation which changes O~, the requirement
that b'( = 0 precludes us from choosing ( even to be
proportional to the horizon Killing field near infinity in
the perturbed spacetime. ] Then, on Z we have

Choose C to be an asymptotically Bat hypersurface with
"interior boundary" Z. Integrating Eq. (22) over C, tak-
ing into account Eqs. (16), (17), and (21) together with
the fact that ( vanishes on Z, we obtain

b =bf —O~ b („).

Equation (23) corresponds precisely to the first law of
black hole mechanics as derived by Hamiltonian meth-
ods [3]. However, Eq. (23) has the advantage over this
previous derivation that the surface term arising &om
the black hole has now been explicitly identified as the
variation of the Noether charge of E.

Equation (23) still is not of the desired form in the
sense that the left side of Eq. (23) has not yet been writ-
ten as K times the variation of a local, geometrical quan-
tity on Z, since Q is locally constructed from ( and its
derivatives as well as &om the fields appearing in the La-
grangian. However, we now will show that the desired
form of the first law holds when we further restrict at-
tention to the case where bP describes a perturbation
to a nearby stationary black hole. First, we note that
any derivative V', . V' (~ of any Killing field ( can
be reexpressed in terms of a linear combination of (
and its first derivative, V' (i„with coefficients depend-
ing upon the Riemann curvature and its derivatives [see,
e.g. , Eq. (C.3.6) of [9]]. Next, we note that on Z we
have ( = 0 and V' (i, = re i„where e ~ denotes the bi-
normal to Z. Now define the (n —2)-form Q on Z by
the following algorithm: Express Q in terms of ( and
7' (i, by eliminating the higher derivatives of (, as de-
scribed above. Then set ( = 0 and replace V' (~ by

Since any reference to ( has been eliminated, we
see that Q is locally constructed out of the fields appear-
ing in L. Furthermore, since Q on Z is determined by a
well defined algorithm whose only input is a Lagrangian
L which is covariant under diffeomorphisms of the dy-
namical fields, P [see Eq. (2) above], it follows that Q
is similarly covariant under spacetime diffeomorphisms
which map Z into itseK Thus, Q is a "local, geometri-

27r
—8S = bE —O~ 8g( )H p

where the "black hole entropy" S is defined by

8=2mf g {26)

Thus, we have established the existence and "local, geo-
metrical character" of the notion of black hole entropy S
in a general theory of gravity [17].

Our "local, geometrical" formula {26) for the entropy
of a stationary black hole suggests the following general-
ization to the nonstationary case: For an arbitrary cross
section Z' of the horizon of a nonstationary black hole,
construct Q by exactly the same mathematical algorithm
as used above for the bifurcation surface Z of a Killing
horizon. Then 2vr times the integral of Q over Z' yields a
candidate expression for the black hole entropy at "time"
Z'. The viability of this proposed definition is presently
under investigation [18].

Note that Eq. (25) has been derived only for the case
of perturbations to nearby stationary black holes, even
though Eq. (23) holds in the more general case of nonsta-
tionary perturbations. However, since h( = 0 and, on Z,
we have ( = 0, it follows that b[V'i,( ] = 0 on Z. From
this, it follows that for nonstationary perturbations, we
have, on Z,

8[%'( (i,j] = rate i, + m i,

where, as before, e g denotes the binormal to E, and m b
is purely "normal-tangential", i.e., it vanishes when both
of its indices are projected into Z or both projected nor-
mal to Z. It then follows &om the existence of a reQec-
tion isometry about Z (see lemma 2.3 of [12]) that the
iu i, term makes no contribution to the variation of Q.
It then can be seen that for sufficiently "low derivative"

(24)

where r is the surface gravity of the unperturbed black
hole. Hence, for perturbations to nearby stationary black
holes, the first law of black hole mechanics (23) takes the
form
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theories where Q depends only upon ( and its first an-
tisymmetrized derivative, Eq. (24) continues to hold for
nonstationary perturbations. Thus, in such theories, the
erst law of black hole mechanics continues to hold in the
form (25), with S given by (26). The nature of the first
law for nonstationary perturbations in more general the-
ories is presently under investigation [18].

The fact that, for stationary black holes, S is just 2'
times the Noether charge of the horizon Killing field (nor-
malized to have unit surface gravity) implies that for an
initially stationary black hole which undergoes a dynam-
ical process and later "settles down" to a stationary Anal
state, the net change in black hole entropy is just the to-
tal Aux through the horizon of Noether current associated
with a suitable "time translation" on the horizon. This
suggests a possible relationship between the validity of
the second law of black hole mechanics in a theory and
positive energy properties of that theory. These issues
also are under investigation [18].

Finally, we consider the relationship between the re-
sults of this paper and the formula for black hole en-
tropy obtained via the "Euclidean approach" in the man-
ner first given in [7]. We begin by noting that since
ZtP = 0, the Noether current (7) associated with the
horizon Killing field, (, of a stationary black hole is sim-
ply

l2' l'I= ——
i ( L+ t 8 i.

K ) (30)

Now, in the Euclidean approach, 2 I is identi6ed as a
thermodynamic potential for the black hole. This leads
immediately to the following formula for black hole en-
tropy:

More precisely, iii the static case, the right side of Eq. (30)
equals what would be obtained by integrating the suit-
ably analytically continued Lagrangian, I' = L + dB,
over a "Euclidean section, " constructed by replacing the
Killing parameter, t, by w = i t, and then periodically
identifying w with period 2'/tc (see, e.g. , [19] for further
details). In the stationary but nonstatic case, there is no
such thing as a "Euclidean section, " but the right side
of Eq. (30) corresponds to what researchers mean by the
"Euclidean action" in that case. Thus, we obtain the
following formula for I:

j= —( L. (28)

Let C be an asymptotically Hat hypersurface with "inte-
rior boundary" Z. Integrating Eq. (28) over ( and taking
into account Eqs. (9), (21), (19), and (20), we obtain

which agrees with Eq. (26). Thus, we have shown that
the "Euclidean procedure" for obtaining black hole en-
tropy gives the same result as obtained by our method.

Now, the "Euclidean action" I corresponds to
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