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Proposal for solving the "problem of time" in canonical quantum gravity
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The "problem of time" in canonical quantum gravity refers to the difBculties involved in defining
a Hilbert space structure on states, and local observables on this Hilbert space, for a theory in which

the spacetime metric is treated as a quantum field, so no classical metrical or causal structure is

present on spacetime. We describe an approach, much in the spirit of ideas proposed by Misner,
Kuchar, and others, to de6ning states and local observables in quantum gravity which exploits
the analogy between the Hamiltonian formulation of general relativity and that of a relativistic
particle. In the case of minisuperspace models, a concrete theory is obtained which appears to be
mathematically and physically viable, although it contains some radical features with regard to the
presence of an "arrow of time. " The viability of this approach in the case of infinitely many degrees
of freedom rests on a number of fairly well-defined issues, which, however, remain unresolved. As a
by-product of our analysis, the theory of a relativistic particle in curved spacetime is developed.

PACS number(s): 04.60.+n, 03.70.+k, 04.20.Cv

A key issue which arises in any attempt to obtain a
quantum theory of general relativity, or, more generally,
any theory in which the spacetime metric is treated as
a quantum observable, is how to formulate a local field
theory without the presence of any classical metrical or
causal structure on spacetime. This issue is faced most
directly in "nonperturbative" approaches to quantiza-
tion, such as the canonical approach.

As is well known, classical general relativity admits a
Hamiltonian formulation, but this formulation possesses
constraints which are closely analogous to those occur-
ring in the theory of a relativistic particle. The canon-
ical approach to formulating a quantum theory corre-
sponding to general relativity begins with this Hamil-
tonian formulation [1], in which the role of configura-
tion variable is played by a Riemannian metric 6 p on a
three-dimensional manifold E and the conjugate momen-
tum 7r has the interpretation of being directly related
to the extrinsic curvature of E in the classical spacetime
obtained by evolving these initial data. The states of
the quantum theory are then taken to be wave func-
tionals 4[6 b] of the metric on E, and the constraints
of the classical theory are imposed as conditions on 4.
The "momentum constraints" imply that 4 is spatial dif-
feomorphism invariant (i.e. , that it depends only upon
the three-geometry), and they can be "solved" by tak-
ing 4 to be a function on "superspace, " the manifold
of three-geometries. The Hamiltonian constraints give
rise to the Wheeler-DeWitt equations on O'. Note that
I use the plural here to stress that there is an infinite
family of Hamiltonian constraints, one for each choice of
"lapse function, " and a correspondingly infinite family of
Wheeler-De Wit t equations.

The difIiculties with the canonical approach arise when
one attempts to impose a Hilbert space structure on the
allowed state vectors, and when one attempts to define
operators on this Hilbert space for observables of inter-
est such as h, ~~ and vr . In particular, it is far from clear
what in the theory should play the role of a "Heracli-
tian time variable" [2], which "sets the conditions" for

determining probabilities for the values of the dynamical
variables. We refer the reader to [3] (see also Sec. I of [2])
for comprehensive review of the various approaches that
have been taken to this "problem of time" and the serious
difIiculties which these approaches have encountered.

The purpose of this paper is to describe a proposal
for defining Hilbert space structure and observables in
canonical quantum gravity. The basic ideas involved in
this proposal are not new; they appear in the work of Mis-
ner [4], Kuchar (see particularly [5]), and others. How-
ever, it now appears that it may be possible to overcome
two potentially serious obstacles to the implementation
of these ideas. We shall focus attention upon the case
of minisuperspace models, where regularization issues do
not arise, and the proposal can be given a concrete form.
Issues related to the generalization of this proposal to
the case of infinitely many degrees of freedom will be
addressed at the end of this paper.

For definiteness, we focus attention upon "class A"
Bianchi cosmological models, whose only matter con-
tent is a homogeneous scalar field P. (Class A Bianchi
Lie algebras are the three-dimensional ones in which the
structure tensor takes the form c ~, ——M "egg, with
M " symmetric and op~ totally antisymmetric; restric-
tion to class A models is made in order to assure the
existence of a Hamiltonian formulation of the minisu-
perspace dynamics. ) For such a model, minisuperspace
is a four-dimensional manifold, with three parameters
characterizing the spatial geometry and one giving the
value, P, of the homogeneous scalar field. We choose
the parametrization (n, P+, P ) of the spatial metric in-
troduced by Misner (see, e.g. , box 30.1 of [6]) where,
in essence, n measures the volume of the Universe, and
(P+, P ) measure the spatial anisotropy. With appropri-
ate rescalings of variables, the super-Hamiltonian takes
the form

pc& + pp+ + pp + p@

+ exp(4n) Vp(p+, p ) + exp(6n) V4, (p) (1)
where (p, pp+, pp, py) are the momenta canonically
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conjugate to (n, P+, P, P) and the "potential" Vp de-
pends upon the choice of Lie group.

In the canonical approach to the quantization of this
model, it is generally agreed that in the "metric represen-
tation" the Hamiltonian constraint should be enforced by
requiring the state vector 4(a, P+, P, P) to satisfy the
Wheeler-De Wit t equation

HC =0 (2)
where H is obtained from H by replacing the classical
momenta with the corresponding diBerentiation opera-
tors. Thus, more explicitly, 4 satisfies

[G+ V'~V'~ —exp(4a) Vp —exp(6n) Vp]@ = 0

where the DeWitt supermetric G~~ is just a Bat, Lorentz
signature metric in the "global, inertial, superspace coor-
dinates" (n, P+, P, P). However, serious difIiculties oc-
cur when one attempts to define a Hilbert space structure
'R on the states and to define self-adjoint operators on 'R

representing observables of interest. Our aim, now, is to
overcome these difhculties.

The super-Hamiltonian (1) has the same mathemat-
ical form as that of a relativistic particle in a (time-
and space-dependent) potential, and, correspondingly,
the Wheeler-DeWitt equation (3) has the mathematical
form of a Klein-Gordon equation in an external poten-
tial. This analogy is not superficial, nor is it special to
the particular class of models explicitly considered here:
The presence of a constraint in the theory of a relativistic
particle traces its origin to the treatment of the time co-
ordinate of the particle as a dynamical variable, and the
origin of the Hamiltonian constraint of general relativity
can be given a similar interpretation. Furthermore, the
Lorentz signature of G~~ is not an artifact of our model;
in any homogeneous model, G~~ will have a Lorentz sig-
nature (with the motion in superspace associated with
the conformal scaling of the three-metric being "time-
like" ) provided only that the kinetic energy terms of the
matter fields enter with the usual sign. Thus, it seems
natural to seek guidance for the definition of Q and ob-
servables on 'H from the theory of a relativistic particle
in a curved spacetime and/or external potential.

However, the theory of a relativistic particle in a
nonstationary curved spacetime or external potential is
plagued by some well-known difBculties. Historically,
these difEculties were cured by passing to a "second quan-
tized" theory, i.e. , by changing the nature of the theory
to that of a quantum theory of a field (with the value
of the field at spacetime events playing the role of the
primary observables of the theory) rather than a theory
of a particle (where the primary observables are the spa-
tial position and momentum of the particle). This step
is well justified physically: It appears that nature truly
is described at a fundamental level, or, at least to the
level we currently are able to probe, by quantum field
theory. However, since canonical quantum gravity al-
ready is structured as a field theory, an analogous step
here would correspond to a "third quantized" theory, in
which the primary observables presumably would become
the value of the Wheeler-DeWitt wave function at points
of superspace. It seems diFicult to imagine how such "ob-

servables" might be measured, or how such a theory could
be interpreted so as to give predictions about what one
ostensibly is interested in trying to describe in quantum
gravity, namely local metrical structure as determined by
observers in spacetime (as opposed to, say, an S matrix
describing the scattering of multiple universes). Thus, I
shall not pursue this avenue of approach here.

As I shall now explain, it is possible to give a mathe-
matically consistent, interpretable theory of a relativistic
particle in a nonstationary spacetime or external poten-
tial. However, this theory suÃers from two serious de-
fects. Remarkably, these defects do not appear to be im-
pediments to the viability of an analogous quantum the-
ory for our rninisuperspace models. As discussed briefly
at the end of this paper, the issue of whether these ideas
can be extended to provide a mathematically consistent
and physically interpretable quantum theory of gravity
in the case of infinitely many degrees of freedom remains
open.

Let (M, g b) be an arbitrary globally hyperbolic space-
time, on which there is prescribed a (possibly time- and
space-dependent) "external potential" V, and consider a
"relativistic particle" on this spacetime, with the classical
Hamiltonian h, given by

h. = gaby Pb+V
and where 6 is constrained to vanish. We wish to con-
struct a quantum theory in which states are represented
by (complex) wave functions 4 on spacetime and where
the constraint h, = 0 is imposed by requiring 4 to satisfy
the Klein-Gordon equation

g bv' vbe —vc = 0.

Now, the vector space of complex solutions to (5) pos-
sesses the natural conserved, nonpositive, inner product

(C 1) @2)KC — &~(~ 1 &
C 2)

where the (real) symplectic product 0 is given by

~(cl @2) [~2+ C 1 C1+ C2]d~

and Z is any Cauchy surface. The aim is to define the
Hilbert space of states, 'B, by, in eKect, choosing a suit-
able subspace of complex solutions on which (, )Kc is pos-
itive deFinite. As discussed in detail in [7], this can be
done by specifying a real inner product p, on the vector
space of real, smooth solutions to (5) with initial data of
compact support, such that,

r.Ua l~ (@1 @2)I'+'\» 1) 42+0 4 (C, C, )

In the case of a stationary spacetime with a time-
independent potential V ) 0, a natural choice of p exists
[8], which corresponds to taking 'R to be the subspace of
positive frequency solutions. This construction also can
be used to define a natural choice of p, if the spacetime
and potential are merely asymptotically stationary in the
past or future. However, in the absence of time transla-
tion symmetry, although a wide class of p's satsifying
Eq. (8) always exists, no p, seems in any way uniquely
"distinguished. " Indeed, note that in the case where the
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spacetime and potential are asymptotically stationary in
both the past and the future, there will be two "distin-
guished" choices of p, which, in general, will differ. The
lack of a natural choice of p, , and, thereby, of 'R, is the
first serious deficiency of the theory of a relativistic par-
ticle in curved spacetime.

Nevertheless, suppose an inner product p satisfying
Eq. (8) has been chosen. I shall assume, in addition,
that the Hilbert space of solutions, 'R, determined by
this p satisfies the following further properties: Given
any Cauchy surface Z, let B denote the subspace of Q
comprised of C solutions whose restriction to Z lies in
L (Z). Now, any 4 E 17 is uniquely characterized by this
restriction, since if 4 and 4' had the same restriction to
Z, then the norm of 4 —4' would vanish by Eqs. (6) and
(7). Consequently, 17 also may be viewed as a subspace of
the Hilbert space L (Z). I shall assume that 17 is dense
both as a subspace of Q and as a subspace of L2(Z). In
addition, I shall assume that if (4 ) is any sequence in 17
which converges in both '8 and L (Z), then the limit in
'R is nonzero if and only if the limit in I (Z) is nonzero.
I believe that it is likely that these assumptions could be
proven to hold in the case (relevant for our considerations
below) of a spacetime which is asymptotically stationary
in the past, with p chosen as described above, but I have
not attempted to investigate this issue carefully.

Our aim, now, is to define operators on '8 correspond-
ing to the position and momentum of the particle at an
arbitrary time. More precisely, given any Cauchy surface
(i.e. , "time"), Z, for each function f: Z ~ LR we wish
to obtain a self-adjoint operator f:R ~ 'R whose spec-
tral resolution yields the probability distribution for the
value of f at the position of the particle on Z. Similarly,
given any vector field v on Z with complete orbits, we
wish to obtain a self-adjoint operator v which can be in-
terpreted as the infinitesimal generator of translations of
states by the diffeomorphisms on Z generated by v . For
Bat spacetime with no potential and for Z chosen to be a
fIat hyperplane, such operators were defined by Newton
and Wigner [9] for the case where f is a Cartesian coor-
dinate on Z and v is a Euclidean translation. Thus, we
wish to generalize this construction to curved spacetimes,
to arbitrary choices of Z, and to general choices of f and
va

On the Hilbert space L (Z), there is a standard pre-
scription (see, e.g. , Appendix C of [10]) for defining po-
sition and momentum operators of the sort described
above. However, the relevant Hilbert space here is 'H, and
direct application of the L operators to the initial data
associated with solutions in Q will not, in general, even
yield maps of 'R into itself, no less yield self-adjoint oper-
ators on 'R. Nevertheless, we can proceed in the following
manner, which generalizes a construction of Kuchar (un-
published) for static hypersurfaces in static spacetimes.

Let Z be a Cauchy surface, let 'V be defined as above,
and let 'V denote the Cauchy completion of V in the norm

~ ~ ~
~~+

~ ~ ~ ~L, ~~~&. By our assumptions above, we may view
17 as a (dense) subspace of 'R, on which the I inner
product is well defined and positive definite. We view
the L inner product as a quadratic form q on Q with
form domain 27. Since q is closed and positive definite, it

follows from general results on quadratic forms (see, e.g. ,
section 8.6 of [ll]) together with the square root lemma
that there exists a unique, positive self-adjoint operator
A: 'R ~ 'R with domain V such that for all 4q, 42 E V,
we have

(4i, C'2) I.~ ——(A@i, AC z)~. (9)
Since ker(A) = 0, it follows that A has a dense range in

Now view A as a linear map from 17 ~ L (Z) into
R. By Eq. (9), this map preserves inner products. Since
both the range and domain of A are dense, it follows that
A uniquely extends to a unitary map U: L2(Z) + 'R.
We now simply use this unitary correspondence to "trans-
port" to 'R the position and momentum operators defined
on L (Z). This prescription reproduces the Newton-
Wigner operators in the case considered by them [9].

Thus, having chosen a p, which satisfies Eq. (8) and
our additional assumptions, we obtain a theory in which
for any choice of "time" (i.e., Cauchy surface), we have
well-defined operators describing the position and mo-
mentum of the particle at that time. These operators
satisfy the usual commutation relations, and I would not
anticipate any difficulties with the existence of a semi-
classical limit of the theory in which the dynamics agrees
closely with that of a classical relativistic particle. How-
ever, there is a serious deficiency of the theory: The exact
quantum dynamics will not respect the causal structure
of the underlying spacetime, i.e., a particle which, with
unit probability, lies within a region B on the Cauchy
surface Z will not, in general, be localized to within the
causal future of R on a later Cauchy surface Z'. (Indeed,
this phenomenon is well known to occur even for the the-
ory obtained with the Newton-Wigner observables in fIat
spacetime. ) Thus, the quantum theory of a relativistic
particle constructed above would appear to give rise to a
physically unacceptable violation of causality.

Nevertheless, we may carry over the mathematical
structure and interpretative framework of the above the-
ory of a relativistic particle to our minisuperspace mod-
els for quantum gravity. When we do so, the "causality
violation" of the theory no longer poses a physical diffi-
culty, since even classical trajectories in minisuperspace
do not respect the light cone structure of the DeWitt
metric, G~~, appearing in Eq. (3). Furthermore, it ap-
pears that the other serious deficiency of the theory of
the relativistic particle, namely, the lack of a natural
choice of p, also can be overcome: The metric G~~ is
invariant under translations of the timelike coordinate
n, and the potential terms in Eq. (3) vanish asymptot-
ically as n ~ —oo. Thus, it should be possible [12] to
obtain a Hilbert space structure on the solutions to Eq.
(3) in a natural way by choosing the p associated with
this asymptotic symmetry, i.e. , by choosing 'R to be the
subspace of solutions which asymptotically oscillate with
positive frequency [13] with respect to o. as n ~ —oo.

It should be emphasized that this asymptotic symme-
try of the Wheeler-DeWitt equation used to define 'R

holds much more generally: The translations in the o,

direction correspond to scale transformations of the spa-
tial geometry, which is a timelike conformal isometry of
all of the inverse DeWitt metrics on full superspace [5].
Similarly, the vanishing of the potential as o. ~ —oo also
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holds on full superspace. Thus, our prescription for the
construction of 'H is not special to the particular class of
models considered here.

The nature of the quantum theory we have just con-
structed should be noted: Given any state 4' p 'R, one is
free to specify any Cauchy surface C in minisuperspace.
(This specification of C plays precisely the role of a choice
of "time" in ordinary quantum theory. ) For the given
state 4 at "time" C, one may then predict the probabili-
ties for the remaining metric variables or their conjugate
momenta. In particular, the surfaces of constant o. are
Cauchy surfaces, which, in fact, are naturally picked out
as being orthogonal to the Killing field used in the con-
struction of Q. If we make this choice, then we are free
to specify any value of "volume of the Universe" (i.e. , n)
which we wish to consider. For any given state 4 E 'R,
the theory will then tell us the probabilities for the vari-
ous possible values of the conformal metric or the trace-
free extrinsic curvature at that value of o.. Note that,
in contrast with most other approaches to quantum cos-
mology, there is a well-defined Hilbert space structure on
states and well-defined rules for calculating probabilities
of the above observables, but there does not appear to
be any "preferred state" in 'R.

In order to physically interpret the theory in terms
of the perceptions of observers making measurements, it
seems necessary to make an identification of the mathe-
matical quantity playing the role of "time" in the theory,
namely, the choice of C, with the "time" as perceived by
observers. This does not appear to lead to any blatant
contradictions in the context of the models considered
here, but the issue of how this identification might gener-
alize to the full theory (where spatial homogeneity is not
enforced) remains open (see below) and probably poses
the most significant challenge to the viability of this ap-
proach with regard to obtaining a sensible interpretation
of the full theory.

For definiteness in our discussion, let us choose the
Cauchy surfaces of constant o. as our specification of
"time. " It should be emphasized that within the con-
text of this theory it does not make sense to ask whether
the Universe "ever" achieves a given value of o. any more
than it would make sense in ordinary quantum mechanics
to ask if a particle ever achieves a given value of time. In
effect, the identification of o. with perceived time as pro-
posed above builds into the theory the expansion of the
Universe "forever. " It is interesting to ask how this theory
would describe Bianchi type IX cosmologies, where, in
the classical theory, recollapse always occurs [14]. (Clas-
sically, in all other Bianchi models the Universe always
expands forever. ) The answer is that, for any classical
Bianchi type IX solution, there appears to be no diK-
culty in constructing a quantum state 4 which well ap-
proximates this classical solution during the expanding
phase in the sense that the probability distributions for

(P+, P, P) and their conjugate momenta as functions of
o. are sharply peaked around the values taken by the
given classical solution during its expanding phase. How-
ever, when o. is chosen of the order of, or larger than, the
maximum value a achieved by the classical solution,
the behavior of the state 4 becomes highly nonclassical.

Further discussion of this nonclassical behavior will be
given elsewhere [15].

Note that the momentum p conjugate to o. , which
measures the expansion rate of the Universe in the clas-
sical theory, is not among the list of quantum observ-
ables automatically defined in our theory. (—p is, of
course, the analog of energy in the theory of the rela-
tivistic particle. ) However, p can be defined by means
of the Hamiltonian constraint equation (1), i.e. ,

p~ —pp+ + pp + p@
2= 2 2 2

+ exp(4n) Vp(P+, P ) + exp(6n) Vy(P) (10)
since the operators appearing on the right side of this
equation are all well defined at any "time" o.. For the
Bianchi type IX models, Vp can be negative, so p need
not be positive definite. This corresponds to the exis-
tence of nonclassical behavior as discussed in the preced-
ing paragraph. The subspace of states associated with
negative eigenvalues of p at any "time" o. thus may be
viewed as the "nonclassical sector" of 'R at that "time. "
On the "classical sector" of R (which comprises all of '8
except in the Bianchi type IX models), we may define
—p by taking the square root of Eq. (10). There ex-
ist many square roots of a positive self-adjoint operator,
but it seems most natural (and probably essential for
consistency with our interpretative remarks) to choose
the positive square root in this case. This choice implies
that the Universe must be expanding whenever it can be
described classically. Note that —p then has the inter-
pretation of yielding the relationship between the rate of
change of "Heraclitian time variable" o. and that of the
"time" registered on physical clocks.

It should be emphasized that the above choice of posi-
tive square root for —p, as well as our interpretative re-
marks and our construction of '8, build "arrows of time"
into the theory in a fundamental way. Our particular
choice of direction of these "arrows" was based upon the
fact that the Universe is observed to be expanding. No
mathematical difhculties would arise if we were to re-
verse the "arrows" by identifying "forward in perceived
time" with "decreasing o." and, correspondingly, were to
choose the negative square root for —p . However, it
should be emphasized that, even if one wished to do so,
it would seem diKcult to restructure the theory so as to
eliminate the presence of any "arrows. " In particular, al-
though other choices of p could be made, there does not
appear to be any natural choice of "half-positive, half-
negative" square root of Eq. (10), as presumably would
be needed to obtain a "time-symmetric" theory.

Undoubtedly, the most crucial issue regarding all of
the above ideas and proposals is the extent to which they
can be generalized to the full superspace case. In order
to do this, the following obstacles must be overcome. (1)
An analogue of a Cauchy surface for the Wheeler-DeWitt
equations on superspace must be found. (2) A symplectic
product on the solutions to the Wheeler-DeWitt equa-
tions (whose value is independent of choice of Cauchy
surface) must be identified. (3) A suitable subspace of
solutions must be chosen to serve as the Hilbert space of
states, 'R. (4) Our construction of position and momen-
tum operators must be generalized. (5) Finally, in order
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to obtain an interpretation of the theory in terms of local
measurements made by observers, it would appear nec-
essary to suitably identify the variables defining Cauchy
surfaces in superspace with the "perceived time" of local
observers.

It will, of course, be necessary to confront the difB-
cult issues of regularization and renormalization of the
theory in order to analyze the above issues in a math-
ematically satisfactory way. However, it would appear
that issues (1)—(3) and perhaps (5) can be at least par-
tially investigated [16] without getting deeply involved
in regularization issues. The Wheeler-DeWitt equations
comprise an infinite family (one for each choice of lapse
function %), and one would expect a "Cauchy surface"
in superspace to have codimension equal to the number
of Wheeler-DeWitt equations. Thus, something of the
nature of a cross section of the conformal geometries on
superspace would appear to be a good candidate for a
Cauchy surface (with the conformal factor thus playing
the role of "time, " i.e. , labeling the Cauchy surfaces).
However, it is not at all clear whether this suggestion
works in detail and what, if any, additional conditions
might need to be imposed upon the cross section. In this
regard, it should be noted that the only obvious metri-
cal structure present on superspace is the infinite fam-

ily of DeWitt inverse supermetrics (which, in general at
least, are degenerate [17]),but it is not immediately clear
whether or how this structure might be used to obtain an
analogue of "Cauchy surfaces. " The symplectic product
should have the basic structure of the DeWitt product
[see Eq. (5.19) of [18)], but it is far from clear exactly
what form it would take when expressed as an integral
over a Cauchy surface in superspace. (Unfortunately, it
also would appear that regularization issues will play a
prominent role in defining the symplectic structure. ) If
the solutions to the Wheeler-DeWitt equation behave in
an "ultralocal" manner [19] as the metric is scaled to
zero (corresponding to the limit o. ~ —oo in our minsu-
perspace models) then it should be possible to define 'R
as the subspace of solutions which asymptotically oscil-
late with positive frequency with respect to independent
conformal scalings at each point of space.

The above issues are presently under investigation [15].
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