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there can be no observables for the vacuum gravitational field (in a closed universe) built as spatial in-

tegrals of local functions of Cauchy data and their derivatives.
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A long-standing open problem in Einstein's general
theory of relativity is to give an invariant characteriza-
tion of the state of the (vacuum) gravitational field in
terms of quantities measurable at a single instant of time.
Finding such a characterization constitutes the well-
known "problem of observables" in Hamiltonian relativi-
ty [1]. A precise formulation of this problem is as fol-
lows. Let I denote the phase space for general relativity.
To fix ideas, let us choose I to be the cotangent bundle
over the space of Riemannian metrics on a compact
three-dimensional manifold X. A point in phase space
can be fixed by specifying a pair (q,b,p' ), where q, b is a
metric on X and p' is a symmetric tensor density on X.
A point x EI defines a state of the gravitational field if
and only if it lies in the subspace I'Cl defined as the
locus of points satisfying the Hamiltonian and momen-
tum constraints [2,3]

&=0=&, .

& and &, are often called the "super-Hamiltonian" and
"super-momentum. " Viewing the constraints as vanish-
ing of functions on I" we can express them as

H(N)=O=H(N) O' N, N .

Here H (N) is the super-Hamiltoman smeared with a
"lapse function, " which is any function on X; H(N) is
the super-momentum smeared with a vector field on X,
often called the "shift vector":

H(N)= f Nm,

H(N)= f N'm. .

While each point of I defines a gravitational field, the
description is rather redundant: infinitely many points in
I define the same gravitational field [1]. As is well
known, for each point x E.I and for each choice of lapse
and shift there is a one-parameter family of points on I
that are physically equivalent to x. This curve of redun-
dancy is the Bow through x of the Hamiltonian vector
field defined by the constraint function H(N)+H(N).
For each N and N, H(N)+H(N) represents a Hamil-
tonian for the Einstein equations, so the flow connecting
physically equivalent canonical data represents time evo-
lution. Infinitesimally, H (N) generates the canonical
transformation of the phase space data induced by a nor-
mal deformation of X (now thought of as embedded in
the Einstein space) specified at each point by N. Similar-
ly, H (N) provides the infinitesimal canonical transforma-
tion of the data induced by a tangential deformation of X
specified by N. Normal and tangential deformations of
the hypersurface can be viewed as the action on the hy-
persurface of infinitesimal di6'eomorphisms of the space-
time manifold A, . The corresponding canonical transfor-
mations represent the change in the canonical data as
they are carried by the (infinitesimal) diffeomorphism
from point to point in the Einstein space for which they
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[F,H(N)]ir=O=[F, H(N)]ir . (3)

are the Cauchy data.
From the above discussion it is clear that a nonredun-

dant characterization of the state of the gravitational field
involves finding functions on I invariant under the How
generated by H(N)+H(N). Such "observables" are
functions of Cauchy data that are invariant under
infinitesimal spacetime diffeomorphisms modulo the Ein-
stein equations. More succinctly, the observables are
constants of motion for the Einstein equations. A
mathematical characterization is easily found: the ob-
servables are equivalence classes of functions F:I ~R
that have weakly vanishing Poisson brackets with the
constraint functions H (N), H (N) for all N and N:

canonical data? As we shall see, the answer is no. The
key to showing this is to use the fact that if a local func-
tional is an observable, then there must be a correspond-
ing local "hidden symmetry" for the Einstein equations.

Let F:I~R be such an observable. Because it is a lo-
cal functional, we can rigorously assert that (3) is
equivalent to the Poisson brackets relations

[F,& (x)]=f dy A~(x,y)&p(y),
X

where A~(x, y) is built from local functions of the canoni-
cal variables, 6 functions, and derivatives of 5 functions
to some finite order; we have defined & =(&,&, ). Cor-
responding to F is the Hamiltonian vector field V~
defined by

Two functions F& and F2 are equivalent if their difference
vanishes on I:

5F 5
5qab

5F 5
ab

F, -F~~(F, F2)~r=O—.

If X is open, and asymptotically Aat boundary condi-
tions are included in the definition of I, then the
Arnowitt-Deser-Misner (ADM) energy, momentum, and
angular momentum provide examples of observables.
Clearly this handful of constants of motion is inadequate
to characterize completely the state of the gravitational
field. If X is compact without boundary there are no
known obseruables. In the classical theory the scarcity of
known observables is perhaps only a technical annoy-
ance. This annoyance becomes a stumbling block when
the rules of Dirac constraint quantization are applied to
construct a quantum theory of gravity [4]. Here observ-
ables play a key role, and their scarcity hampers progress
in quantum gravity. Here we will show that the complex-
ity of the Einstein equations prohibits the simplest class
of putative observables from existing. Henceforth, unless
otherwise stated, we will assume the universe is closed,
i.e., X is compact without boundary.

If one could integrate the Einstein equations and find
, an internal time, then in principle a complete set of ob-

servables could be found [5]. Unfortunately, it is unlikely
that the general solution of the Einstein equations will be
available any time soon, and it is quite problematic to iso-
late internal spacetime variables from I [6]. A direct sys-
tematic search for observables would seem to be intract-
able if only because of the bewildering array of ways to
attempt their construction. Nevertheless, let us begin
such a search. The simplest class of functions on I that
one can consider are the local functionals, built as in-
tegrals over X of local functions of the canonical vari-
ables (q,b,p' ) and their derivatives. By "local func-
tions" is meant that at a given point x H X the function
being integrated depends on the canonical variables and
their derivatives up to some finite order at x. For exam-
ple, the constraint functions H(N) and H(N) are local
functionals; they are observables too, but they are
equivalent to zero. In the asymptotically Aat context the
energy, momentum, and angular momentum observables
can be viewed as local functionals. So we would like to
answer the question: Are there any (nontrivial) observ-
ables for closed universes built as local functionals of the

Vz is the infinitesimal generator of a one-parameter fami-
ly of canonical transformations mapping admissible Cau-
chy data to other admissible data, i.e., mapping solutions
at any given time to other solutions at that time.
Infinitesima11y, the canonical transformation is given by

6F
5q b VF(q b) ab

(4)

5p ab y. (pah)
5q, b

Because F is a local functional, the components of VF as-
sociated with the chart (q,b,p' ), given by 5F/5p' and
—5F/5q, b, are local functions of the canonical variables.

Now, let (q,b(t),p' (t)) denote a solution to the
Hamilton equations for a given choice of lapse and
shift N =(N(t), N(t)). This means that, at each t,
(q,b(t),p' (t)) satisfy the constraints (l) and the evolution
equations defined by the Hamiltonian H(N)+H(N). Be-
cause of the requirement (3), the infinitesimal transforma-
tion (5q,b, 5p', 5N ), given by (4) and

5N (y)= f dx N~(x)AI(x, y),
satisfies the Hamilton equations linearized about the solu-
tion (q,„(t),p "(t),N (t)).

The spacetime metric g,b which solves the Einstein
equations is constructed algebraically from q,b(t) and
N (t). Conversely, given a spacetime Einstein metric,
one can reconstruct the one-parameter family
( q,b ( t ),p

'
( t), N ( t ) ) algebraically (and hence locally)

from the spacetime metric and its first derivatives [7].
Note in particular that, in a solution to the Hamilton
equations the canonical momentum p' (t) is constructed
algebraically from the three-metric, the lapse and shift,
and their first derivatives. Therefore, the infinitesimal
transformation generated by F will correspond to a
change 5g,b in the spacetime metric that is a local func-
tion of g,b and a finite number of its derivatives at a
point. It is straightforward to see that 5g,b satisfies the
spacetime form of the Einstein equations linearized about
g,b. In this fashion the observable generates an
infinitesimal map of solutions to solutions. Local trans-
formations of this type mapping solutions to soiutions are
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called "generalized symmetries" by mathematicians.
Recently all generalized symmetries of the vacuum

Einstein equations have been classified [8]. They con-
sist of a trivial scaling symmetry and the familiar
diffeomorphism symmetry. The former cannot be imple-
mented as a symplectic map of I, while the latter is gen-
erated by the constraint functions themselves. Because
there are no other symmetries, there can be no observ-
ables (save the trivial constraints) built as local function-
als of the canonical variables.

A more explicit proof of this relies on the connection
between symmetries and conservation laws. An observ-
able I'" that is built as a local functional corresponds to a
local differential conservation law, i.e., a spacetime
three-form o that is closed by virtue of the Einstein equa-
tions. To see this we first note that F is, by definition, an
integral over X of a spatial three-form 0 built locally
from x EX, the canonical variables (q,b,p' ) and their
derivatives:

F[q,p]= j &(x,q, p, B,q, B p, . . . ) .

Because of (3), if we evaluate 0 on any solution
(q,~(t),p' (t)) then F is independent of t. This will be
true for solutions constructed using any lapse and shift.
As before, we can translate this result into spacetime
form in terms of the Einstein metric g,b defined by
fq, b(t), X(t),N(t)). From this point of view we obtain
from & a spacetime three-form cr(x, g, B,g, . . . ) built lo-
cally from x EA, the spacetime metric and its deriva-
tives. We thus obtain a functional of g,b via

where now X is viewed as a spacelike hypersurface rather
than an abstract three-manifold. Equation (3) implies
that the value of F [g] is independent of the choice of X
when g,b satisfies the vacuum Einstein equations. There-
fore the exterior derivative of o vanishes when the Ein-
stein equations are satisfied.

As a by-product of the symmetry classification of [8] it
was shown that all weakly closed three-forms are weakly
equivalent to identically (i.e., strongly) closed three-forms
[9]. Thus, because of the trivial nature of the symmetries
of the vacuum Einstein equations, local conservation laws
are essentially topological in nature. The proper setting
for understanding this is the variational bicomplex [10]
associated with the jet bundle of metrics over spacetirne.
In that context it can be shown that an identically closed
three-form o. built locally from the spacetime metric and
its derivatives (as well as the spacetime position) can be
written as the sum of an exact form and a representative
o.

o of the cohomology class of o. :
o =dcx+oo, (&)

where o; and oo are also local functions of the metric and
its derivatives. The relevant cohomology is the de Rham
cohomology of the bundle of metrics over spacetime. %'e
need not explore this cohomology here; although the in-
tegral of o.

o over a hypersurface is a constant of motion,
it is a trivial one becuase this functional of the metric is

conserved irrespective of whether or not the Einstein
equations are satisfied. Therefore only the two-form a
can lead to nontrivial local observables.

In the asymptotically flat context, the structure of spa-
tial infinity allows nontrivial conservation laws, namely,
that of energy, momentum, and angular momentum, to
be encoded in a. In detail, the integral of o over X in-
volves an integral of a over the "sphere at infinity, " and
this leads to the ADM observables (for appropriate
choices of a) [11]. If spacetime is diffeomorphic to R X X
with OX=0 then no asymptotic region can be used to
construct nontrivial constants of motion (built as local
functionals) because now the integral over da vanishes
identically. In other words, for closed universes "on
shell, " the only possible conservation laws derive from
the topology of the bundle of metrics over spacetime-
this is the information contained in o 0—and have noth-
ing to do with the Einstein equations per se. Thus there
can be no nontrivial observables for closed universes con-
structed as local functionals.

It would seem then that observables must be construct-
ed in a more complicated fashion than a local functional.
Unfortunately, there does not appear to be any way of
systematically identifying "nonlocal conservation laws"
for the Einstein equations. In many examples nonlocal
conservation laws for partial differential equations are
closely tied to the integrability of those equations. A
well-known attribute of an integrable system of partial
differential equations is the existence of infinitely many
generalized symmetries. Modulo the diffeomorphism
symmetry, which is physically trivial, the Einstein equa-
tions fail to pass this test and so one can expect little luck
in finding such nonlocal conservation laws based on some
sort of integrability. Indeed, there is a result of Kuchar"
that rules out any observables built as linear functionals
of the ADM momenta [12]. One encouraging recent re-
sult [13] shows that the holonomy group of the Ashtekar
connection on a given hypersurface is almost a constant
of motion. For the meaning of "almost" see [14]. Clearly
this type of observable is quite nonlocal. One can hope
(but it is only a hope) that the results of [13] in the con-
text of the Ashtekar canonical formalism are the hint of
some structure that can be used to find nonlocal conser-
vation laws, at least in principle. In practice, it is possi-
ble that perturbative methods for defining observables
can be devised. This is really an important possibility.
Given the scarcity of exactly soluble quantum field
theories, it is to be expected that a quantum theory of
gravity would need a perturbative definition at some
point. So, while it seems possible to find the exact quan-
tum states [4], it may be necessary to approximate the
dynamical information contained in the observables.
Hopefully, such a perturbation theory will be better
behaved than its weak-field counterpart. Failing this, it
appears that the standard rules for canonical quantiza-
tion of constrained systems, in which the observables play
a central role, will have to be improved or modified to
avoid the problem of observables.

It is a pleasure to thank Professor Ian Anderson for
helpful discussions. This work was supported in part by
a Faculty Research Grant from Utah State University.



R2376 C. G. TORRE 48

[1]P. Bergmann, Rev. Mod. Phys. 33, 510 (1961).
[2] Y. Choquet-Bruhat and Y. York, in General Relatiuity and

Grauitation: 100 Years After the Birth of Albert Einstein,
edited by A. Held (Plenum, New York, 1980), Vol. 1.

[3] See A. Fischer and J. Marsden, in General Relatiuity: An

Einstein Centenary Survey, edited by S. Hawking and W.
Israel (Cambridge University Press, Cambridge, England,
1979).

[4] A. Ashtekar, Lectures on Non Pert-urbatiue Canonical
Grauity {World Scientific, Singapore, 1991),and references
therein.

[5] C. G. Torre, Class. Quantum Grav. 8, 1895 (1991).
[6] C. G. Torre, Phys. Rev. D 46, R3231 (1992).
[7] In order to construct an Einstein metric using the one-

parameter family of canonical data, or to reconstruct the
data from an Einstein metric, one also needs to introduce
a foliation of the spacetime manifold JR.

[8] C. G. Torre and I. M. Anderson, Phys. Rev. Lett. 7p, 3525
(1993).

[9] By "weakly" we mean the relations hold modulo the field
equations.

[10]I. M. Anderson, in Mathematical Aspects of Classical Field
Theory, edited by M. Gotay, J. Marsden, and V. Moncrief
(American Mathematical Society, Providence, RI, 1992);
Cont. Math. 32, 51 (1992); see also R. Wald, J. Math.
Phys. 31, 2379 (1990).

[11]J. Goldberg, in General Relativity and Grauitation: 100
Years After the Birth ofAlbert Einstein [2].

[12] K. V. Kuchar", J. Math. Phys. 22, 2640 (1981).
[13]J. Goldberg, J. Lewandowski, and C. Stornaiolo, Com-

mun. Math. Phys. 148, 377 (1992).
[14] T. Jacobson and J. Romano, University of Maryland Re-

port No. UMDGR-92-208, 1992 (unpublished).


