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Idealized multigrid algorithm for staggered fermions
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An idealized multigrid algorithm for the computation of propagators of staggered fermions is
investigated. Eicemplified in four-dimensional SU(2) gauge fields, it is shown that the idealized
algorithm preserves criticality under coarsening. The same is not true when the coarse grid operator
is defined by the Calerkin prescription. Relaxation times in computations of propagators are small,
and critical slowing is strongly reduced (or eliminated) in the idealized algorithm. Unfortunately,
this algorithm is not practical for production runs, but the investigations presented here answer
important questions of principle.

PACS number(s): 11.15.Ha, 02.60.Cb, 02.60.Dc

I. INTRODUCTION

In Monte Carlo simulations of lattice gauge theories
with fermions the most time-consuming part is the com-
putation of the gauge field dependent fermion propaga-
tors. Great hopes to compute propagators without any
critical slowing down (CSD) are attached to multigrid
(MG) methods [1—ll]. However, up to now no practical
MG algorithm has been found for fermions.

In this Rapid Communication an idealized MG al-
gorithm is investigated for staggered fermions in four-
dimensional SU(2) gauge fields. It will be shown that
the idealized algorithm preserves criticality under coars-
ening, which is not true when the coarse grid operator
is defined by the Galerkin prescription. This finding ex-
plains the failure of simple vanational-like MG methods,
at least for algorithms with nonoverlapping blocks or triv-
ially overlapping blocks.

Relaxation times in computations of propagators with
the idealized MG algorithm are small, and CSD is
strongly reduced or eliminated. Unfortunately, this al-
gorithm is not practical for production runs, but the in-
vestigations presented here answer important questions
of principle.

II. MUITICB.ID METHOD

For given f we wish to solve an equation

Dog= f with Do ——(—P +m)
by MG methods, where P is the gauge covariant stag-
gered Dirac operator, and m is a small quark mass.

The following MG notation will be used. The funda-
mental lattice is denoted by A . The first block lattice
A is obtained by coarsening with a factor of I p. Thus
A has I.&

fewer sites than Ao (in d space-time dimen-
sions). Restriction and interpolation operators C and
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A, respectively, are given by kernels C(x, z) and A (z, x)
with z E Ao, x E A . Note that C(x, z) and A (z, x) are
N, x %, matrices in a gauge theory with N, colors. Also,
C and A depend on the gauge field, although this is not
indicated explicitly.

We use a blocking procedure for staggered fermions
which is consistent with the lattice symmetries of free
fermions [6]. This forces us to choose Ig = 3. Even
I b are not allowed. In four dimensions, coarsening by a
factor of 3 reduces the number of points by 81. Therefore
only a two-grid algorithm was implemented. The residual
equation on the coarse grid was solved exactly by the
conjugate gradient algorithm.

The averaging kernel C is chosen according to the
ground-state projection definition [12,13,3,14]. In the
present work C satisfies the gauge covariant eigenvalue
equation(s)

(-AA C*)(z,x) = Ao(x) C*(z, x) (2)

together with a normalization condition CC* = jL, and
a covariance condition C(x, x) oc Il where x denotes
the center of block x. In Eq. (2), Ao(x) is the lowest
eigenvalue of —L~, and —A~ is the gauge covariant
fermionic "two-link lattice Laplacian, " defined through
p = 4+o„E„„,with "Neumann boundary conditions
(BC's)." A Neumann 13C means that derivative terms in
4 are omitted where one site is in block x and the other
one is in a neighboring block.

The ground-state projection method is numerically im-
plementable in four-dimensional non-Abelian gauge fields
[14], and since the method is gauge covariant, no gauge
fixing in computations of propagators is required. For
staggered fermions in non-Abelian gauge fields two qual-
itatively difFerent proposals were made for ground-state
projection [6]. We call these proposals "the Laplace
choice" and "the Dirac choice. " The Laplace choice is
the one described above. In the Dirac choice one sub-
stitutes a block-local approximation of P for A in (2).
This latter choice would be superior because it takes also
the field strength term E~ into consideration. However,
it was proved numerically [6,10] that the Laplace choice
for C defines a good block spin in arbitrarily disordered
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gauge fields. For this reason only the Laplace choice of
C has been implemented yet.

III. SPECTRUM OF —P AND CSD

wher'e —p,„,„~ « is —p restricted to the even/odd sub-
lattice.

Let us denote the spectrum of —P by 8(—P ). It
equals the union of the spectra of —P, „and —P &&.

8 (—P ) = 8 (—P, ,„)U 8 (—P «). The spectra are
gauge invariant. Moreover, for any gauge field config-
uration one has the equality

(4)

A simple proof of (4) is as follows. Consider the lat-
tice operator —P, ,„& && as a block matrix with N, x N,
elements —P, ,„& «(zi, z2). The matrices —P, ,„and
—P «are similar, and therefore they have the same
spectrum. We recall that two matrices A and B are
called similar if there exists an invertible matrix T such
that B = TAT . (We also recall that if v is an eigen-
vector of A with eigenvalue A, then Tv is an eigenvector
of B with eigenvalue A. ) In the case considered here, we
look for a lattice operator T with the property

) T(m, z')( —P, ,„)(z',z) = ) (—P «)(m, ~')T(m', z)

(5)

where z, z' and m, m' denote even and odd lattice sites,
respectively. Equation (5) is satisfied if we choose the
matrix elements of T to be T(iv, z) = P(iv, z). This
choice of T is not invertible in pure gauges, but in that
case the equality (4) of spectra is obvious anyhow.

In Ref. [15] a more complicated proof of (4) was given
which uses an analyticity argument in connection with a
hopping expansion of (—P + m ) for large mass.

In Refs. [9—11] the author pointed out that in conven-
tional relaxation algorithms for propagators of staggered
fermions there exists a scaling law for relaxation times ~
which reads

const
7 Lm2 with Lm = m —m cr (6)

for small Lm, where —m„ is the lowest eigenvalue of
—P, and const is independent of the lattice size. For

For every averaging kernel C there exists an associated ideal
interpolation kernel A; see Sec. IV. C defines a good block
spin if this A decays exponentially.

The square of the staggered Dirac operator (plus mass
term) couples only even lattice sites to even sites, and
odd sites to odd sites. Therefore the matrix elements of
—P can be arranged in such a way that —P can be
written symbolically as

DI2

0 —p'«p

bosonic propagators the validity of (6) is known analyti-
cally [11]and has also been confirmed to a high accuracy
numerically [7,11].

A consequence of (4) is that in conventional relaxation
algorithms for staggered fermions, CSD will be the same
on the even and the odd sublattice.

IV. IDEALIZED MULTIGRID ALGORITHM

Up to now no practical MG method has been found for
fermions. Mack pointed out that it is essential for fight-
ing CSD in MG computations that interpolation kernels
should be smooth [16]. This requirement is not satis-
Bed in MG algorithms where one uses gauge covariant
generalizations of piecewise constant interpolation with
nonoverlapping blocks. Mack suggested an interpolation
kernel A as a starting point for numerical work which
was used successfully by Gawqdzki and Kupiainen in con-
structive quantum field theory [17]. An idealized MG al-
gorithm using the natural gauge covariant generalization
of the Gawqdzki-Kupiainen kernel had been investigated
numerically in four-dimensional SU(2) gauge fields for
bosonic propagators [7,11]. There CSD could be elimi-
nated completely. Here we turn to an idealized MG algo-
rithm for staggered fermions. This algorithm will not be
practical for production runs, but it is important to an-
swer questions of principle, and to recognize the features
which a successful method must have.

Given the averaging kernel C, there exists an ideal
choice of the interpolation kernel A. It is determined
as follows. For every function ("block spin") 4 on Ai,
P = A4 minimizes the action (P, Do P) subject to the
constraint CP = O'. For the purpose of numerical com-
putations, it is convenient to determine the optimal A
as the solution of the equation

([—P + I, + ~ C*C]A) (z, x) = K C*(z, x)

for large r. C* denotes the adjoint of C. The layers
of an MG decouple completely when this A is used for
interpolation, and when coarse grid operators Dq are de-
fined as C(—P +m )A. These coarse grid operators are
automatically Hermitian and equal A*(—P + m )A.

The optimal A is favored by an argument of dynamics
[8,11]. With the definition of smoothness that covariant
derivatives are small, the above characterization of A as
a solution of an extremization problem can be rephrased:
that A is the smoothest interpolation kernel, subject to
the constraint CA = IL.

V. NUMERICAL RESULTS

Because of the considerations of Sec. III we decided
to investigate the idealized two-grid algorithm only on
the even sublattice. This restriction mitigates also the
storage space requirements for the ideal A a little bit.
Note that Eq. (7) can also be broken up into an equation
for the interpolation kernel on the even sublattice and one
on the odd one, if the averaging kernel C does not mix
even and odd sites. This requirement is satisfied both
for the Laplace and for the Dirac choices of Ref. [6]. In
both proposals the coarse grid sites can be separated into
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TABLE I. Lowest eigenvalues of the negative squared Dirac operator for staggered fermions on
a fundamental lattice A, and the lowest eigenvalues of the ideal block operator C( —P + m„)A
and of the Galerkin operator C(—P + m„)C*.

5.0
3.0
2.8
2.8
2.7
2.6
2.5
2.4
2.2
2.0
0.0

3.0
2.7
2.5
2.4

64

6
4

64
4

6
4

6
64

4

4

64

124

12
124
124
124

—m, = lowest eigenvalue of
2

7.98 x 10
0.0013413
0.3497739
0.2441995
0.2748178
0.2004647
0.1740946
0.0698942
0.0010729
0.0007099
0.0000732
0.0000287
8.15x10
0.0779810
0.0368447
0.0005742
0.0001865

Lowest eigenvalue of
C(—P' + m.', )A

3.09 x 10
—1.40x 10

6.68 x 10
7.27x 10
4 33x 10—12

—6.42 x 10
—2.78x 10
—5.96 x 10
—1.82 x 10

9.50 x 10
6.08 x 10

—1.21 x 10
—2.33x 10
—7.96 x 10
—1.15x 10
—1.03 x 10
—1.1Px1P-'

Lowest eigenvalue of
C(—P + m„)C*

9.04x 10
1.0341375
2.8529730
2.8412484
3.2338422
3.4374150
3.1884409
3.0198011
3.1265394
3.4488349
3.5620285
3.7354123
9.13x 10
2.3190549
2.3967694
2.6881098
2.8248637

even and odd sites, and the ideal effective Dirac operator
—CP A (as well as the Galerkin operator —t P C*) can
be decomposed analogously to (3).

Here we made the Laplace choice and computed C by
the efficient algorithm of Ref. [14]. Numerical work was
done in SU(2) lattice gauge fields on 6 and 12 lattices,
covering all possible values of P = 4/g between oo and
zero. The system (7) was solved by means of the con-
jugate gradient algorithm where iterating was stopped
when the rms residual was less than 10 . The state-
ment that —CP A is automatically Hermitian was con-
6.rmed up to round-off errors of order 10 or less.

A. Lowest eigenvalues

Let us first look at the lowest eigenvalues of —P on the
fundamental lattice A, and see how they are transferred
to the block lattice A . The role of this transfer for the
performance of the parallel-transported MG method of
Ben-Av, Brandt, and Solomon was pointed out in Ref. [2].

First the lowest eigenvalues —m„of —P were deter-
mined by inverse iteration. This method allows us to
determine —m„ to an accuracy of 10 or better [7].
Then optimal interpolation kernels A were computed as
solutions of Eq. (7) with mz = mz, , and for K = 10s.
Results for —m„and for the lowest eigenvalues of the
ideal coarse grid operator C(—P + m„)A are given in
Table I. The last column of Table I contains results for
the Galerkin definition of the coarse grid operator. This
operator is used in variational MG methods where inter-
polation is done by C*. (The Galerkin operator retains
the locality properties of —P in arbitrary gauge fields. )

One sees that for any value of the gauge coupling the
idealized algorithm maps a critical system on A onto
a critical system on the block lattice. In contrast, the
variational MG algorithm does not have this property.
The Galerkin operator C(—P +mz, )C* is far from being
critical in nontrivial gauge fields.

The results of Table I supply another explanation for

TABLE II. Accuracy of CA = 5 for staggered fermi-
ons. IICA —IIII denotes the maximal trace norm of
CA(x, y) —iI(x —y) over all pairs (z, y) of block lattice sites,
and IICA —ILII2 is the rms of these norms.

IA'

6

64
64
64
64
64
64
64
64

4

64

124
124

124
124

3.98 x 10
6.62 x 10
2.77x10 '
2.59 x 10
3.69 x 10
3.76 x 10
3.18x10-'
2.43 x 10
2.39x 10
1.51 x 10
9.40 x 10
2.84x 10
2.32 x 10
1.02 x 10
1.00 x 10
9.08 x 10
7.92 x 10

OO 2.13x 10
5.0 1.87x 10
3.0 9.43 x 10
2.8 8.66 x 10
2.8 1.07x 10
2.7 1.18x 10
2.6 1.02 x 10
2.5 8.15x 10
2.4 6.76 x 10
2.2 4.48 x 10
2.0 2.95 x 10
0.0 9.23 x 10
OO 2.32x10 '
3.0 1.12 x 10
2.7 1.11x 10
2.5 1.05 x 10
2.4 9.12 x 10

In case of the pure gauge on the 6 lattice (and only in this
case), the ideal MG scheme is identical to the Galerkin defi-
nition with A = C* ("covariant piecewise constant" interpo-
lation); since C is normalized as CC* = II, the finite norms
of CA —ll. in this case are due to round-oQ' errors.

In exact arithmetics the entries for P = oo (realized as
random pure gauge fields) in Table I would be zero for any
lattice size.

the failure of the variational MG algorithm which was
ascertained in Refs. [9—11]. One cannot expect that a
(nearly) critical problem on A can be solved by means
of an auxiliary problem with fewer degrees of freedom on
A, if the auxiliary problem is not critical as well. The
Galerkin operator is only critical in trivial gauge fields,
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TABLE III. Dependence of relaxation times w on Dm in the ideal MG algorithm with lexico-
graphic SOR for computing propagators of staggered fermions on 6 lattices. (The two configura-
tions at P = 2.8 are diferent. )

5.0
3.0
2.8
2.8
2.7
2.6
2.5
2.4
2.2
2.0
0.0

1.17
1.35
1.70
1.70
1.75
1.65
1.65
1.65
1.72
1.70
1.60
1.45

0.8
1.2
4.0
3.6
5.2
3.5
3.2
3.2
4.5
6.2
5.0

28

10
0.8
1.3
4.5
4.4
6.6
4.5
4.5
4.4
7.2

15
13
36

10
0.7
1.4
4.8
5.4
7.1
5.0
5.2
6.8

12
20
54

119

~ for
10
0.7
1.4
4.9
5.8
7.7
6.1
6.0
7.5

16
43

139
524

6m
10
0.7
1.4
4.9
5.9
7.8
6.2
6.1
7.6

17
53

199
1156

10-'
0.7
1.4
4.9
5.9
7.8
6.2
6.1
7.6

17
54

211
1505

10-'
0.7
1.4
4.9
5.9
7.8
6.2
6.0
7.6

17
80

213
1570

and only there is CSD eliminated by the variational MG
method in computations of propagators.

The effect of adding a mass term Em to (—p + m„)
is as follows. The values given in the last two columns of
Table I are shifted by the amount determined by Am .
This is obvious in case of the Galerkin operator because
the averaging kernel is normalized such that CC* = 1L.

In the case of the idealized algorithm, CA tends to 1l

for v. —+ oo. For finite K one finds deviations from 11.

Examples are given in Table II. These deviations are
small enough to have no efI'ect in practice. When one
computes the lowest eigenvalues of —CP A, one recovers
the negative critical masses of the gauge fields to the same
accuracy as they are given in Table I. Hence, the small
negative values partly found for the lowest eigenvalues of
C(—P +m„)A are really due to numerical inaccuracies.

B. Performance of the idealized algorithm

Finally, we report results of computations of propa-
gators by means of an idealized algorithm. We used
coarse grid operators C(—P + m )A with masses m
m„+ Lm, Lm ) 0 and small. For all values of Lm
only one interpolation kernel A was used, namely, the
"critical" one which solves (7) with m = m2, . Actu-
ally, one should use an m -dependent A kernel, viz. the
solution of (7) with m being the mass under considera-
tion. However, in case of bosonic propagators the proce-

dure described here was successful [7,11], and therefore
we used it also as a first attempt in case of staggered
fermions.

Tables III and IV comprise results for relaxation times
as a function of Lm on 6 and 12 lattices, respectively.
The values given for the relaxation parameter ~ are op-
timal within +0.05. (For the configuration on the 12
lattice at P = 2.5, w = 1.72 is close to optimum, while
the results for w = 1.65 are given as additional informa-
tion. )

We rediscover here an observation which was made ear-
lier [7,11]: The use of a relaxation parameter w difFerent
from one in MG computations contradicts the conven-
tional wisdom. According to this wisdom the only job of
the relaxation procedure on A is to smoothen the error,
and this job is well done by Gauss-Seidel iteration. The
conventional wisdom was confirmed by numerical results
in trivial gauge fields lll]. However, the picture changes
for propagators in nontrivial gauge fields.

In order to be sure about the correct determination of
the value of m„, it was checked that conventional suc-
cessive over-relaxation (SOR) and the variational MG al-
gorithm (with the Laplace choice of C) both exhibited
CSD, i.e. , relaxation times w follow perfectly the scaling
law (6). The constant in (6) is of order one.

The results of Tables III and IV show that the 1/Am
divergence of ~'s on lattices of a fixed size is eliminated
in the idealized MG algorithm. Relaxation times are

TABLE IV. Dependence of relaxation times w on Am in the ideal MG algorithm with lexico-
graphic SOR for computing propagators of staggered fermions on 12 lattices. (The values given
for P = 2.5 were obtained in the same gauge field configuration. )

3.0
2.7
2.5
2.5
2.4

1.32
1.65
1.65
1.72
1.65
1.65

1.5
2.9
2.9
4.2
3.2
3.3

10
1.7
3.2
3.4
4.9
3.8
5.0

10
1.7
3.3
4.0
6.9
6.9

15.4

~ for Dm
10
1.7
3.5
4.5
8.4
8.8

23.6

10-4
1.7
3.5
4.5
8.7
9.3

27.7

10
1.7
3.5
4.5
8.8
9.4

28.0

10
1.7
3.5
4.5
8.8
9.4

28.0
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bounded and small. (Only for very disordered gauge
fields at physically uninteresting values of the gauge cou-
pling, r's are not so small, but nevertheless bounded. )
We conclude from Tables III and IV that CSD in com-
putation of propagators is strongly reduced. It is hard to
judge a possibly remaining volume eKect, but one might
be tempted to say that CSD can be eliminated for prac-
tical purposes, in principle. At this point one should also
recall that in the investigations reported here, only one
A kernel was used for all values of m . If one used an
m -dependent kernel, the results would probably improve
further; at least they cannot become worse.

Note added in proof: The terminology of "Galerkin

operator" used in this article follows the one introduced
in Refs. [3] and [4]. In terms used in the mathemat-
ical literature, also the idealized coarse grid operator

(—P + m, )A is a Galerkin operator. I am indebted to
Alan D. Sokal for this remark.
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