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Composite gauge fields in renormalizable models
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We construct renormalizable models of gauge theories in four dimensions, with gauge fields composite
of bosonic or fermionic constituents. They are obtained by a regularization of CP" ' models where the
constraint on constituent fields is replaced by a constraint on expectation values.

PACS number(s): 11.15.Bt, 11.15.Ha

In this paper we present a generalization of CP"
models [l] in their non-Abelian versions [2], constructing
renormalizable models of gauge theories in four dimen-
sions with gauge fields composite of bosonic or fermionic
constituents. The latter will be referred to as fermionic
CP' ' models.

One obvious motivation is the conceptual economy of
reducing the number of fundamental fields. But a com-
plementary motivation is that gauge fields composite of
fermionic fields are expected to give rise to softer diver-
gences than fundamental gauge fields, a perspective espe-
cially relevant to quantum gravity if in such models a
phase of unbroken symmetry exists. We will not investi-
gate this point, but we will keep in mind that in this con-
nection the constituent fields can be just auxiliary fields
which need not be identified with physical particles or
"physical constituents" such as quarks. They can be, for
instance, scalar fermions and/or have scaling dimensions
diferent from the canonical ones. We will actually as-
sume scaling dimension zero to have renormalizability by
power counting. Obviously this can give rise to problems
with unitarity, unless the constituent fields and possible
composites of dimension 0 are confined or decoupled, for
instance, by a large mass.

Composite models of gauge fields have a long history.
Early attempts are based on the generation of gauge field
self-interactions at the quantum level [3], a line revived
recently with a remarkable follow-up [4]. Such an ap-
proach is very diFerent from the present one where self-
interactions of composite gauge fields can be introduced
from the beginning.

In the case of fermionic constituents our work is close
in spirit to that by Amati et al. [5]. The latter, however,
meets with a difhculty due to the fact that 5 functions of
Grassmann variables do not have all the properties of or-
dinary 5 functions, a difficulty common to another fer-
mionic model recently proposed [6]. This point will be
discussed below.

To define composite fields we use a new lattice regulari-
zation [7] where the gauge fields are noncompact, a
feature which is essential to dealing with fermionic con-
stituents. Since we will need the basic formulas of this
regularization in any case, we will briefly outline its con-
struction. Then we will define composite gauge fields and
we will discuss the renormalizability by power counting.
Finally, we will mention how a proof of reAection posi-
tivity can be given. Such a proof, ensuring a quantum

mechanical interpretation, is especially important in deal-
ing with composites.

We will confine ourselves to the case of non-Abelian
CP" ' models, both bosonic and fermionic, with SU(2)
local invariance, but most of our results can be extended
to SU(N), N) 2, and to the Abelian case. The Lagrang-
ian density of the bosonic models in the continuum can
be written

where the covariant derivative

(2)

is defined in terms of the composite gauge field

(3)

A, I, are constituent fields in the fundamental representa-
tion of SU(2), subject to the constraint

(4)

2)„(x)A(x)=D„A(x +p) ——A(x),1

where p is the unit vector with components p =6„and

D„=V„+iA„ (6)

is the parallel transporter expressed in terms of the gauge
field A„and the auxiliary field V„. Under gauge trans-

Xf being the number of flavors.
Because of this constraint (i) it is not possible to write a

mass term for the constituent fields, (ii) the expression of
the Lagrangian in terms of independent fields involves an
infinite power series arising from the solution of the con-
straint, and (iii) it is not possible to have fermionic con-
stituents.

We will be able to avoid such limitations by regulariz-
ing the model in such a way that the constraint on the
fields is replaced by a constraint on expectation values.

In the noncompact lattice regularization we are going
to use, the covariant derivative is
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formations

Ah(x)~g(x)Ai, (x),

D„(x)~g(x)D„(x)g t(x+ p)

for g H SU(2).
The transformations of A„and V„are

5A„=i [ A„,8]+a V„b,„8+—[ A„,b,„8]2

been found that in the continuum limit y grows propor-
tionally to P, so that the fixed point is the same as in Wil-
son scheme. A Monte Carlo calculation has confirmed
that the Wilson loop has essentially the same behavior.

This regularization is suitable to put CP" ' models on
the lattice. This can be accomplished by the following
definition of the parallel transporter:

N~

D„~p= g [I, t, (x)Mi j, k, kp(x +p)
h, k =1 2a

6V„=—,'a TrA„A„O,

where 8, are the gauge parameters. We see that for
a —+0, they do not reproduce gauge transformations.
These can be recovered if the auxiliary field V„acquires a
nonvanishing expectation value where

~h~«)Qhk~kp«+t )

+k I, ~(x)NI, kikp(x +p)

4.(x—»tk~ kp(x+V )] (17)

so that defining the shifted field

8' =——V=1
a

we have

5 A „=b, 8+i [ A „,8 ]—a 8'„5„8——[ A, b.„8]P P

(10)

(12)

and the sign refers to bosonic/fermionic constituents,
respectively. In the latter case if there are spinor indices
they are included in the flavor index h.

The above is the most general expression compatible
with the gauge transformations (8). We must now con-
strain the matrices M, Q, N and P in such a way that A „
and 8'„be Hermitian and reAection positivity be
satisfied.

The gauge and auxiliary fields resulting from Eq. (17)
are

XYM= —,'13+F„(x)F (x) . (14)

The possibility of enforcing conditions (a) and (b) is relat-
ed to the existence of the other invariant

In conclusion a noncompact regularization can be con-
structed if (a) spontaneous breaking of GL to IGL can be
ensured by a suitable potential and (b) the auxiliary field
decouples in the continuum limit.

The strength and the Yang-Mills Lagrangian density
can be written in analogy with the continuum

F„=—[D„(x)D (x +p, ) D(x)D„(x+—v)], (13)
1

l

A„,(x)= [A, (x)Mcr, A(x+@)—A, (x+p)Qo, i(x)

+I, (x)No, track, *(x .+p)
+X(x +p)P trio, A (x )],

V„(x)= [A, (x)MA(x+p, )+A, (x+p)QA(x)
4a

Q=M*, P= N*, — (20)

+A. (x)No'P, *(x +p) —X(x+pP)o2k(x)],
where the constituent fields have been ordered in such a
way to get rid of the + sign.

Hermiticity of A„and 8'„requires

1 2 2 2

a P P (15)

The total action will contain an arbitrary function of this
invariant. This function is determined [7] by some re-
quirements including a divergent mass —1/a for 8'„ to
ensure its decoupling. The resulting total Lagrangian is

while to ensure the condition

D „(x)=D„(x—p)

related to reAection positivity it is sufficient that

M =M, %=+X for fermions/bosons .

Taking the above conditions into account,

(21)

(22)

The minimum of the potential occurs at V„=+1/a,
namely, W„=O, —2/a. Since the second root has been
shown to add only unessential complications conditions
(a) and (b) are satisfied.

It is worthwhile mentioning that in the limit y —+ ~ we
recover Wilson's definition. The scaling properties of this
regularization have been studied perturbatively. It has

A„,= [A, Mo, h„i, h„A, Mo, i, — —

+A, No, o ~h„A,
* h„XN o ~o, A, ], —

+—[A Mb, A+6, A MA,
4a

+ A, tNo 2b„k,*+b,„XN 2k],

(23)
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where

r =2k, MA, +A, No. 2A, *+AN o.2 . (24)

N~

+~4—X (&&4) (&24» (32)

So far we have constructed a parallel transporter [8] in
terms of constituent fields, but to have a gauge theory we
must impose condition (10). This can obviously be done
only in the context of a definite Lagrangian that we now
assume to be XG (we could as well have chosen the lattice
transcription of the CP" ' Lagrangian). At this point we
must distinguish between the bosonic and fermionic case.
In the bosonic case condition (10) can be imposed at the
semiclassical level. For constant constituent fields it
reads

where

2)2A(x) =—g D„(x)A(x+p)
1

P

+Dt (x —p, )k(x —p) ——&(x)
2

[t—(x)+t (x —p)]X(x) . (33)P P

r=4.
Such a condition follows from the potential of XG,

2 2
7 —1
4

2A'
a4

(25)

(26)

Nf
r= g e„p,p„+p N'o, p*+pN' g,p,

6=1
(27)

where e& =+1 and X' is the transformed of X. Next we
introduce the real and imaginary parts of the new constit-
uent fields,

Aha chal +t'(t'ha2

and fix the gauge according to

0 112 'P 121 0 122

(28)

(29)

This gauge fixing shows that the case of one single
flavor is trivial because A„=O. Assuming e& =1 we shift
the field P „(,

which has in fact the degenerate minima r =+4. We re-
cover a constraint on the fields for y ~~, where the ex-
ponential of the last term of XG becomes a 5 function.

Let us now come to the issue of renormalizability.
This requires that the Lagrangian have a quadratic term
in the constituent fields and that the vertices have dimen-
sion zero. Since the vertices are quartic in the gauge
fields, these fields must have dimension one and therefore,
because of the derivatives in Eq. (23), the constituent
fields must have scaling dimension zero. For the La-
grangian to contain a quadratic term it is necessary that r
contain a constant. This can be easily obtained. Taking
advantage of the Hermiticity of M we can perform on the
constituent fields a transformation such that

The situation is different for fermions. First of all a
condition on the fields cannot be imposed at the semiclas-
sical level, neither by use of a 5 function, because a 5
function of Grassmann variables with all the properties
and representations of ordinary 6 functions does not ex-
ist. In the case of one single flavor, for instance, the func-
tion

5(k, tA. —v)= —v exp —
A, X+

2 (& &)
2 v 2v

(34)

&F4= (35)

where is the Euclidean Laplacian on the lattice and

A~ —A, ~
o.2A. I, (36)

are new gauge-invariant variables. X+4 is quadratic in
the A fields that we now take as fundamental fields ac-
cording to the integration rule

f d Ah, d Ah, d A, h 2d A, h2
=

,,' jd Ah d ,Ah .— (37)

acts as a 6 function on powers of A, A, but not on arbitrary
functions of this argument nor with respect to integration
over v. In the presence of more degrees of freedom the
right-hand side of the above equation contains higher
powers of A, A, . This is at the origin of the difficulties in
the mentioned attempts [5,6] to relate fermionic bilinears
to bosonic fields. In the anticommuting case it is only
possible to impose a condition on expectation values and
to impose condition (10) we can include in the Lagrang-
ian a term of the form (34).

As far as renormalizability is concerned, an expression
corresponding to Eq. (31) does not exist, so that the La-
grangian has no quadratic terms in the constituent fields.
A possible way out which, however, remains to be inves-
tigated, is to add a term

Nlil=2+P ~ (30)

getting

Nf
&=4+4' +S'+ X &h4h4h+0 N'~8*+IN'~24 .

h=2

(31)

It remains to give the constituent fields scaling dimen-
sion zero. This can be accomplished by including in the
Lagrangian a term with a fourth covariant derivative;

We can adopt such a rule since the only nonvanishing
contributions to the integration come from terms AI*, Ah.
For this reason we can perform the change of variables
(36) at any nonvanishing order of perturbation theory
even though we cannot express XG in terms of the new
variables. It should be noted, however, that the propaga-
tor arising from the integration rule (37) is not known. In
such an integration, in fact, as it will be shown in a
separate paper, there appear permanents which do not
enjoy the nice properties of determinants.



R1920 F. PALUMBO

(OVV-)&0 (38)

Let us finally come to the issue of physical positivity.
This requires that for any polynomial P of the D„at posi-
tive Euclidean times,

where also nonunitary link variables appear. Then one
shows that the action of 0 on the constituent fields can
be defined in such a way that equations (39) are satisfied.
It is easy to check that this happens for the natural
definition

where 0 is an operator which performs complex conjuga-
tion and Euclidean time inversion: 8[A. (x)k&(y)]=A.&(8y )A, *(8x ) (41)

OD4(x) =D4(9x —e4), ODk(x) =Dk (Hx ) . (39) by which also Eq. (21) is satisfied.

In the above equations e4 is the unit vector in the Eu-
clidean time direction and

(40)

The proof of Eq. (38) can be split into two parts. The
first one gives the proof for the case where the gauge
fields are elementary. This is most conveniently done us-
ing (with minor changes) the formalism that Mack [9] has
developed in the framework of the color-dielectric theory
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