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Laser+ e = @+e and laser+y = e++e as sources
of producing circularly polarized y and e*beams
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Helicity amplitudes of reactions of laser-electron scattering and laser+ y~e++e are investigated.
Mechanisms to produce nearly 100% circularly polarized y and e —beams are discussed using the
above-mentioned reactions. Circularly polarized e +—beams from circularly polarized y's impinging
upon an atomic target are also investigated.

PACS number(s): 12.20.Ds, 13.88.+e, 29.27.Hj, 42.62.Hk

I. INTRODUCTION

If positrons and electrons can be made circularly polar-
ized and rendered to collide head on, interesting physics
can be learned. Most spectacular would be the observa-
tion of the nonzero annihilation cross section when the
helicity of e is equal to that of e+. This will imply the
existence of a spin-0 or spin-2 particle coupled to the
electron. Also in the interaction e+e —+~+~, ~—can
be made highly polarized; this will give us a handle on de-
ciding whether ~ is coupled to the right-handed 8' and
the charged Higgs particle in addition to the standard
left-handed 8'. Polarized ~+—can also be used to test CP
violation in the ~ decay.

In this paper we want to accomplish two goals. The
first goal is to investigate the properties of the two reac-
tions mentioned in the title [1,2]. The second is to con-
sider the merits of using these two reactions as sources of
polarized y, e+, and e beams. For the near term fu-
ture, the best source of polarized e —beams will most like-
ly be ordinary pair production of e —using the polarized
photon from the first reaction. The reason is that for reg-
ular pair production, y+Z —+e+e +Z+ . , the
threshold energy is only a few MeV and thus even a 20
MeV photon is sufficient to produce almost 100% polar-
ized e* beams.

In contrast with this, the pair production using the
second reaction requires a free electron laser (with pho-
ton energy ) 1S eV) and a backward-scattered high ener-
gy y of several tens of GeV. The advantage of the latter
is that the transverse momentum of Pj of e+— is much
smaller than m, whereas in ordinary pair production P~
is caused mainly by the Coulomb multiple scatterings of
e —+ in the target, which is given roughly by 14 MeV Pt
where t is the path length of e* in the target in units of
radiation length of the target material. The transverse
momentum P~, as well as the spread of the longitudina1
momentum AP& of e+—beam, can be greatly reduced by
the cooling rings, so it is not obvious that the smallness of
P~ for e —produced by laser +y —+e+e has such a cru-
cial advantage. Obviously, further detailed engineering
studies must be carried out.

When the intensity of the laser beam becomes very

high, the coherence of laser photons becomes important
[2,3]. In fact, if the intensity becomes so high that the di-
mensionless parameter (see Appendix A)

g =4vrct
m

2
2.71X10 "

=n
w &(eV)

where nr =number of photons/cm in the laser beam,
ur, =1aser photon energy in eV, and a =amplitude for the
vector potential in radiation gauge, becomes comparable
to one, then our treatment of the problem breaks down
because we assumed the convergence of a series expan-
sion in g . The cross section is the sum of cross sections,
ger„each of which is produced by s coherent incident
photons. Roughly speaking tr, is proportional to
Thus when g —1, cr„az, o3, cr4, . . . have almost the
same magnitudes.

We follow the work of Volkov [1], who obtained the
solution to the Dirac equation in the plane electromag-
netic field in 1935, long before the invention of the laser.
Obviously, in order to apply his formalism to the 1aser
photon-electron interaction, the laser beam must have a
larger dimension than that of the electron beam, and the
laser photon wavelength must be short compared with
the intersecting length of the electron beam inside the
laser beam, in order to take the time-averaged value of
electron momentum in the laser field, such as is done in
Eq. (40.14) of Ref. [1].

For the production of polarized y and e+—beams, the
coherence effects of the laser beam [i.e., cross sections
with s ~ 2 in Eqs. (2.11) and (3.1)] have many undesirable
effects. Roughly speaking, the high-energy tips (within
20—30% from the very tip) of the spectra of both reac-
tions have characteristics of high intensity and high po-
larization. The locations of the tips of the spectrum di6'er
for each s as given by Eq. (2.34) for the reaction
sk, +p, ~kz+pz and Eq. (3.30) for the reaction
sk, +kz —+p, +pz. The tip of the spectrum for the s =1
case is the most important energy, but this point is some-
what below the energy tips for cross sections with s ~ 2.
Thus the contributions from s ~ 2 do not have good po-
larization characteristics near the tip of the spectrum for
the s=1 case for both reactions. When the center-of-
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mass energies are high compared with the mass of the
electron [see Eqs. (2.34) and (3.30)] u, „approaches unity
for all s's for both reactions, and the objectionable
features of higher s contributions disappear. For low en-
ergies (i.e., when the center-of-mass energy is not relativ-
istic), one should keep g (0.5 and increase the laser pulse
length in order to maintain good polarization and good
intensity.

In Sec. II we treat the differential cross section and the
polarization of the scattered photon kz for arbitrarily po-
larized k, and p, in the reaction laser
(sk& )+p, ~kz+pz. Measurement of the electron polar-
ization using polarized laser beams is discussed.

In Sec. III we treat the differential cross section and
the polarization of e* from arbitrarily polarized k& and
kz in the reaction laser (sk&)+k~~e+(p, )+e (p2). In
Sec. IV we treat the energy distribution and the polariza-
tion of e —from an arbitrarily polarized (circular) photon
in the reaction

~snnnn ~ ~snnnp ~ snnpn ~ snnpp

snpnn snpnp snppn snppp

Our calculational strategy is the following: We choose
the center-of-mass system to obtain expressions for
3,& & & & and then evaluate these expressions in the coor-

1 2 3 4

dinate system where the experiment is carried out. In the
center-of-mass system, the expressions for 3,& & & &

's are
1 2 3 4

the simplest. The center-of-mass system we have used
differs somewhat from the usual one because of the pres-
ence of a laser field in which electrons not only acquire
additional momentum in the direction of the laser beam
but also an additional mass due to its helical motion in
the laser field. Let us denote the four-momenta of the
laser photon, the outgoing photon, the incident electron,
and the outgoing electron by k„k2, p„and p2, respec-
tively. Let q, and q2 be the quasi-four-momenta of p&

and p2 electrons inside the laser field:

k+Z —+e e + '''
where Z is an atomic target (numerical examples given
are for tungsten). In Sec. V we summarize and discuss
our results.

gm
q) =pi + k)2p).k)

gmq2=p2+
2p2. k )

(2.1)

(2.2)

II. LASER-ELECTRON INTERACTIONS

We closely follow the work of Volkov, as given in Ref.
[1]. In this section, we treat the interaction
sk, +p) ~k2+p2 (see Fig. 1).

Each electron and photon can have two helicity states,
and thus there are altogether sixteen helicity amplitudes
for each s. Let us denote each of these amplitudes by
2,& & & & where A, &, A,2, A, 3, and A,4 are helicities of the in-

1 2 3 4

cident photon, the outgoing photon, the outgoing elec-
tron, and the incident electron, respectively. For exam-
ple, A, „„means X& is positive, A, 2 is negative, k3 is nega-
tive, and A,4 is positive. Because of parity conservation,
we have

q, =q~~=m (I+/ )—:m*

The energy-momentum conservation is

sk, +q) =k2+q2 (2.3)

or

(s —rj)k, +p, =k2+p2,

where

(2.4)

where g2 is the dimensionless parameter representing the
intensity of the laser defined in Appendix A.

From (2.1) and (2.2), we obtain the quasimass of the
electrons in the laser field:

gm 1'9=
2 p, .k,

1

p1 kl

thus we need to calculate only eight helicity amplitudes,
which we chose to be

p2X,g

Our center-of-mass system is defined by

(s —g)k, +p, =k~+p2=0 .

In this system, the four-vectors k„k2, p„and p2 have
the components (see Fig. 2)

P,O, O,
P

S 'g S Yj

(2.6a)

k)X,)
k)X,)

k2=(p, p sin8, 0,p cos8),

p, =(e,0,0, —p),
p2 =(e, —p sino, 0, —p cos8) .

(2.6b)

(2.6c)

(2.6d)

pi~4

FIG. 1. Feynman diagrams for the reaction laser
(k

&
A,

&
)+electron(p

& A4) ~photon (k2A2)+ electron(p2A3). 5 —rI =5 /(1+ e), (2.7)

Since k& depends upon g in the coordinate system, we
can substitute the expression for k, given above into Eq.
(2.S) and solve for g. We obtain
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(S )fi X)A~A, 314
~10 720 20

(2m)

X g 5 (sk&+q& —
q2

—kz)A, &ii2~3&4,
$=1

(2.11)

where

(s-v)) kq

pz (e-)

gm 1 —x
2 (e+p )(e+px )

FIG. 2. The center-of-mass system for the reaction
laser+ electron —+photon+ electron, (s —g)k&+ p&

=k2+ p2=0.

A.X,X,X,X,=&.Ao.z, z,z,z, +~1.A 1.X,X,X,~,

+&2, A2.~,~,~,~,

B,=J,(z),
B„=—

—,'[J, ,(z)+J,+)(z)],

B2, =(1/2i )[J, ,(z) —J, +,(z)],

J, is a Bessel function of the first kind,

gm sin8
z — s 7J

e +px

(2.12)

g m
~os'. g&A. &k4 (P2~3) ~k& +

2 (k )(k )
~1

Xu(p, X4),

A 1$A.
&

X2Ar3Ar4

r.&&~~, + k
1

1 P2 1 P1
=u(p, A, 3)

2m(y +1)
2y

m (y —1)
2y

(2.8)

X u(p, A4),
(2.9)

and

and x =cosg.
A tremendous number of cancellations occur in the

course of calculation. Since p and e are related by
e =p +m, the final expression cannot be unique if we
treat e and p as independent variables. This is remedied
by using the variable y=(e+p)/m. In terms of y, we
have

A =a icos@+a2sin@,

where

(2.10)

4=k, x =[p/(s —g)](t —z) .

For A.
&
=positive, we have

We used the commercially available computer program
[4] called MAFLE to obtain all our analytical expressions,
as well as the numerical results. The helicity amplitudes
were obtained by explicitly writing down spinors u, U as
4 X 1 arrays, u and U as 1 X4 arrays, and by using explicit
representations for all y matrices. MAFLE handled all the
matrix multiplications and simplifications (see Appendix
B).

Let the vector potential representing the laser field be

A 2$ A, )A,2A. 3A,4

=u(pzi3) gm
2 k1 'P2 k 1 P1

Xu(piA4)

Notice that we have chosen A, &=( —1) because cases in-

volving A, , =+1 can be obtained by mirror imaging,
which reverses the helicities of all particles. Here, e& is

2

the complex conjugate of the polarization vector for the
outgoing photon.

For A,2=positive,
r

cosg —i —sing
e& = 0, —'&2 '&2' &2

ai =ae„and a2= ae For X2=negative,

and for A, &=negative, we have

a1=ae and a2 = —ae„,

where a is defined by Eq. (1.1).
The matrix element for laser photon-electron scatter-

ing (see Eq. (101.9) of Ref. [1])can be written

cosg +i —sinO
' &2 ' &2 ' &2

We notice A0, A1, A2 are independent of s because
only k, is dependent on s and ki appears in both the
numerator and denominator with equal power. The ex-
plicit representations of spinors are given in Appendix B.

After obtaining the helicity amplitudes A, & & & & as
1 2 3 4
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shown in (2.12), we can sum over the helicities of the out-
going electron A.3 and obtain

2 2
~sA, )A214 ~sk, lk2PA, 4

+ ~sA. IA2nk4 (2.13)

There are altogether eight 8',& & &
's, but only four of

1 2 3

them are independent because of parity conservation:

N —Xn
P(k )=

(N„—N„„)g,D, „+(Np„—N„p )g, D,p„
(N +N„„)Q, S, +(N „+N„p)Q,Sp„

where

(2.14)

~snnn =
~sppp

~snnp
=

~sppn

~snpn
=

~spnp

~snpp
=

~spnn

Suppose there are in total N events which are induced
by four possible combinations of initial helicities X& &

..
'i 4

N=N +W„„+N„+N„.
The number of events with A, z

=positive is

Np =Np g W,ppp+Np„g W,pp„+N„p g W,„pp

+Nnn g Wsnpn

The number of events with A,2=negative is

D, =—8'p p
—8'p„p,

spp sppp spnp

Dspn
=

~sppn ~spnn

~spn ~sppn + ~spnn

Now the polarization of k, is defined by

P(k, )=
N „+N„„Npp+X„p

and the polarization ofp, is defined by

Npp
—N „N„p N„„—

Npp+N„„N„p+N„„
From (2.14) to (2.16), we finally obtain

P(ki )Q,Ni, +P(pi )Q,Ni,
P(k2)=

g,D „+P(k i )P(p i )g,D~,

where

(2.1S)

(2.16)

(2.17)

Nn =Npp X Wspnp +Npn g Wspnn +Nnp g Wsnnp

+Nnn g Wsnnn

Let P(k2) be the polarization of k2. By definition

Ni, =(D,p +D,p„)/m, N2, =(D,
pp D,p„)/m—

D„=(S, +S, „)/m, D2, =(S,„p
—S,p„)/m

We let MApLE grind through all the above computa-
tions and obtain the expressions for N„, Nz„D&„and
D2, as follows:

N» = [ [ —(6+2x )y —( 2 —2x )y ]g +4y —4y ] ( g sinO/d i )J, (J, , —J, + i )

+[(1+6x+x2)y —(1—2x+x )](g'/d()(J, t
—J,'+) ),

N2, =[—(4—4x2)(y~ —y2)g +(2—2x )y —(2+4x —6x )y —(2—8x+6x )y +(2—4x+2x )] J,
1

+ [(2—2x )(y —y )g +4xy —4xy ](g sinO/d, )J, (J, i+J,+ &
)

—(4—4x )(y —y )(g /di)J, iJ, +i+(1—2x+x )(y —l)(g' /di)(J, i+J, +i ),
D„=—8J, +(gz/d, )[(5+2x+x )y +(2—2x )y +(1—2x+x )](J, i+J, +i —2J, ),
D2, = [[—(2 —2x)(y —y)]g +4(y —y )IJ,(J, ,

—J,+, )(gsinO/d, )—(1—x) (y —1)(g /d, )(J, ,
—J,+, ),

(2.19)

(2.20)

(2.21)

where d, =y [y (1+x )+(1—x )], x =cosO, and
y =(e+p )/m; x and y will be given in terms of laborato-
ry quantities later in Eqs. (2.36) and (2.37).

The lowest-order Compton case for Eq. (2.17) can be
obtained by letting s = 1,

J, &=1, J,+,=0, and retaining only g terms in N„,
X2„D&„and D2, . The result can be written

N&=g [y (1+x)—1+x]
X[y (x +2x+5)+2y (1—x )

J, =gy sinO[y (1+x )+(1—x)] +(1—x) ]y /d, , (2.22)
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Nz=g (1—x)[y (x +4x+3)+y (x —6x —3)
—(x —1)y —(1—x) ]y /d, , (2.23)

Q d cJ'

dW= f du nzdl g
min s=1 dQ

D, =g [y (x +3x +7x+5)—y (3x' —5x +x+1) adlm + f ~»d
D1,

min 197X 10 ' cm MeV
+y (3x —3x —3x+3)
—(x —3x +3x —1)]y /d, , (2.24)

oo Q

Ei GeV
(2.30)

D2=g [y (1+x)—1+x]

X [y ( —x —2x+3)+y (2x~ —2)

—(1 —x) ]y /di . (2.25)

1 1 d k2 d q2 4do, = 5 (sk, +q, —k2 —q2)4k i q i (2~) 2w2 2q20

The difFerential cross section for the process
sk, +q, ~k2+ q2 is proportional to D„:

Now we see why we have to use the infinitesimal length
dI instead of the total pulse length I. of the laser beam.
We know that 8' cannot exceed 1, when u is near 1 be-
cause of energy conservation. For our purpose, it is a
good approximation to assume that an electron once it is
scattered by the laser photon will be lost as a scatterer to
produce high-energy photon. This assumption is justified
by the shape of D1„which has a more prominent peak at
the high value of Q than at the low value of Q. If this ap-
proximation is made, we can use the total cross section o
as the coefficient of attenuation. We then have

X[(a4vr) (Di, /g )], (2.26) d W = n exp( nr o—I )dl
de

which can be simplified into Integrating the above with respect to l and u, we obtain
the number of scattered photons per incident electron:

d(7

dQ

2
KCX

4',Ei g
(2.27) dO

%=[1—exp( nroL—)]—f du g . (2.31)
min

dOs=X 2 QOgD„.
4coiE, g

(2.28)

where w, and E1 are laboratory incident photon and
electron energies, - respectively, and u =~2/E1.

Terms in the square brackets in Eq. (2.26) can be un-
derstood in the following way: (a4m ) =e comes from
incoming and outgoing photons coupled to the electron.
The m g in the denominator is equal to 4maa, which is
put there so that in the limit $~0 and s =1, do, gives
the Compton cross section. This factor is evident by in-
specting the definition of A given by Eq. (2.10). We also
notice that in Eq. (2.26) the tlux density is given by
4k, q1, not by 4sk, .q1. Conceptually this is because the
number of photons acting coherently is not a priori given
by the laser beam but is determined by the matrix ele-
ments of the interaction. The difFerential cross section is
obtained by the sum with respect to all s:

This equation is applicable when both u;„and u

are not much smaller than 1. On the other hand, when u
is much less than 1, an electron can scatter with the in-
coming laser photons many times before losing a substan-
tial fraction of its energy. In this case there can be more
than one backscattered photon per incident electron, and
thus W can be greater than 1. This happens, for example,
when E1 = 1 GeV and m1= 1 eV, and thus u,„=0.016
for (~0 and s= l. When the multiple scattering is im-
portant, we need to consider the straggling instead of the
attenuation. The problem of straggling can be handled
by the Monte Carlo method numerically.

The numerical evaluations of N1„N2„D„, and D2,
are performed in the following way: we first specify the
values of incident laser photon energy (co, ) and incident
electron energy (E, ), and laser intensity (g). Since this is
a two-body problem, the laboratory angle 8& (which is the
angle between k2 and p, ) is related to the laboratory scat-
tered photon energy co2=—E1Q by

1/2

Assuming that the size of the electron beam is much
sma11er than that of the laser beam, the number of events
per incident electron within an infinitesimal length dl
(cm) of the laser beam is

w ——1 —(1+/ )
1 2

Q

where y1 E1/Pl w 4$E1c01/M

(2.32)

d 8' der=n dl
dQ dQ

(2.29)

C02
Q = 1

1+(1+/ +y, Oi)/w
(2.33)

where n~ is number of laser photons per cm given by Eq.
(Al).

Thus, the total number of scattered photons per in-
cident electron in d/ is [5]

from which we obtain u;„=0 and

1
Q max 1+(1+$2)/w

The argument for the Bessel function is

(2.34)
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gm 0iZ=
2', (1/u —1)

(2.35)
A. Measurement of helicity of e+ using

circularly polarized laser beams

y =— = 1+w —
g

e+p 9
m 1 Q

' 1/2

x —=cosO=—
' 1/2

C020I1— sign, (2.37)

Then y and x appearing in N „,N2 D ]„and D2, can be
written in terms of laboratory quantities as

At SLAC the helicity of the electron beam is measured
in two ways: one by the Mdller scattering on the polar-
ized atomic electron target and the other by the Compton
scattering on the circularly polarized laser beam. Here
we describe the latter. Let the number of events induced
by the positive (A, , =p) and negative (A, , =n) helicity laser
beam be N(p) and N(n), respectively. We have

& ~sr nc & sIur

d o.(A, )
=A, ~)

—d o(A, , = —A,2)

do (A. , =A,z)+do. (A, ,
= —

A, 2)
(2.38)

.Dis

do(A~=Az) der(A~—= —Az)

do (Aq=l2)+der, (A,q=,
—

A,~)

,D2,

,Di,
d o (A, , =A q)

—d cr(A i
= —A4)

do (A, , =A~)+der(A, , = —A~)

(2.39)

(2.40)

where, for example, der(A, , =A,2) means the differential
cross section (do /du) in which A,3 and 1,4 are summed
and k& and X2 are set either both positive or both nega-
tive. From the parity conservation, the two possibilities
have equal probability. These relations tell us that A, B,
and C are not just the coefficients of P(k, ), P(p, ), and

P(ki)P(pi) in the definition of P(kz),

P(k, ) A +P(p, )8
P k2 =

1 +P(k, )P(p, )C
(2.41)

but also that they have definite physical meanings. In
fact, the quantity C defined in Eq. (2.40) plays a very cru-
cial role in the measurement of helicity of electrons using
the polarized laser photon beams shown in the following.

where

sign= [u —0.5(1—y )]/~ u —0.5(1 —y ) ~,

and p =rn(y 1)/2y.—
For convenience of discussion we have specified E„co„

u, and f as input variables for evaluating D„, D2„Ni„
and N2, . However, these functions depend only on
center-of-mass energies w, u, and g'. In other words,
these functions depend only on the product E,mi, but not
E, and co& separately. Here u, „depends only on cu and

g, as seen from Eq. (2.34). Thus, as long as u, „and g
are given, the functions D&„D2„N&„and N2, are
specified.

From the definitions of N& N2& D] and D2, given in

Eq. (2.17) we obtain

sNi.

,D(,

(2.42)

N(n) =N„~ X ~snnp +X snpp

+Nnn X ~snpn + X ~snnn (2.43)

Then the asymmetry can be written

N(p) —N(n) P(ki )+P(pi )C

N(p)+N(n) 1+P(k, )P(p, )C

(2.44)

B. observations

(1) From the expression of u, „given by Eq. (2.34), we

see that if the center-of-mass energy is much greater than

If we let the number of positive helicity photons used to
measure N(p) be equal to that used to measure N(n),
then P(k, ) becomes zero, and the last expression results.
Since C as given by Eq. (2.40) is a calculable function, we

can obtain the polarization of the electron P(pi) by
measuring As„. This technique is well known. Our
contribution here is to include the effects due to contribu-
tions from s ~ 2. In the measurement of the polarization
using the asymmetry, the energy of the outgoing electron
E2 is measured. Since E2 =E,(1 u), we —can see the E2
dependence of A, from graphs shown in Figs. 3 and
6—9. The most interesting features of these curves are
that D2, and N „have zeros at the same value of u, which
corresponds to the photon scattering angle of 90 in the
rest frame of the initial electron, given by

1 —(1+—'w+ —'g' )
Qo (2.45)

I+/ /w

where w =(4sm, E, )/m . The value of uo increases as s
is increased, but it decreases as g is increased. When g is

large and the s ~2 contribution becomes important, the
zero in the s=1 contribution becomes partially filled.
%'e also notice that in the Thomson limit, m ~0, we have

D2, =0, and thus the method cannot be used in this limit.
There must be a simple reason why these zeros occur

for N&, and D2„but not for N2, . At this moment, this
author is unable to find a simple explanation.
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P(kl ) A +P(p, )8
1+P(kl )P(p, )C

(2.46)

0

(o) = 3.5 ev
E) =1 Gev

l

0.02

I

04

0.04

l

0.8

with A =NI/D&, 8=%2/DI, and C=D2/D„where
N 1 Np D 1 and D 2 are given, respectively, by Eqs.
(2.22) —(2.25). In Fig. (3) we show A, 8, and C in Eq.
(2.38) for three sets of energies: (a) co, =3.5 eV and

E& =1 GeV, (b) co, =1.17 eV, and E, =50 GeV, and (c)
co1=3.5 eV and E, =500 GeV. The values of u „for
each case indicate how relativistic the reaction is in the
center-of-mass system. Case (a) is the low-energy case
and almost the Thomson limit, which is characterized by
D, being symmetric with respect to u =u,„/2 and A

being antisymmetric with respect to u =u, „/2 and
B=C=O. In the Thomson limit, the polarization of k2
is opposite to that of k, at the high-energy end, but at the
low-energy end it is the other way. The polarization of
the incident electron does not contribute to the polariza-
tion of kz in the Thomson limit because B~0. As the
center-of-mass energy is increased, the energy distribu-
tion (i.e., D, ) gets skewed toward the high-energy end
and B becomes more prominent and 2 becomes less so.
This means that at high center-of-mass energy the polar-
ization of k2 is dominated by the polarization of the in-
cident electron (p &).

Figure 4 illustrates that at an intermediate center-of-
mass energy ( W, = 1.17 eV, E, =50 GeV), if the incident
electron (p, ) and the laser photon (k, ) are polarized, it
somewhat improves the polarization of the outgoing pho-
ton (k~).

Figure 5 illustrates the effect of high g. The energy is
the same as in Fig. 3(a), i.e., almost the Thomson limit.
For simplicity we consider that only the laser beam is po-
larized, so that the polarization of kz is

FIG. 3. Energy distribution and polarization of the scattered
photon in the Compton scattering where u =co2/EI, DI is the
energy distribution of the scattered photon given by Eq. (2.24),
and A, B, and C are the parameters for polarization de6ned by
Eq. (2.38) for (a) co, =3.5 eV, E, =1 GeV; (b) co, =1.17 eV,
E I

=50 GeV; and (c) col =3.5 eV, E
&

=500 GeV.

P(k2)=P(k, ) g X„gD„.
s=1 s=1

(2.47)

The denominator of the Eq. (2.39) gives the energy
distribution —D1, for s =1, 2, and 3 are displayed in Fig.

the e6'ective mass m*, then u „approaches unity. On
the other hand, if 4E, co,s « m (1+/ ), we have
u,„~0. If 4E, co, ))m (I+/ ), then u, „approaches
unity for all s. On the other hand, u, „changes greatly
for different s's when the center-of-mass energy is compa-
rable to or less than m*. In the latter case, the modes
with s ~ 2 spoil both the energy distribution and the qual-
ity of polarization of the scattered photon beam. Thus g
should be chosen much less than 1, but the laser pulse
length should be increased to obtain high luminosity. See
Eq. (2.31).

(2) The cr, is roughly proportional to g '. Thus when
is much less than unity, only cr, survives, and it

reduces to the Compton scattering cross section. In the
Compton limit (i.e., g ~0) we may write the polarization
of the scattering photon [see Eq. (2.17)]

0.1 0.2 0.3 0.4

FIG. 4. This graph illustrates that the polarization of scat-
tered photons is slightly enhanced if the incident electron is also
polarized, in addition to the incident laser whose polarization is
the primary factor, with col = 1.17 eV, E I

=50 GeV, and
/=0. 01.
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D, ~;:nsk, +p, k~+p~

co) = 3.5 eV
Eq =~ GeV

= 1.0
0—

(a)

0

6.2 MeV

s~2
51.0 MeV

74.7 MeV
s=3

(b)

s=3

0.1

(b)

I

0.2 0.4

coi ~3. 5eV
E)=1 GeV
/ =1.0

0.02 0.04

+ p) k~ + p~
I

0.06 0.08
—0.1

0

0.02

I

0.2
l

0.4 0.6

FIG. 5. Reaction sk&+p& ~k~+pz for a strong laser beam
1/= 1) with co, =3.5 eV and E, = 1 GeV, for (a) energy distribu-
tion, D„given by Eq. (2.20), and (b) polarization, 1V&, given by
Eq. (2.18).

(c)
D)3

N)3

5(a), and N„ is displayed in Fig. 5(b) for /=1. We first
notice that higher s contributions to the numerator and
the denominator tend to spoil the characteristics of polar-
ization and the energy distribution, respectively. We
conclude that a high value of g is not desirable at low
center-of-mass energy.

In Figs. 6—9 we present graphs for X&„%2„and D&„
Dz„defined by Eqs. (2.18)—(2.21) for two set of energies,
two values of g and three values of s. The most interest-
ing characteristics of cases with s ~ 2 is that at u = u
and u =0, all these functions are zero, whereas for s =1
these functions have their maxima at u =u „.This is
because the Bessel function at the origin is nonzero only
for Jo(0)%0, which can happen only when s=l for
J, ,(0).

-0.02
0

I

0.2
I

0.4
1

0.6

y =1+w —
g u,

] y 26)2

1+y 0

(2.50)

(2.5 1)

FIG. 6. The Xj N» D &, and D» for laser-electron scatter-
ing as given by Eqs. (2.18)—(2.21), with co&=1.17 eV, E& =50
GeV, and /=0. 4 for (a) s = 1, (b) s =2, and (c) s =3.

C. Thomson and pseudo-Thomson limit
1

u u max

(2.52)

2sgZ=
V'1+g' 1+@'.ei'

(2.48)

Let us denote the limits g —+0 and w =4wiEi/m ~0
as the Thomson limit, and w ~0 but g is not small as the
pseudo-Thomson limit. For example, scattering of a laser
beam by an electron beam of less than 100 MeV belongs
to the pseudo-Thomson limit. In the pseudo-Thomson
limit we have

—4g sin8+ xg J,(J, , —J,+i),8s
Z

172, =0,
D„=—8J, +4( (J, i+J,+, —2J, ),
D2, =0 .

(2.53)

(2.54)

Ei Im

&1+g' ' (2.49)

When y~Oi &&1, we have Z~O and thus only s= 1 is im-
portant; and, furthermore, J, =z /2, J, &

= 1, and
J + ]=O. In this limit, we have
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I

0.2
I 1 I

0.4 0.6

-0.4
0 0.1

I I

0.2 0.3
I

0.4 0.5 FIG. 8. The N&„N2„D„,and D2, for laser-electron scatter-
ing as given by Eqs. (2.18)—(2.21) with co&=3.5 eV, EI =500
GeV, and /=0. 4 for (a) s = 1, (b) s =2, and (c) s =3.

X„=4(x,
D „=2(' (1+x 2) .

(2.55)

(2.56)

The polarization of k2 is thus independent of the polar-
ization of p& and

P(k2)=[2x/(I+x )]P(k, ) .

The energy and angle of k2 are related by

(2.57)

~ max

1

$ +y2 g2
(2.58)

with u, „=46)&E&/~ +.
The di6'erential cross section is

FIG. 7. The N&„N2„D&„and D2, for laser-electron scatter-
ing as given by Eqs. (2.18)-(2.21), with co, =1.17 eV, E, =50
GeV, and /= 1.0 for (a) s = 1, (b) s =2, and (c) s =3. (2.57) and (2.59).

We have used the rest fraine of (pz+kz) to obtain the
relatively compact expressions for N&„N2„D„,D2, as
shown in Eqs. (2.18)—(2.21). The simplification occurs
because in this frame the complicated expression (s —i))
occurs only in the definition of k, as shown in Eq. (2.6)
and k

&
appears with equal power in the numerators and

the denominators of Ap, A, , and A2 defined by Eq.
(2.12). Thus Ao, A i, and Az do not contain the factor
(s —i)) in this frame. In the Compton limit s —r)=1, so
we do not have to resort to this frame. Actually we can
obtain simpler expressions for N„N2, D&,D2 in the rest
system of the initial electron pi =(m, 0,0,0). In Appen-
dix C we give expressions for N„X2,D, , D2 in the rest
system of the initial electron and also in terms of the vari-
ables u =co2/E, and w =4',E, /m .

2&I' p
2

(1+x ) . (2.59)

III. LASER (k, ) +HIGH-ENERGY PHOTON
(k2)~e++e

The Thomson limit is obtained by setting /=0 in Eqs.
Our purpose here is to investigate the properties of e+

or e, including their polarization when both k& and k2
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20 — (a)

pgz4 P2X, 3 P2X, 3 p)Z4

0-
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I I I I I I I I

I ) I
/

I I I ) I

k)X, q k2X2 k)X, ) k2k2

FIG. 10. Feynman diagrams for the reaction laser
(k

&
A, , )+photon (k212)—+electron (p & k4)+ positron (p&X3).

-90 I f I t I I I I I

I t I t I ) I ) I

(c)
Qgq„q„,

(2n. )

X g 5 (sk, +k2 —q, —q2)T, „~~ „
s=1

(3.1)

I 1 g I I I I l I

0.2 0.4 0.6 0.8

where q, o q2O and co2 are all laboratory energies of q„
q2, and k2, respectively.

The helicity amplitude T,& & & & can be written as
2 3 4

FIG. 9. The N'1 X2 D],and D2, for laser-electron scatter-
ing as given by Eqs. (2.18)—(2.21) with co&=3.5 eV, E& =500
CxeV, g= 1.0 for (a) s = 1, (b) s =2, and (c) s =3.

Ts~ k ~ 1 —Bs Tos~ ~ A, 3A4 1s Tls~&k&k314

+B2,T2,~,~,~,~, (3.2)

where B„B„,and B2, are the same as those defined in

Eq. (2.12). The argument of Bessel functions z is now

z =pm 8, /2', (1—u ), (3.3)
are circularly polarized. The initial state can have an
even or odd number of photons in the reaction
sk, +k2~p, +p2. Since amplitudes for different s's do
not interfere, the Anal state has a definite charge parity
for a given s; thus one cannot distinguish e from e+ in
this problem. However, we shall call p& positron and pz
electron for convenience in applying the substitution rule
to the previous problem. The Feynman diagrams for the
present problem (Fig. 10) and the previous problem (Fig.
1) are related by the substitution rule: k2~ —kz,
p, ~ —p, , u(p, )~U( —p, ), and E2~E2'

Let us denote the helicity amplitude in the laboratory
system by T,& & & & for the reaction sk&+k2~e++e

1 2 3 4

where A, &, A,2, A, 3, and A,4 are laboratory helicities of k&

(laser), k2 (high-energy y), p2 (electron), and p, (posi-
tron), respectively. Again out of 16 helicity amplitudes,
only 8 are independent because of the parity conserva-
tion, which results in T,& & & &

= T,
The matrix element for laser photon plus high-energy

y —+e+e can be written

p, (e')

Photon)

= Y

1~

k~ (laser photon)

ps (e-)

FICs. 11. Kinemetics for laser (sk& )+k2 —+e+(pl )+e (p2).
All momenta and angles refer to the laboratory system.
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8, = [4sco,co2u(1 —u) —m (1+/ )]'1

Q 602
(3.4)

where 8, is the laboratory angle between p, and k2 (see
Fig. 11), co, is the energy of the laser photon, u =E, /c02
with E1 and co2 being the energy of the outgoing positron
and the incident high-energy y, respectively, 0, is related
to uby

2 (3.17)

From the helicity amplitudes, we obtain the differential
cross section and the polarization for the positron (also
applicable to the electron because of charge symmetry) in
terms of N1 N2s D1, and D2, defined as

1 2 2 2, & (T,.2.,2,.+ T.pa, 2.~ T..2.,2—.„
1 3

g is the parameter defined in Appendix A, and

T0.2, 2. 2, 2. =u(p2 ~3)~2, "( pl ~4)

T„„22. 2. =u(p2, A, , )

(3 5)
1 2 2 2N2s: 2 g ( Ts2 «2. n + Ts2. p2~ Ts2, p2

1 3

2 (3.18)

X m

2
1 1

X &i~2, + kk1 p2 k1 p1
21

X (3.19)

Xv( pi, ky),

T2,2 2. 2. 2.s
=u(p2, A3)

X m

2

Xv( pi, Ag)

1 1
xp&i~2., + k 6,&i1'p

1 P2 1 Pl

(3.6)

(3.7)

1 2 2 2
D2s 2 g ( Tsn«2. &k

+ spp2&2. snp23X&

3 4

2
Tsp«2. 32.4

} & (3.20)

where n and p refer to negative and positive helicities, re-
spectively.

The differential cross section for each s is

Here, e& is the polarization vector for the high-energy
2

incident photon k2: for X2=positive,

3
1 1 2 2do 2 5[(sk, +k2 —q, ) mn ]-

8co)c02 (2~) 2q)O

for A,2=negative,

1 —i
ez = 0, —, —,0

(3.8)

(3 9)

X[(u4m) (D(, /g )],
which can be simplified to

d~S ma
2D1, .

ciu 4' ~cog

The total cross section is

(3.21)

(3.22)

gm
g1 p1 + k12pl. k1

g m2
g2 =p2+ k1

2p, k,

(3.10)

(3.1 1)

oo 2 oo g maxg= go, = g D„du,
s = 1 4CO1CO2k s = ~

mm

where u,„and u;„are given by Eq. (3.30). The polar-
ization of e+ (or e ) is

The explicit representations of spinors are given in Ap-
pendix B. Using the notations of (Bl)—(B4), we have

P(k ) )g, N), +P(k2 }Q,N2,

g,D„+P(k) }P(k2)Q,D2,
(3.23)

u (p„+)= u (p„8„7r,+0.5),
v( —p„+)=v(p&, 8„0+0.5) .

(3.12)

(3.13)

The p2, 02, p1, and 01 can all be written as functions of u,
co&, co2, and g. Equation (3.4) gives 8,.

Assuming co2 »a)1, E1 »m, E2 »m, 02 « 1, and
01«1,we have

We notice that in D1, and D2„ the spins of both the
electron (A,4) and positron (A,3) are summed, and hence
they can be calculated in any frame. We have calculated
these two quantities in both the center-of-mass and the
laboratory system. The numerical results agree com-
pletely. In the center-of-mass system, simple analytical
expressions for D 1, and D2, can be obtained:

E 1
—C02Q

E2 =co2(1 —u ),
~2= 1E1~E2 .

(3.14)

(3.15)

(3.16)

Using exactly the same argument as in Sec. II, we ob-
tain the differential cross section and the polarization for
the positron (also applicable to the electron because of
charge symmetry).

2 2 2

S

2 2

D2, = J,(J, , —J, +, ) — (e2+p x )
S

Z 2~ 2 e 4 4 4

(s —21) (1—x )

Here the center-of-mass system is defined as

(3.24}

(3.25}
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p, =(e,p sinO, O,p cosO),

p2=(e, —p sin8, 0, —p cosO),

k, =(e,0,0, —e )/(s —g), k2 =(e,O, O, e ),
s(e —px )x cos0, s

(e —p x )+pm
2sgmp sinOz=

p sin 8+m (I+/ )

(3.26)
0

Here, e, p, and x are related to the laboratory quantities
by

e =co,co~(s —g),
p =V'e' —m',
sinO= p, sinO, /p,
cosO='1/I —sin 8[u —

—,']/~u —
—,
' ~,

where u =E&/co2, with

(3.27)

(3.28)

(3.29)

0

1 m (1+/)u max, min 2 SC01~2
(3.30)

In Figs. 12(a) and 12(b) we display the polarization of
e+ (or e ) in the Compton limit (/=0. 01, s =1) for low-
energy (co, =15 eV and co2=50 GeV) and high-energy
(co, = 15 eV and co2 = 500 GeV) cases, respectively.

The functions A, B, and C are defined as

0

P(k, ) A +P(k~ )B
P e —=

1 +P(k, )P(k2)C
(3.31)

0.2 0.4 0.6 0.8 1.0

where P(e +—
), P(k, ), and P(k2), are longitudinal polariza-

tions of e, k„and k2, respectively. From Figs. 12(a)
and 12(b) we see that near the high-energy tip
(u =E, /co2

—-. u—,„), P(e —
) is determined mostly by

P(k2). This is especially true at high energies.
Figure 12(c) gives the values of A, B, and C evaluated

in the center-of-mass system. These curves are given
purely for pedagogical purposes. The parameters used
are the same as those for Fig. 12(a); namely, co, = 15 eV,
co2=50 GeV, and /=0. 01. The fact that A's (and B's)
differ in two different frames are related to the Thomas
precession [11]. It is easy to see that a particle having a
spin parallel to its direction of motion is not a frame-
independent concept if m WO, because one can always go
to the particle's rest frame and then boost it in a direction
that is difFerent from the spin direction. The u =(u
0.5, u;„) correspond to cosO=(1,0, —1). The A and B
are mirror images of each other in the center-of-mass sys-
tem, but not in the laboratory system. The values of A
(or B) in both frames are similar at u ~u, „(i.e., 8~0 in
the c.m. ), but they become opposite near u~u;„(i.e.,
O~m. in the c.m. ). This is easy to understand because if
the spin of a particle is parallel to its direction of motion
in the center-of-mass system, it will still be parallel riear
u =u,„ in the laboratory system, but it will be antiparal-
lel near u =u;„because the direction of motion is re-
versed by the Lorentz transformation. We also notice
that C's are identical in two cases, because both the elec-

FIG. 12. Polarization of e* in laser+y~e+e where A, B,
and C are defined by Eq. (3.31) and u =E, /co2 in the laboratory
system (a) for co&=15 eV, v@2=50 GeV, s=1, and /=0. 01; (b)
for co&

= 15 eV, co2=500 GeV, s =1, and /=0. 01; and (c) for po-
larization of e —in the center-of-mass system for co&=15 eV,+

co2 = 50 GeV, s = 1, and /=0. 01.

tron and positron spins are summed in D &, and D2,
(C=D2, /D„with s= 1). The agreement in numerical
values of C in two cases gives us a very welcome check on
our calculation. We should remind the reader that the
mass of the electron cannot be ignored in this problem
because the center-of-mass energy is not high compared
with m, even though both e+ and e have energies of
tens of GeV in the laboratory.

In Figs. 13(a) and 13(b) we plot D„, which gives the
energy distributions for e+ (or e ). We notice that all
the graphs are symmetric with respect to u =

—,'. This can
be understood in the following way: The final state e+e
must be symmetric with respect to the exchange e+~e
because it has a definite charge parity for a given s. Thus
in the center-of-mass system where e ~e is equivalent
to I9—+~—8, the angular distribution must be symmetric
with respect to O=m/2. According to Eqs. (3.4), (3.28),
and (3.29), u =

—,
' corresponds to 8=vr/2, and the

reAection through u =—,
' in the laboratory system is the
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8 2
I

s=3

when dl ((10 cm even for /=0. 4, otherwise dais al-
most equal to unity or even exceeds it. Obviously, it is
energetically impossible to create more than one high en-
ergy e +—from one single high-energy photon. Thus, at-
tenuation of the kz beam as it goes through the laser
beam must be taken into account.

Let L be the pulse length of the laser beam in cm
(-0.05 cm, for example, used in Ref. [3]), then the total
number of e+ (or e ) produced per incident kz with
u;„&u &u,„ is

8
W'= f '"du f exp( —o.n l )nz dl

min 0 dQ

1 max do= [1—exp( on&—L )]— du
0 ~ ' dQ

(3.34)

=2
3

0.2 0.4 0.6 0.8

FIG. 13. Energy distribution of e +—in the laboratory system
for laser+y~e++e with u =E&/co2. Curves plotted are for
D„given by Eq. (3.24) for (a) co& =15 eV, co2=50 GeV, /=0. 4,
and (b) co&

= 15 eV, co& = 50 GeV, g'= 1.0.

cldlm + f m~x

min

1

197X 10 ' cm MeV

(3.32)

where dI is the longitudinal path length of k2 in laser in
cm and nz is the number of photons per cm of laser
given by Eq. (A3). We use the expression of D &, given by
Eq. (3.24) and u, „and u;„given by Eq. (3.30). Equa-
tion (3.32) can be simplified into

dW=6. 024X10 g f D„du .
co2 (GeV), (3.33)

Inspection of numerical values of D&, shown in Figs.
13(a) and 13(b) tells us that Eq. (3.33) can be valid only

same as refiection with respect to 8=m. /2 in the center-
of-mass system. This explains the symmetry of these
graphs with respect to u =

—,'. From these energy distribu-
tions we also notice that events are concentrated in the
high- and low-energy ends. As the laser intensity (g) is
increased, the range of u decreases for a given s [see Eq.
(3.30)]; but events with large s participating become more
prominent, and events with larger s have a larger range
(u,„—u;„)of u.

The number of positron (or electrons) produced per in-
cident high-energy A, (labeled k2) in the laser beam from I
to l+dl can be obtained from Eq. (3.18):

d8'=d ln&0.

This shows that 8'can never exceed unity as expected
and, in our examples shown in Figs. 13(a) and 13(b), W is
nearly unity. Excessive laser intensity does not produce
more e +—. We also notice that the attenuation does not
affect the spectral shape of e +—. Summing the contribu-
tion from all s's, we see broadly speaking that there are
two bumps in the spectrum, the high-energy bump and
the low-energy bump. Equation (3.4) can be written

2
1 1

P2u =4sco, co2 —— u —— —m (1—g )

=4sco, co&(u,„—u )(u —u ~,„), (3.35)

where P» =E j 0, is the transverse momentum of e —.
Eyuation (3.35) shows that the transverse momentum

of e is very small near u =u,„or u =u;„, and the two
bumps have identical P~ distributions. For example, for
co& = 15 eV and co&= 50 GeV we have

P,~=35X10' (eV) (u,„—u)(u —u;„); (3.36)

where t is the sum of path lengths of the incident electron
and the outgoing positron in radiation lengths in the tar-
get. For example, at SLAC the total radiator thickness is
6 r.l. Part of this is traversed by the photon, so the
effective t is 2—3 r.l. The average P~ of e+ from the pair
production in a thick target is about 20 MeV, whereas
from the laser it is less than 0.5 MeV. Thus, as a positron
source, laser +y~e++e is potentially much better

thus, near u =u,„or u =u;„,we have P» m.
In contrast to this, positrons are usually produced by

impinging an electron beam on a tungsten target. The
electron first produces bremsstrahlung in the target, and
then the photon produces a pair. The direct electropro-
duction of a pair is usually negligible, being equivalent to
about 0.02 radiation lengths of extra target thickness, ac-
cording to the Weiszacher-William approximation [6].
The energy distribution of positrons by a monoenergetic
incident electron on a target of t radiation lengths can be
found in Tsai and Van Whitis [7]. The Pj distribution is
mostly due to multiple Coulomb scattering of the in-
cident electron and the outgoing positron. The P~ is
given roughly by

( P )„,=14.1 MeV&t
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than the existing method of using the thick target, pro-
vided that we have a free electron laser with suScient in-
tensity and a very high-energy electron accelerator.

In Figs. 14—16 we show N&„N2„D&„and Dz, in the
laboratory system for two sets of energies (co, =15 eV,
co2= 50 GeV and co, = 15 eV, co2=500 GeV) and two laser
intensities (/=0. 4 and 1.0). We make the following ob-
servations on these figures.

(i) Since D„ is symmetric with respect to u =
—,', there

are an equal number of low- and high-energy e —clustered
around u;„and u

(ii) The polarization of k2 and e —helicities are nearly
the same near u,„. The polarization of e +—near u

can be increased slightly if k, is made to have the same
helicity as that of k2, because X„and N2, have the same
sign near u

(iii) Near u =u;„, the quality of polarization is not so
good. The polarization of e +—near u;„ is mostly deter-
mined by the polarization of k, (laser beam) and their
helicities are opposite. Again, if both k, and k2 are po-
larized and have the same helicity, the polarization of e-
near u =u;„will be slightly enhanced compared with
having only ki polarized.

0—

P

0—

0 -2
0

I

0.2 0.4
I

0.6 0.8 1.0

-2

0.4

FIG. 15. The X&„X»,D», and D» for laser+y~e+e as
given by Eqs. (3.17)—(3.20) with co& =15 eV, co2=50 GeV, and
g= 1.0 for (a) s = 1, (b) s =2, and (c) s =3.

0
IV. POLARIZED e* FROM PAIR PRODUCTION

IN AN ATOMIC TARGET
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Polarized e —from the photopair production was first
investigated by Olsen and Maximon [8]. They included
only the elastic atomic form factor. We include here the
contribution from the inelastic atomic form factor in the
manner of Wheeler and Lamb [9], using the Thomas-
Fermi-Moliere model of atoms, which are suitable for
atoms with Z ~ 5 (see Table B.2 of Ref. [6]).

Since the angular distribution of e —from pair produc-
tion is caused mostly by the multiple Coulomb scattering,
rather than by the production mechanism, the angle can
be integrated out so that only the energy distribution is
relevant. Both the energy distribution and the polariza-
tion of e can be written in terms of four functions:

FIC'. 14. The Ã», X», D», and D„ for laser+y~e+e as
given by Eqs. {3.17)—{3.20) with co&=15 eV, 8'2=50 GeV,
g'=0. 4 for (a) s = 1, (b) s =2, and (c) s =3.

g~ =20 863 —21n(. 1+b ) 4b arctan ———~ lnZ 4f, —1 4

(4.1)
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20 ™
I I I I I I I I

I I I I I I I

are roughly q;„Xatomic radii for elastic and inelastic
atomic form factors respectively [6]; f is the Coulomb
correction to the one-photon exchange approximation
worked out by Bethe and Maximon [10]:

f(x)=1.202x —1.0369x + 1.008x
1+x

where x =(Z/137) and Z is the atomic number, k is the
photon energy, and u =E/k with E the energy of the e+- .

The differential cross section is then

I I I I I I I

(b)

D|2

QNN

.+Nag

D~q

N~Q
DNQ

N)g

dOp

dQ
=aroF,

where

F=Z [ [u +(1—u ) ]q), +—', u(1 —u )y2]

+Z t [u +(1—u ) ]1t,+—', u( 1 —u )gzI .

(4.8)

1.0
(c}

I I I

The polarization of e —+ is

P(e )=P(k)-G,

where

6= jz [(2u —1)y,+ —,'(1—u)q&~]

(4.9)

05

0—
~N2a

o, 23,
0 0.2 0.4

D)3

D2gp
I

0.6 0.8 1.0

+Z[(2u —1)$,+—', (1 —u )Q2]] /F,
and P(k) is the polarization of the incident photon ob-

FIG. 16. The N&„N&„D&„and D&, for laser+y~e+e as
given by Eqs. (3.17)—(3.20) with co&=15 eV, co2=500 GeV,
$= 1.0 for (a) s = 1, (b) s =2, (c) s =3.

y~=20. 196—2ln(1+b )
N

+ 8b 1 —b arctan ——0.75 ln 1+2 1 1

b b2

0.4

103 MeV

20 MeV

10 MeV

——', lnZ 4f, — (4.2)

g &

=28. 340—2 ln( 1+b '
) 4b 'arctan( 1 /b '—

)
——', lnZ,

(4.3)
$2=27.673 —2 ln(1+b' )

0.5

+8b&2 1
b I W.5

where

—0.75 ln 1+ 1

$ t2
2——lnZ,
3

(4.4) -1.0
0.2 04 0.6 0.8 1.0

55.846 m

ku(1 —u )Z'" '

362.01 m

ku(1 —u )Z

(4.5)
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FIG. 17. (a) The energy distribution of e + from
k+Z~e+e . , where Z is a Tungsten target and
u =E+ Ik, and {b) the polarization of e — from
k+Z~e e . . . Curves plotted represent P(e —) /P(k) for
k =20 MeV and k =1.0 GeV, respectively.
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tained by the backward-scattered laser beam defined by
Eq. (2.17).

In Fig. 17(a) we have plotted F/78400 for Z=74
(tungsten). The number 78400 is a normalization factor
in order to make the end points in the complete screening
limit (k = Oo) equal to unity.

In Fig. 17(b) we plot the polarization of e —,assuming
the incident photon is completely right-hand polarized;
i.e., P(k)=1 in Eq. (4.9). The polarization is quite in-
dependent of energy. k=1 GeV and k=20 MeV cases
are plotted and they are hardly different. Near u,„, the
polarization is 100%; at u =0.9, the polarization is 98%;
at u =0.8, it is 93%; and at u =0.7, it is 84%. Suppose
that we select the energy of e+—so that only the u )0.7
portion is accounted for, then the integrated polarization
would be

f' P(e )Fdu

f,',F du
(4.10)

This number would be more than 90%%uo if we have al-
most 100% polarization for the incident photon beam.

V. APPLICATIONS

A. Laser (k, )+e (p, )~k2+e (p2) as a source
of polarized photon beam

Compared with ordinary bremsstrahlung beam, the
photon beam produced in this way has the following
characteristics.

(a) The spectrum here is peaked at both u =u,„and 0.
This is to be compared with the bremsstrahlung spec-
trum, which is peaked only at u =0 (the usual 1/k spec-
trum of bremsstrahlung [6]). See Figs. 3(a)—3(c).

(b) Because of the absence of Coulomb multiple scatter-
ing, the average transverse momentum of the photon here
is ~ m, whereas in the bremsstrahlung the average trans-
verse momentum is approximately 14 MeV v't /2 where t
is the radiator thickness in radiation lengths. This is im-
portant when one needs a beam that requires very small
I'j.

(c) This process is relatively background free, whereas
the ordinary bremsstrahlung is accompanied by many
e+e pairs and hadrons, especially when the target is
thick.

(d) The u, „ for bremsstrahlung is nearly 1, but for the
laser electron scattering it can be much less than 1 if the
center-of-mass momentum is much less than m. As the
center-of-mass energy becomes much greater than m,
u, „approaches 1. With the electron energy equal to 50
GeV, we need a free electron laser in order to make u

approach 1. See Eq. (2.34).
(e) Polarization. From the point of view of intensity

and polarization, the most important region of the y
spectrum from the reaction laser+ electron~@ +elec-
tron is within 20—30 % of the tip of the spectrum for the
lowest-order (s= 1) mode. In this region, the contribu-
tions from s ~ 2 do not have good polarization if
4',E, (m . Thus, in this case, one should not let g be

greater than 0.5 if a good polarized y beam is desired.
One should increase the pulse length L in Eq. (2.31) rath-
er than having a large g in order to increase the yield of
polarized photons. When 4',E, ~m (1+/ ), u,„ap-
proaches unity for aH s; thus, good polarization for all s's
can be obtained. In this case, a large value of g can be
used. See Eq. (2.34).

(f) When 4',E, &(m, u,„ is much less than l. In
this case, an electron can scatter laser photons many
times, and we can thus produce many such scattered pho-
tons per incident electron. For example, when E, =10
MeV and cu, =1 eV, we have u,„=1.6X10 "; thus,
even after 600 consecutive scatterings by the laser pho-
tons, the electron would lose at most 9.6% of its energy.
The scattered photons will have an energy of about 1.6
keV on the high-energy side. This is definitely a better
way to produce a 1.6 keV x ray than the conventional
way of producing x rays.

B. Sources of polarized e +

(a) Method I: Laser (k, )+kz —&e+(p, )+e (pz ).
(b) Method II: kz+Z —&e+e +
(c) Existing method: At the SLAC Linear Collider

(SLC), a polarized e beam is produced by shining a po-
larized laser beam onto a GaAs target [12]. The max-
imum polarization obtained up to now is 80% at the
source and 62% at the interaction region where Zo's are
produced. The e+ beam is not polarized. It is produced
by impinging a 33 GeV electron beam onto a target of 6
r.l. [13]. Both e and e beams are then accelerated and
cooled in the cooling rings to reduce their temperature.
They are then reinjected into the accelerator until they
reach the final energy.

In Secs. III and IV we discussed the characteristics of
methods I and II, respectively. Method I requires very
high-energy backscattered photons (many tens of GeV)
and a high-energy laser beam () 10 eV) achievable only
by the free electron laser. In contrast, method II requires
only a backward-scattered photon beam with relatively
low energy, because the threshold energy required is only
a few MeV, 20 MeV photons will be more than adequate.
See Fig. 17. The only disadvantage of method II com-
pared with method I is the transverse momentum distri-
bution due to multiple Coulomb scattering, but this prob-
lem is less serious here than in the existing method be-
cause the target thickness needed is less than one radia-
tion length instead of six [13].

There are three reasons why we do not need, and do
not want to have, a very thick radiator: The incoming
particle is not an electron, but a photon; we are interested
only in the first generation pair, the higher generation
pairs do not possess desired polarizations; if the target is
too thick, the e —produced will lose too much energy by
bremsstrahlung. According to Fig. 17(b) only the high-
energy end (u =0.7—1.0) has good polarization. Thus
one must select this high-energy tip by a magnet before
accelerating the beam.

Method I requires a free electron laser, as well as a
very high-energy backscattered polarized y beam (many
tens of GeV), to produce polarized e beams. Its chief
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advantage is that the average transverse momentum is
much less than m near u,„(at u =u,„,we have p~ =0).
However, this advantage may not be that significant, be-
cause the cooling rings can reduce the transverse momen-

turn, as well as the spread in the longitudinal momentum
of the beam.

The number of e (or e ) per incident electron in the
energy interval dE using method II can be written

Zmax C 2 p T
dn+ =dE[1—exp( nz—o,L)'] f dco2f, dE' f n exp( cr —nt)I, (E',E, T t)d—t,

oc E dcop E dE 0
(5.1)

where n is the number of laser photons per cm introduced in Appendix A, and a, is the total Compton cross section:

21 4 8 1 8 1o, =2rrro 1—————ln(1+ w )+—+——
CO W N 2 w 2(1+w)

(5.2)

with w=4co, E, /m; co, is the laser photon energy and
E& is the incident electron energy in the reaction laser
(k, )+p, —+k2+pz. L =laser pulse length in cm.

The first part of Eq. (5.1) up to the integration with
respect to dcoz is essentially Eq. (2.31), except that we
have concluded that we should avoid the situation where
s 2 is significant, and thus the Compton cross section is
used. The backscattered photon with energy co2 then
enters a target of total thickness T radiation lengths. The
pair production takes place at the depth of t radiation
length. The pair-production cross section do. /dE' is
given by Eq. (4.8) where u is E'/co2, ' n =(X/2 )Xo is the
number of target particles per unit radiation length; and
exp( 0~nt) —is the attenuation factor of the photon inten-
sity at depth t. The total pair-production cross section is
given by

dO b dOp

dk dp p p p
(5.5)

and b =—', .
Using Eq. (5.4), the t integration in Eq. (5.1) can be car-

ried out analytically. We have

Tf n exp( ont )I—, (E. ', E, T t )dt—
0

where k=E' —E, Xo is the unit radiation length of the
target in g/cm, and dob/dk . is the bremsstrahlung cross
section related to the pair-production cross section by the
substitution rule [16]

(5.3)0 (k ) =o ( oo )[1—g(k )], „2 dCTb
[e~ (PT 1)+l]e-

dk

=H(E', E,T), (5.6)

where P=o~n+b ln[ln(E'/E)], with b =—', .
Similarly, the polarization of e —using method II can

be calculated by combining the polarization of the back-
scattered photon in the Compton scattering with polar-
ization of e — in the pair production. Notice that (1)
when the backscattered photon passes through the target,
its helicity is not changed, its intensity is changed because
of the attenuation, and its energy distribution is slightly
changed because the energy dependence of the o. in the
absorption coefficient and (2) the helicity of e — is not
changed by bremsstrahlung or multiple Coulomb scatter-
ing as long as e —remains relativistic [17]. The polariza-
tion of e —at t = T, with energy E, is given by

b(T —t)
dCJb

Xo( T t ), —EI
I,(E',E, T t ) = ln—

(5.4)

where o. ( ~ )=—', ( A /XOX ) with A the atomic weight in
g/cm and g the correction factor tabulated in Table IV.5
of Ref. [6]. The g can be obtained from integration of Eq.
(4.8) and I,(E',E, T t ) is the str—aggling function of an
electron whose energy is E' at production at depth t. The
electron (or positron) then traverses the remaining target
thickness T—t to emerge from the target. Then
I, (E',E, T t )dE gives the—energy distribution of an elec-
tron at r whose energy was E' at t. The straggling is
caused by the bremsstrahlung emission (for simplicity, we
ignore the straggling due to ionization and the Landau
straggling [14]). The straggling function I, can be writ-
ten [15]

f~' '"D, A den~ f ~'G(co2, E')H(E', E, T)F(co2,E')dE'
P(e —)=

f ~' '"D,den~ f~'H(E', E, T)F(co2,E')dE'
(5.7)

where D& is given by Eq. (Cll), 4 is given by X& /D, with N, and D& given by Eq. (C9) and (Cl1), respectively,
G(co2, E') is given by Eq. (4.9), H(E', E, I) is given by Eq. (5.6), and F(coz, E') is given by Eq. (4.8).
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VI. CONCLUDING REMARKS

When dealing with a problem in which many particles
are polarized, it is easier to deal with calculation of ma-
trix elements directly, instead of matrix elements squared,
using density matrices and projection operators. This is
true even when dealing with the simplest problem, such
as the lowest-order Compton scattering. When the ma-
trix element itself is very complicated, the square of it be-
comes hopelessly complicated. It is often more con-
venient, or even unavoidable, to calculate the amplitude
directly. This paper demonstrates how to deal with the
transition amplitude directly using MAPLE. For the
lowest-order Compton scattering, our Eqs. (2.22) —(2.25)
reproduce the results given by Lipps and Tolhoek [19],
who also give earlier references on the subject.
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We finally obtain
2

5.64X 10
[co, (eV)]

(A4)

APPENDIX B: SPINORS FOR HELICITY STATES
AND THE USE QF MAPLE

cos(8/2)
e'~sin(8/2)
cocos(8/2)

cue '~sin( 8/2 )

—e '~sin(8/2)

MAPLE is a very generic computer program which can
handle both analytical and numerical manipulations, but
it is not specifically written for high-energy physics.
Therefore, we have to write down explicit representations
for y matrices as well as for the spinors, and let the com-
puter do the matrix multiplications. In this paper we
adopt the explicit representation of y matrices and the
metric used by Bjorken and Drell in Ref. [18]. The expli-
cit representations for the helicity states for spin- —, parti-
cles and antiparticles with mass I with four-momentum
p„=(e,p sin8cosy, p sin8siny, p cos8) are

APPENDIX A: INTENSITY OF LASER BEAM
AND THE PARAMETER g

1
u p, Oy, ——=C1

cos( 8/2)
c2e '~sin(8/2)

The dimensionless parameter g is related to the intensi-
ty of the laser beam. The energy density of the elec-
tromagnetic field is

E +H8'= —E =a co

n r
= W/co, =a co, , (Al)

where the electric field E is related to A in the radiation
gauge (Ho =0) by IEI = l~ A/~t

I
=ace, .

The number of photons per cm is thus

1
p, g, 'P, ——C1

1
p~ ~tp~

—c

icos�(

8/2 )

c2e '~sin(8/2)
—c2cos( 8/2 )

—e '~sin( 8/2 )

cos(8/2)

c2cos(8/2)

c2e'~sin(8/2)

cos( 8/2)
e '~sin( 8/2 )

(83)

aa 4m 4ma=n
m m co 1

(A2)

Since g is dimensionless and m and co, are usually given
in electron volts we have to convert "per cm " in the
definition of n into electron volts (eV ) by the relation

1 =Ac = 197.3 X 10 eV cm .

Thus

4+a(197.3 X 10 eV)=n r Pl CO 1

(A3)

The laser intensity is usually given in units of W/cm . It
is related to the photon density by

I(W/crn )=nr4. 8X10 co, (eV) W/cm

where c, =(e+m)'r, cz=p/(e+m), and (+—,') denotes
the positive and negative helicities.

The spinors with a bar are defined as usual, u =u yo
and v = v yo, where a dagger denotes the Hermitian con-
jugate. Each of the four spinors given above is defined as
a procedure in MAPLE, so that we can apply it to
represent a fermion with any p, m, 0, y, and helicity. It
should be noted that the phase factor in each of the eight
spinors defined above is not relevant to our problem, be-
cause two different helicity amplitudes do not interfere
with one another, and only the square of each helicity
amplitude contributes to the polarization and the
differentia cross sections.

The spinor representations shown above are obtained
in the following way.

From Dirac equations (P —m )u =0, we obtain
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Qg =C)
P'cT

e+m x+
(B5)

where y+ is a 2 X 1 spinor representing an electron with
spin parallel to p (or antiparallel when negative) in its rest
frame, and c

&
is the normalization factor so that uu =2m

and vv = —2m. An explicit expression for y+ can be ob-
tained by solving p o.y+ =+pg+,' we have

cos( 0/2)
sin( 8/2 )e '+

Nevertheless, for pedagogical reasons we have also cal-
culated the polarization of e* in the second reaction in
the center-of-mass system [see Fig. 10(c)], which is to be
compared with that in the laboratory system [Fig. 10(a)].
This serves as a textbook illustration of the fact that two
successive Lorentz boosts, not in the same direction, re-
sult in a Lorentz boost times a rotation. This
phenomenon is usually treated in textbooks [11] under
the Thomas precession. The illustration given here is
easier to grasp than the Thomas precession.

APPENDIX C: COMPTON SCA l=l'ERING
IN THE p& =(m, 0,0, 0) SYSTEM

—sin( 0/2 )e

cos(0/2)

(B6) Let us denote the incident photon energy and the pho-
ton scattering angle in the rest frame of the initial elec-
tron by k*, and O*, respectively. We further define
K =k *, /m and X=cos8*. We have then

Since the overall phase is not relevant, we have chosen
the form which is the simplest. v+ and v can be ob-
tained by the change conjugation of u+ and u

y =1+2%,
x=[(K+1)X—K]/[1+K(1—X)] .

(C 1)

(C2)

y yfu+ =+u+ (B7)

u+ =l f2Q + aIld v = l f2Q

Again the phases of v+ and v are arbitrarily chosen.
The final check on the validity of our expressions for

u+ and v+ can be performed using the relations

Substituting these expressions into Eqs. (2.22) —(2.25) we
obtain

N, =2/ X[K X 2(K —+K)X+K +2K+2)/D, (C3)

N2 =2(' (1 X)K(X K—X+K+1)—/D, (C4)

D, =2/ [ —KX +(K +K+1)X —(2K +K)X
and

) +Up= V+

+K +K+1]/D,
D2 =2/ XK [KX —(2K+ 2)X+K+2) /D,

(C5)

(C6)

where s is a four-vector having the components

e e . . es = —, sinO cosy, sinO sin|p, cosO
m 'm 'm 'm

This check shows that indeed u+ (and U+) represent
states with helicity +.

Since WAFLE handles both analytic and numerical ma-
nipulations, we must decide how much we should let the
computer do the analytical work and at what stage we
should do numerical computations. In general, if one can
obtain a simple analytical expression to describe nature,
then one should obtain this expression, but if the expres-
sion is too lengthy and complicated, then we should be
satisfied with numerical results.

In this paper we obtained analytical expressions for
differential cross sections for both reactions given in the
title, as well as the photon polarization in the first reac-
tion, but we have to be satisfied with only numerical re-
sults for the polarization of e+ in the second reaction.
The reason is that the differential cross section and the
photon polarization have invariant meaning, and thus
can be calculated in any convenient coordinate systeIn,
but the helicity of a article with nonzero mass does not
have invariant meanI g and thus can be calculated only
in the frame where it 's going to be observed (we call this
the laboratory syste in this paper which is different
from customary usage where one of the incident particles
is at rest).

K =w/2,
X=1—2u/(w —wu) .

(C7)

(CS)

We have

Ni =2/ (2—2u+u ) 1—
(1—u)w

(1—u), (C9)

4 2 4 3

1 —u (1—u)w (1—u) w

2 —2u+u
1 —u

4 2+, (Cl 1)
(1 —u)w (1—u)2w

2u(2 —u) 2u
1 —u (1—u)w

(C12)

In the Thomson limit we have K «1, w «1, u «1,
and X~ ( 1 —2u /w); thus,

N, ~4$ X=4/ 1—

X2—+0,
(C13)

where D = —XX+K+1.
For the laser+ high-energy electron backscattering

these expressions can also be written in the more con-
venient variables u =co2/E, and w =4'&E&jm =u
using the relations
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2Q
Di —+2/ ( I+X ) =4/ 1 — +

D2~0 .
(C14)

Equations (C3), (C6), (C9), and (C12) show explicitly
that the origin for the zeros for X& and D2 is due to 0'
being equal to n. /2. Our Eqs. (C3)—(C6) agree with the
results given by Lipps and Tolhoek [19].
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