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Boundary conditions in the Aharonov-Bohm scattering of Dirac particles
and the effect of Coulomb interaction
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We consider the question of the physically correct choice of the boundary conditions, and therefore of
the dynamics, for the scattering of spin- —particles by a thread of magnetic Aux. It is shown that even

when the problem is approached by first considering a source of finite radius R, the resulting dynamics is

a consequence of how much penetration of the wave function inside the tube one chooses to allow. (The
indeterminacy in the boundary condition occurs for one value of the total angular momentum for a given

value of the Aux. ) If a Coulomb interaction of the particle with the sources is introduced in the problem,
the above-mentioned indeterminacy is enlarged. We show that for a given value of the Aux there are
now at least two values of the angular momentum n for which the indeterminacy occurs.

PACS number(s): 03.65.Bz

I. INTRODUCTION

The problem of a two-dimensional Dirac particle in the
presence of a thread of magnetic flux appears in a variety
of problems in theoretical physics, primarily in the dis-
cussion of the Aharonov-Bohm effect [1,2] and its vari-
ant, the Aharonov-Casher effect [3] for particles with
spin [4]. It also appears in the study of the interaction of
matter with cosmic strings [5—7]. In the nonrelativistic
limit it is present in the study of anyons in the theory of
high-T, superconductivity [8].

It was shown by de Souza Gerbert [9] that the dynam-
ics of the case with the flux /%0 displays unexpected
features when compared to the free (/=0) case. Namely
if /%0, the determination of eigenfunctions requires
specification of boundary conditions that are to be chosen
from among a one-parameter family of admissible ones.
Moreover, it is impossible to stick to the usual regularity
assumption for the wave function, as opposed to the case
/=0, where the only admissible boundary condition is of
regularity at the origin. Subsequently, there were at-
tempts by Alford et al. [6] and Hagen [10] to provide a
physical motivation for the choice of the boundary condi-
tions among the admissible ones. Both computed the
eigenfunctions using the same limiting procedure of re-
placing the thread of flux by a fictitious flux tube of ra-
dius R (thus removing the ambiguity) and then taking the
limit R ~0 at the end of the computation. In this paper
we show that although there is nothing wrong with the
computations of Refs. [6,10], and in spite of the physical
appeal of the limiting procedure, the boundary condition
so obtained produces wave functions which as functions
of the flux P are discontinuous at all nonzero integer
values of P. Moreover, as observed by Alford et al. [6],
this procedure also produces a breakdown of the
Aharonov-Bohm symmetry P —+/+I of the formally
defined Hamiltonian. One of the purposes of this paper is
to answer the question: Are there boundary conditions
which preserve the apparent symmetry P~P+ I and/or
are continuous in P? The question is answered in the

afhrmative and it is also shown that these boundary con-
ditions may be obtained through the same limiting pro-
cedure of Refs. [6,10] through the introduction of a fine-
tuned interaction inside the tube of radius R.

This paper is organized as follows. In Sec. II we intro-
duce our notation and briefly review the results of
[9,6,10], carefully pointing out the problems mentioned
above. We also show how the problem is modified by the
introduction of a Coulomb interaction with the source.
In Sec. III we discuss how to obtain all admissible bound-
ary conditions by a suitable modified limiting procedure,
R ~0, allowing for some interaction inside the tube. Fi-
nally, in Sec. IV we examine the effect of a Coulomb in-
teraction with the source.

It should be mentioned that the boundary conditions of
[6,10] are also compatible with conservation of an also
formally defined helicity operator. This is sometimes
used as an argument in favor of these boundary condi-
tions. These issues will be examined in a separate work.

II. PRELIMINARIES

The Hamiltonian of the two-dimensional Dirac particle
in the presence of a thread of magnetic flux is formally
given by

eAH =a. p+ +Pm,0
C

where a possible choice for the Dirac matrices is a, =a, ,
a2=o 2, 13=s,o3, where o;, i =1,2, 3 are the 2X2 Pauli
spin matrices and s =+1.

The two choices of s =+1 lead to inequivalent repre-
sentations of the Dirac matrices. In the nonrelativistic
limit, if s =+1 (s= —1) only the upper (lower) com-
ponent survives, describing then a Schrodinger particle
with spin + —,

'
( ——,'). A more convenient choice for polar

coordinates will be made later.
The vector potential A describes a thread of magnetic

flux (2vrc /e )P at the origin and may be chosen as
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e—A=
C

—xzi+x
r

eigenfunctions. We shall discuss this problem by first ex-
ploring the rotation invariance of H given our choice of
A. For the eigenvalue equation

so that

VX A=H= ' ' y"")k
e

HOQ=EQ,

separation of variables

(4)

The Hamiltonian (1) for its complete determination re-
quires a specification of a domain in order to make it a
self-adjoint operator, thus characterizing a dynamics for
the system [9]. From a more pragmatic point of view this
is equivalent to choosing boundary conditions for its

I

Xi(r)
e ltlg

y (r)e'~ (5)

where n+ —,
' is the total (orbital+spin) angular momen-

tum, leads to the radial eigenvalue problem

v+1

&„(P)y(r)=
V

Bq r
—ms

0i(mr) sin —+—
4 2

(mr) ' 'cos —+-(]+~) 7T 8
4 2

—m ~L9~~ .

(7)

Notice that for every noninteger value of the flux P there
is exactly one value of n, namely n = —[P)—1 (where
[x]=largest integer ~ x ) such that the indeterminacy
occurs. Each choice of 8 in (7) specifies a dynamics lead-
ing to 0-dependent spectra and cross sections.

Subsequently there were attempts by Alford et al. [6]
and Hagen [10] to provide a physical motivation for the
determination of the parameter 0. Their starting point
was the replacement of the pointlike thread of Aux by a
magnetic field concentrated on the surface of a tube of ra-

with v=n+P, where we have made use of the choice
a„—=(a,xi+a2x2)/r =cr, and a =( —a2x, +a,x2)/r
=o 1, p =s o l. Notice that the Hamiltonian (1) has a
symmetry P~P+ I since &„+,{P) =&„{P+ I ).

For the free two-dimensional Dirac equation (/=0)
and for all integer values of P, the only admissible bound-
ary condition is that of regularity of the wave functions

y, (r) and y2(r) at the origin (see discussion below). For
/%0 this problem was thoroughly first discussed by de
Sousa Gerbert. His finding may be summarized as fol-
lows.

For v=n +P )0 or v~ —1, again only solutions with
regular, upper, and lower components are admissible as
wave functions. However, in the open interval
—1 & v &0 it is impossible to stick to the regularity condi-
tion simultaneously for both upper and lower corn-
ponents: an indeterminacy occurs and there is a one-
parameter family of admissible boundary conditions.
They are parametrized by an angle t9 through

diusR ie
Zmc 5(r —R )

e R

Wave functions were calculated with R & 0 and only then
the limit R ~0 was taken. Their result was that in this
limit the wave function obeys condition (7) with
8= —(sgng)(7r/2), i.e., regular upper component and
singular lower component for P) 0, s =+1. In particu-
lar, for {())0, the component surviving the nonrelativistic
limit is regular if s=1, and singular if s= —1. In gen-
eral, the component surviving the nonrelativistic limit is
singular if (sgn{t) )s = —l.

As mentioned in the Introduction and stated more
carefully now, although there is nothing wrong with the
computations of Refs. [6,10], the boundary condition so
obtained produces, for every n, wave functions which as
functions of the Ilux P are discontinuous at P= —n —1 if
n )0 and $= n lf n (0. Tllls aillollilts to a discontinui-
ty in the dynamics as a function of {() for every nonzero
integer value of {(). Moreover, as pointed out by Alford
et al. [6], these boundary conditions also produce a
breakdown of the symmetry P —+/+ 1 for the Hamiltoni-
an (1). In the next section we show that there are other
choices of boundary conditions which are also {t depen-
dent and which are free from each or both of the above,
perhaps undesirable, features. The possibility of oc-
currence of bound states for these boundary conditions is
discussed. %'e then show that a more complete discus-
sion of what happens inside or at the surface of the tube
is necessary for the determination of the relevant bound-
ary condition for the Aharonov-Bohm eft'ect. In fact, it
turns out that by conveniently suppressing the penetra-
tion of the wave function inside the tube by means of a
constant repulsive potential u~ it is possible to obtain in
the limit R —+0 all admissible boundary conditions for the
problem, given by [9]. In particular, if we impose those
components of the wave functions surviving the nonrela-
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tivistic limit to be zero at the surface of the tube we get
the boundary conditions with the standard nonrelativistic
limit and with preservation of the /~/+ I symmetry.
Therefore it could be argued that this boundary condition
is the one of relevance to the Aharonov-Bohm effect, in
spite of a discontinuity at all integer values of P that,
however, occurs only in those components vanishing in
the nonrelativistic limit. This is the condition used by
Aharonov-Bohm [1,2] in the nonrelativistic limit (see also
Ref. [11]). This is shown in Sec. II.

All the above considerations, with suitable
modifications, also apply to the problems of spin-1 parti-
cles [12].

The introduction of a Coulomb interaction with the
source is relevant in the study of charged anyons and also
in the study of the Aharonov-Bohm effect for a metallic
grounded solenoid. In this case the Hamiltonian is

the wave functions must be taken to be regular at the ori-
gin, whereas (ii) for v (g) &v&v+(g) there is again a
one-parameter family of admissible boundary conditions
for functions in the domain of the operator described by

y . 8i(mr ) sin —+—
2 4

g(r)— r

r~0 y 0(mr) cos —+—
2 4

(10)

with y+= —
—,'+[(v+ —,

'
) —g ]'~ . As opposed to the

/=0 case, this indeterminacy for some values of the flux
occurs for two or more values of the angular momentum
n, as soon as g&0.

and we show that (i)

—1+tel+4
for v) v+(g)=

—1 —+1+4(or v&v (g)=

III. BOUNDARY CONDITIONS IN THE LIMIT R —+0

In this section we consider an especially simple model
for a tube of radius R, where in addition to the tube of
magnetic field [6,10] we control the penetration of the
wave function inside the tube by means of a constant po-
tential u~. For this model the radial eigenvalue equation
(6) is replaced by

&„(y)y(r) =
ms

v(r)
E

r

& + v(r)+1
0, + r

where

v, r~R,
v(r)= '

R V~(r)= '
n, r&R,

u~, r &R,
0, r&R, and y(r)=

( )

For r & R we take the regular solution (this is actually not a matter of choice since the singular solution is not square
integrable in a neighborhood of zero), and so:

y(r) = '

J„(kor )

ikO

nzs +E—u&
J (k r)

for r &R,

FJ,(kr )+GJ (kr )
r

E F 3„——J (kr)+G 8„——J («)V V

res +E r

for r)R,
(12)

where k2 =(E—u )2 —m~, k =(E2—m2)'~~, and 1V' is an overall normalization factor. We then impose continuity of
both upper and lower components at R. (Incidentally this is equivalent to imposing (i) continuity of the upper com-
ponent and (ii) a jump proportional to p of its derivative accounting for the 5 function contribution emphasized by
Hagen [10],see also the discussion by Jackiw [13].) We get

[kl(ms+E)]J ()+~)(kR)J„(koR)+[kol(ms+E uz))J —v(k ) n+i(ko
(13)[k l(ms +E ) ]J,+ (kR )J„(koR ) —[ko I(ms+ E —uz ) ]J ( kR )J„+~(koR )
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If we take the limit 8 —+0 with uR =u constant then
lim (E/G)tt =0, that is, we obtain the boundary condi-
R~0
tion 8= —sgn(p)(1r/2), in Eq. (7). Here we used the
asymptotic behavior:

1 ' xJ (x)—
x o I (1+v) 2

L

~ e(e)
n& 0

/::
I

n. 1 j:n
j

Let us now discuss some peculiarities of this boundary
condition. We erst remark that for v~0 the only admis-
sible boundary condition is given by 8=1r/2 whereas if
v& —1, 8= —m. /2, otherwise the wave functions are not
square integrable in the neighborhood of the origin. For
a given value of the orbital angular momentum n we see
that in order to ensure continuity of the wave functions
as a function of P one has to interpolate the function

(b)

8(P) =—for P ) n,—
2

8(P)= ——for P& n ——1
2

in the open interval n —1 & P &—n. If we—then choose

/

n-:1 /

TL

2

8(P) =f(P+n+1), n —1 & P
—& n, —

where f is a fixed n indep-endent continuous function
defined in the interval (0,1), the symmetry /~/+1 is
preserved. If, moreover, we require f(8)= —1r/2 and

f(1)=1r/2, continuity is also ensured.
Thus the boundary conditions obtained in Ref. [6], that

is, 8(p) = —(sgnp)1r/2, lead to a discontinuity at p= n, —
if n & 0 and at P = n —1—if n )0. Moreover, this choice
leads also to a breakdown of the P~P+ 1 symmetry.

Figure 1 illustrates the above features. In Fig. 1(a) the
dashed line shows the boundary condition
8= —(sgnp)(1r/2) for a negative n In Fig. .1(b) the
dashed line shows 8= —(sgnp)(1r/2) for positive n In.
both figures the dashed-dotted line shows how one could
interpolate between 8(p) =1r/2 and 8(p) = —m. /2 obtain-
ing continuity and preserving the symmetry P—+/+1.
The asymmetry between positive n and negative n
(dashed lines) explains why 8= —(sgnP)(m. /2) breaks the
symmetry /~/+1. The discontinuity of the dynamics
at nonzero integer values of P, with the choice
8= —(sgnP)(m. /2) can be seen as follows: For each value
of the angular momentum n a discontinuity will take
place at P = n if n & 0 —and P = n —1 if n )0. —

(i) Consider first the case n &0. Then the critical re-
gion —1 & v =P+ n (0 occurs for positive value of P. If

n, v=n+P goes to ze—ro, vt, O, i.e., v is outside the
critical region, and therefore 8&m/2 since 8=m. /2 for all
v) 0 (see discussion above). Therefore the wave function
behaves as

i(mr)
x

Consider now P1 n. Then v=n+P goes to—zero, vtO,
so that v is in the critical region. Since P is positive, the

FIG. 1. The dashed line shows the boundary condition
L9= —s(m/2) for (a) negative and (b) positive n. In both figures
the dashed-dotted line shows how one could interpolate between
8( p ) = 1r/2 and j9(p) = —m. /2.

boundary condition 8 implies 8= —1r/2. Therefore the
wave function behaves as

X
( )

—()+v)

which is not square integrable in the limit vf 0. Therefore
the limit from the left has no meaning. This means that
the operator lim&„(P) has no limit in any of the usual

Pfn
senses [14]. Notice that &„(P) is continuous at

n —l. —
(ii) Consider now the case n )0. Then the critical re-

gion —1 (v & 0 occurs for negative values of P. If
P't n —1, t—hen v=n+P( —1, i.e., outside the critical
region with 8= —1r/2, which implies, in the limit vt' —1,

0

However if P$ —n —1, v= +nP goes to v$ —1 and there-
fore is in the critical region. The value of
8= —( sgnp )1r/2 implies 8=1r/2 since p is negative.
Therefore the wave function behaves as

i(mr)
0

which again is not integrable when v$ —1. Again we
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have an ill-defined limit lim gt'„((t(P). Notice that
Pf —n —1

there is continuity at P = —n .Notice also that the
discontinuities never occur at /=0.

As shown by de Sousa Gerbert [9], bound states for
these systems occur if —+&0( —~/2 or ~/2&0&a.
From the above discussion it follows that if we choose the
interpolating function to be monotonically increasing (as
in the dashed line in Fig. 1), then 0 remains outside these
intervals, and so, no bound states occur.

Let us now fine-tune uR by letting it go to + ~ as
R ~0 at the rates:

x„+i+—(mR )
( "' for —1 & v& ——,—((+2v) 1

1
Ru = x for v= ——

R 2 ' (14)

x„—P(mR )'+ for ——& v&0,

where x„AO denotes the first zero of J„(x), and x is any
number such that J„(x)%0 and J„+((x)%0. Under these
conditions we obtain

I (1+v)
r( —v)

—(1+2v)
E —ms

E +ms

1/2

V

lim
R~0 G J„(x) E —ms

,(x) E+ms

1/2

V—
7

(15)

that is,

0
tan —+—

2 4

1p, vW ——,
J„(x)

V—
J +((x) 2

1
X(r)=— (17)

[ —J (kR )J,+, (kR ) —J (kR )J
( +()(kr)]

ms +E
Notice that y2(R )WO, and so it is discontinuous across the boundary. In this case we have

In conclusion, the 9= —sgn(P)(rr/2) boundary condition is obtained with a weak suppression of the wave function as
R —+0. On the other hand, the boundary condition of Refs. [1,2], 8= —sm/2 independent of P, may also be obtained.
For instance, if s = 1 take P~O for vW —

—,
' or x ~x„ for v= —

—,'.
We can now see that this boundary condition also leads to discontinuity in the wave function as a function of the Aux

for all integer values of the fiux, including / =0. However, the discontinuity occurs only in those components that van-
ish in the nonrelativistic limit. Figure 2 shows the discontinuity for the case n =0.

Let us now discuss the situation of a completely impenetrable tube, i.e., y(r)=0 for r &R. This situation still re-
quires a specification of a boundary condition at R. The most natural one is the requirement of g((R ) =0 and so:

J (kR )J,(kR ) J,(kR )J (k—r )

F
G

J,(kR )

J (kR)

and so

F
lim — =0,6

i.e., the boundary conditions of Refs. [1,2]. The condition y&(R) =0 is the standard boundary condition in the nonrela-
tivistic limit with fixed R [11](see [14] for nonstandard boundary conditions for the nonrelativistic problem). Of course,
all other admissible boundary conditions are obtained if we simply impose

F E —ms
E +ms

1/2 - —(1+2']
I (1+v) ~+ 8

tan —+—
I ( —v) 4 2

(19)

and take the limit R ~0 with 0 fixed. In conclusion, if we choose to have inpenetrability of the tube, the "correct"
boundary conditions as R —+0 depend on the physics at the surface of the tube for R )0.
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IV. THE EFFECT GF A COULOMB INTERACTION WITH THE SOURCE

We can again separate variables in the study of the eigenvalue problem for the Hamiltonian (9), and the radial eigen-
value problem then reads (for simplicity we consider only the case s = 1)

r

v+ 1

r
&„(P,g')y(r) =

V
l

r

y(r)=Ey(r) . (20)

Introducing for further symmetrization of

u(r)=
u, (r)

( )
u2(r)

one obtains

V+
2

E Q„+
V+

2

u(r)= E— u(r) . (21)

y=+o, o =Q(v+ —,') —g (23)

Let us now analyze the square integrability of the
singular solution

a
r —o —1 /2

b

Computing

I r dry(r) y(r)—= (ia ~ +ib~ )I r dr
0 0

we see that if 2o. ~ 1, the irregular solution is not admissi-

Let us then analyze the asymptotic behavior of the
solution when r ~0. Assuming then u &(r) =arr,
uz=brr, ~a i+ibi )0, and inserting it in Eq. (21), we get

—i(y+v+ —,
'

)
=0 (22)—i(y —v —

—,
'

)

and this implies

ble, and therefore the dynamics is uniquely defined.
Technically this means that when restricted to a function

g, (r, B)
p(r)=

~ ( B) with y„y2ECO (R /[OI )

(infinitely differentiable functions with support which is
compact and does not contain the origin), the operator (9)
is essentially self-adjoint [15I.

If, however, 20. (1, we have an indeterminacy of the
same type discussed before, and a specification of a
boundary condition is required. Notice that the condi-
tion 2o. & 1 translates into

v (g)= —
—,
' —Q —„'+g &v& —

—,'+Q —,'+g =v+(g) .

(25)

Therefore the range of values of v for which there is an
indeterminacy is enlarged by the introduction of the
Coulomb interaction. It has a length

v+(g) —v (g)=+1+4' ) 1

ice

2
'

-Al

6 =(sig 4)—2

n=O if g )0. A remarkable consequence of this fact is that
for some values of P it is not possible to have two values
of the angular momentum for which v falls in the critical
region given by (25), as soon as g )0. If we take g
suEciently large, we may have an arbitrarily given num-
ber of values of n so that v falls in the region given by
(25). On the other hand, this is in agreement with the
fact that even in the free case, /=0, the introduction of a
Coulomb interaction produces an indeterminacy for all
values of g&0, namely for all values of angular momen-
tum s=n+ —,

' in the range
FICx. 2. The dashed line shows the boundary condition

0= —s(m/2) for n =0.
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as follows from (25) with v=n. This result should be
compared with the results for the Dirac equation in three
space dimensions with a Coulomb interaction [15,16],
where essential self-adjointness (only regular solutions)
exists if ~g'~ (—,'.

Using standard methods (see, for instance, the paper by
de Sousa Gerbert [9] and references therein), we obtain
the admissible boundary conditions given in Eq. (10).

Alternatively, one could have reached the same con-
clusions by writing down the general solution of Eq. (21)
in terms of conAuent hypergeometric functions as in p. 89
of Ref. [17].

We may now repeat the discussion of Sec. II, with the
introduction of a tube of radius R, taking the magnetic
field as given by Eq. (8) and introducing an external po-
tential WR(r) used in Eq. (11)which now reads:

v(r)
r

v(r)+ 1
a, + r

y(r) = [E—W(r) ]y(r), (27)

where

Qg, r(R
W(r) =

r)R .
(28)

We are switching off the Coulomb potential inside the tube, in order to make only the regular solution at the origin ac-
ceptable as long as R is positive. The general solution is now

J„(kor )
r(R,

0

m+E —u~
J.+ i(kor )

y(r) =
1V

FR (kr)+GS (kr)

F 8„——R (kr)+G 8„——S (kr)
V V

r&R,

where R (kr) and S (kr) are respectively the regular and singular solutions of Eq. (27) for r )R. So

J„(kcR )(8„—v/R )S (kR ) —[iko/(m +E—us )]J„+,(koR )Sr „(kR )

Rr „[iko/(m+E —uz )] „J+(k&R )+J„(koR )[i/[m+(E g/R )]] i)„———R „(kR )

and it is now clear how to fine-tune uz, as in Eq. (14) with the changes v —+y in order to obtain all admissible bound-
ary conditions.
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