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Correlations in Abelian lattice gauge field models: A microscopic coupled-cluster treatment
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An ab initio formulation of microscopic quantum many-body theory, namely, the coupled-cluster
method (CCM), is applied to the lattice gauge models, Z(2) in 2+1 dimensions, and U(1) in 1+1 and
2+1 dimensions. Both mode-mode couplings and plaquette-plaquette correlations are considered. In
particular, within the one-plaquette approximation for the U(1) model, the CCM is able to include mode
couplings of arbitrarily high order. It therefore reproduces essentially the exact numerical results for the
equivalent Mathieu problem. These include the ground-state, plaquette, and excitation energies as func-
tions of the coupling constant. Two-plaquette equations are solved by local approximations for both the
U(1) and Z(2) models, and the results are impressive. Detailed comparisons with other methods, partic-
ularly perturbation theory, are made and discussed, with emphasis on the nonperturbative nature of the
problem.

PACS number(s): 11.15.Ha, 03.65.Ca, 03.70.+k, 11.15.Tk

I. INTRODUCTION

From several points of view the application of ab Initio
techniques from microscopic quantum many-body theory
(QMBT) to problems in gauge field theory appears to be
particularly timely. Thus, firstly, enormous progress has
been made in QMBT over the last ten years or so. The
field has both deepened at the level of formal develop-
ments and broadened in its range of successful applica-
tions to problems of physical and chemical interest. Two
methods have especially come to the forefront because of
their demonstrated versatility, their ability to achieve
very high accuracy at attainable levels of approximations,
and their capacity for systematic improvement. These
are the method of correlated basis functions (CBF's) [1],
and the coupled-cluster method (CCM) [2—12]. They are
widely recognized as providing the two most powerful
microscopic formulations currently available for dealing
at an ab initio level with fundamental problems of
QMBT.

Secondly, strong pessimism and reservations have been
voiced by Wilson [13] concerning the development still
needed within lattice quantum chromodynamics (QCD)
before there can occur meaningful comparisons with ex-
periment. For example, he quantifies the existing gap be-
tween theory and experiment by suggesting that an in-
crease in computational power of at least a factor of 10
and equally powerful algorithmic or methodological ad-
vances are both needed. Wilson further recommends the
lattice gauge community to look especially to the field of
quantum chemistry for new ideas and additional inspira-
tion, particularly since both fields share a common con-
cern with many-fermion systems interacting via long-
range (unscreened) forces

Our own starting point is that what is valid for quan-
tum chemistry in particular is equally valid for QMBT in
general. We also note within this context that one of the
methods currently applied very widely within quantum

chemistry is the CCM. For example, the very high accu-
racy required nowadays for the calculation of parity
violation in atoms or for the calculation of molecular en-
ergy differences of chemical significance, requires ex-
tremely accurate treatments of the electronic correlations
[14]. The CCM is ideally suited for such applications.
Indeed, it is now widely recognized as the method of first
choice in terms of power and accuracy for calculations
of, for example, ionization potentials, electron affinities,
Auger spectroscopy, excitation energies, and energy gra-
dients (for use, for example, in searching potential energy
surfaces to predict vibrational spectra, or to locate transi-
tion states in decomposition reactions). By now, many
atoms and molecules have been studied, with state-of-
the-art calculations being performed on molecules with
up to about 80 active electrons [14].

Apart from its manifest achievements in quantum
chemistry, the CCM has successfully been applied to a
plethora of other physical problems. Other many-
fermion applications, for example, have included prob-
lems in nuclear physics, both for finite nuclei [6,8] and
infinite nuclear matter [15], and the electron gas [5,16].
The latter provides a typical example of the accuracy of
the method. By comparison with the essentially exact
Green*s-function Monte Carlo results available for this
case, the CCM is seen to give correlation energies per
electron accurate to less than one millihartree (or (1%)
over the entire range of densities appropriate to real met-
als. No other technique of QMBT has bettered or
equaled this accuracy, for what is still one of the most
well studied of all many-body problems. Other applica-
tions of the CCM include various models such as the
Lipkin-Meshkov-Glick quasispin model [17], and anhar-
monic spin models [18].Applications of closer relevance
to particle physics include anharmonic oscillators and
other single-mode (0+ 1)-dimensional field theories
[19,20], N field theory [21], and a model field theory of
pions and nucleons interacting via an isospin-invariant
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pseudoscalar coupling [22]. All of these and other appli-
cations of the CCM have been reviewed recently in Ref.
[12].

Finally, we note that the range of applications of the
CCM has recently been extended to include various mod-
els of strongly interacting spins or fermions on a regular
lattice, of interest in condensed matter physics. Success-
ful applications have been made over the last few years
to, for example, the body-centered cubic (bcc) phase of
solid He [23], the half-filled Hubbard model on a square
lattice [24], and various spin models which exhibit anti-
ferromagnetism on a bipartite lattice in one, two, and
three dimensions, including the anisotropic Heisenberg
(or XXZ) Hamiltonian [23,25]. In particular, for the
latter model, it has been shown [25], for example, how in
a specified localized approximation scheme the results of
perturbation theory (in the anisotropicity parameter)
about the Ising limit can readily be reproduced in such a
way that the resulting CCM hierarchy represents a natu-
ral extension of its perturbation theory counterpart, in
the sense of a well-defined analytic continuation or
resummation. Numerical results indicate rapid conver-
gence, even in the regime where perturbation theory
diverges badly (beyond the observed phase transition).
Furthermore, it has also been shown [25] how the CCM
can, in an alternative approximation scheme which re-
tains correlations between the spins of arbitrarily long
range, give a qualitatively correct description of the en-
tire Heisenberg-Ising phase, including (a prediction of)
the critical point where a phase transition occurs.

For all of the above reasons, it seems worthwhile to at-
tempt to apply similar CCM techniques to lattice gauge
field theories. The present paper presents our prelimi-
nary results in this respect for the Abelian models Z(2)
in 2+ 1 dimensions and U(1) in 1+ 1 and 2+ 1 dimen-
sions. Henceforth, we refer to these as 1D and 2D cases,
respectively. The general CCM formalism as applied to
both models is first outlined in Sec. II. Results for the
ground-state energy for the U(1) model are then discussed
in Secs. III and IV, respectively, within the so-called one-
and two-plaquette approximations in a systematic hierar-
chy of truncations described in Sec. II. Results for the
so-called plaquette energy for the U(1) model are dis-
cussed in Sec. V. Similar ground-state results for the
Z(2) model are given in Sec. VI, and finally in Sec. VII
the CCM description of the excited states of both models
is discussed. In all cases, detailed comparisons are made
with the results from perturbation theory and other
methods. We conclude with a summary and discussion in
Sec. VIII.

system are then incorporated via many-body excitations
from this reference state. In this respect the CCM is
similar to perturbation theory. Nevertheless, the CCM is
highly nonperturbative, since the correlation operator ac-
tually takes the form of an exponentiated function [2,12],
as is by now rather well known, and as we shall see in de-
tail below.

Since the CCM has been well reviewed many times in
the past, we refer the reader to the 1iterature for both a
general description of the method (and see, for example,
Ref. [12] and the references cited therein) and its previous
applications to spin-lattice problems in particular [25].
In this section we concentrate on the specific applications
to the U(l) and Z (2) lattice gauge models.

A. The U(1) model

The Hamiltonian for the U(1) lattice gauge-field theory
is usually written as

a'H= ——g +A, g(l —cosB ), (2.1)

where p is a lattice vector connecting nearest-neighboring
plaquettes of the lattice. In 1D p has two values, while in
2D it has four. (Equation (2.2) is identical to Eq. (2) of
Ref. [26] in the 2D square lattice case. ) The Hamiltonian
of Eq. (2.2) is invariant under the transformation
B ~B +Zn~, with n integral. Hence the space of B is
compact ( ir ~ B v—r, for all p).

The Schrodinger equation for Eq. (2.2) reduces in the
case of a single plaquette to the Mathieu equation:

where the first summation is over all links l of the lattice,
and the second over all plaquettes p, A. is the coupling
constant, O~A, & ~, A& is a vector potential defined on
the link l, whereas the magnetic field B is a plaquette
variable defined by the four values of A& with l Ep, i.e.,
Bp c4

&
+ A 2 3 3 34 where the order and the sign of

A& (I &p) are conventionally chosen as shown in Fig. l.
We can easily express H in terms of the plaquette vari-
ables alone for any dimensionality. Since we consider
only the cases of 1+1 dimensions (1D chain, i.e., a linear
array of plaquettes) and 2+1 dimensions (2D square lat-
tice) in this paper, we quote the corresponding Hamil-
tonians,

a' 1 82H= g —2
z

+A, (l —cosB~) +—gaB2 P 2
p

aBaB

(2.2)

II. COUPLED-CLUSTER FORMALISM
FOR U(1) AND Z (2) MODELS

In order to describe the correlations in a many-body
system the coupled-cluster method (CCM) starts from a
suitable reference state. This is usually (but not always)
the properly symmetrized, noninter acting many-body
state composed of some single-particle wave functions
chosen to be the eigenstates of an appropriate one-body
Hamiltonian. The correlations present in the physical

4'I p
X

FIG. 1. A single plaquette. The order of the four links of the
plaquette is indicated, as used in the definition of plaquette vari-
ables.
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d2—2 P„(8)+A(1—cosB)g„(8)=e„i)j„(8),
—m~B&m . (2.3)

In view of the fact that small-A, perturbation theory for
the ground state of the Mathieu equation is well known
to have a finite radius of convergence, it is pertinent to
consider the simpler problem of its so-called strong-
coupling (A, ~O) limit first. This simple unperturbed
Hamiltonian Ho= —2d /dB with —m B m has two
sets of eigenstates: namely, {cosmB; I =0, 1,2, . . . } with
even parity, and {sinmB; m = 1,2, . . . } with odd parity.
The ground state of Ho is clearly just a constant. We
now use these simple strong-coupling single-plaquette

I

wave functions to construct both the ket and bra states in
terms of a CCM analysis.

The noninteracting reference state i@& is hence simply
a constant. The exact many-body ket ground state (GS) of
the U(l) Hamiltonian of Eq. (2.2) is then taken in the
CCM form

S ( {B~ } ) = g Si, ( {8 }), (2.4)

where Np is the total number of plaquettes in the lattice
and where the k-body correlation operators Sk are
decomposed as

00 p

S, = g g S~(n) cos(nB~ ),
n =1 p=1

] oo P

Sz= —, g g' [A'~ ~ (ni, nz)cos(niB )cos(n28~ )+eV' '
( n„n )2si (nn, B~ )sin(nzB~ )],

n2 1 pl 'p2

(2.5a)

(2.5b)

(4~({B })i=(@iS({8})e

S=1+ Q Si,({8 }),
k=1

(2.6)

where S =S({8 } ) is as given above in Eqs. (2.4) and
(2.5), and Si, is similarly defined as in Eqs. (2.5) except
that all coefficients {4 (n, . . . )} are replaced by thePl
corresponding {g„(n i, . . . ) }.We note that both i %0 &

and (40i are explicitly invariant under the transforma-
tion B ~B +2m. As befits the GS, they have also been
constructed to have even parity under interchange of the
sign of all the variables {8 }.

We define an inner product of wave functions
(g({8 })i and if({8 })&as

dB,
&glf & f + 2' gf, (2.7a)

and the expectation value of an operator
8=8( {8 },{d/dB~ } ) with respect to the conjugate states
if & and (f i

as

X

&fleif &=f-
7Tp 1

dB
fof . (2.7b)

The normalization condition ( 4 i
4& &

= 1 then gives

and similarly for the higher-order partitions Sk with
k )2. The coefficients {S (n„.. . ) } are to be deter-p)
mined by the CCM coupled equations discussed below,
and the prime on the summation in Eq. (2.5b) excludes
the terms with p1 =p2.

For reasons which have been described many times in
the past [12] the bra GS, ( Voi, in the CCM parametriza-
tion is not taken as the manifest Hermitian conjugate of
i Vo &. Instead, it is parametrized in the form

I

equal to unity. The CCM equations for the correlation
coefficients of Eq. (2.5) are now derived from the condi-
tion that the GS expectation value of the Hamiltonian of
Eq. (2.2),

H=& 4, iaido, & =(eiSe-'~e'ie&, (2.8)

should be stationary with respect to variations in both
complete sets of bra- and ket-state coefficients. Thus, for
example, the one-plaquette coefficients {S~(n),S„(n)}are
determined by the variational principle, respectively:

5H 5H
5$ (n) 5S (n)

(2.9)

The equations for the two- and higher-order many-body
coefficients are similarly given by the corresponding sta-
tionary conditions for H.

Within the context of the above CCM parameteriza-
tion there are clearly two distinct kinds of correlations in
play. In the first place one has the mode-coupling terms
between different modes {cos(nB ),sin(nB ) } specified by
the index n. Second, one has the more physical correla-
tions between different plaquettes specified by the indices
{p,. }. Clearly mode coupling is included even at the one-
plaquette level (i.e., as specified by S, and S, alone),
whereas one needs to include at least S2 and S2 as well in
order to describe plaquette correlations.

We also note that the CCM correlation operators of
Eqs. (2.4) —(2.6) do not involve the usual creation and de-
struction operators as in the more conventional CCM
[2,12,25]. This distinct difference is related essentially to
the fact that in the lattice gauge systems under considera-
tion there are neither any real particles nor quasiparticles
defined. Whereas in more conventional many-body prob-
lems one is usually concerned with particle conservation,
the primary concern in lattice gauge models is the gauge
in variance.
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B. The Z(2) model

o,(1)~e)=~@), Vl . (2.11)

Exactly as for the U(1) model, the ket and bra GS wave
functions ~'I'0) and ( q'0~ of Eq. (2.10) are formed in terms
of the similar correlation operators S and S. Hence we
may write for the ket GS, by analogy with Eqs. (2.4) and
(2.5),

N

~e, & =e'~C &, S = y S„,
k=1

(2.12)

where the k-body partitions of the correlation operator
are now specified as

The Hamiltonian of the Z(2) lattice gauge theory can
be written in terms of spin- —, Pauli matrices o.

(a=1,2, 3) as

H = —g o, (l) —A, g U~
1 p

with U~:—o.3(1)o.3(2)o 3(3)o.3(4), (2.10)

where as in Eq. (2.1), summations over l and p are over all
links and all plaquettes of the lattice, respectively, and
where the plaquette variable U is defined in the conven-
tional order as shown in Fig. 1.

The so-called strong-coupling (A, ~O) limit of Eq.
(2.10) is Ho= —g&o, (l). Hence the model state ~4) of
the CCM is now taken for this Z (2) gauge theory as the
GS of Ho, namely, the state with all spins aligned with
respect to the 1 axis, such that

Clearly, both
~ %0) and ( qlo~ are gauge invariant, as re-

qu11 ed.

III. U(1) GROUND-STATE ENERGY:
ONE-PLAQUETTE SCHEME

In principle, the exact ket and bra ground states of the
U(1) and Z(2) lattice gauge model are given by Eqs.
(2.4) —(2.6) and (2.12)—(2.14), respectively, where all
correlation operators ISk, Sk, k = 1,2, . . . , X~ I should be
included. In practice, one clearly needs to approximate.
DifI'erent approximation schemes have been developed
and tested during the course of the many and diverse ap-
plications of the CCM. For example, the most common
CCM truncation scheme is the so-called SUBn scheme, in
which only those correlations described by the cluster
partitions ISk, SkI with k ~ n are included, and those
with k & n are set to zero. Another more recent scheme,
the so-called LSUBn scheme which takes into account
only localized correlations, is also especially suited for
lattice systems with local interactions. However, in this
section we consider the lowest-order SUB1 approxima-
tion only, for which we therefore make the replacements
S—+SsUBi =S&, S~SsUB& =Si, and we consider the
SUB2 approximation in the next section and the LSUBn
scheme for the Z (2) model in Sec. VI.

The retained coefficients IS (n), $~(n)I are then found
as described in Sec. II A, and as given by Eq. (2.9). In
particular, the SUB1 GS ket coefficients are clearly ob-
tained by solving the coupled set of equations

( cos(mB ) e '" 'He '" '~N) =0, m =1,2, . . . ,

1

su . s
p& p2 pk

(2.13)

where again the prime on the summations indicates that
no two indices are the same. The bra GS is similarly
specified, by analogy with Eq. (2.6), in the form

(3.1)

where the notation involved is as defined by Eqs. (2.7).
Although the evaluation of the GS expectation va1ue of
an arbitrary operator in this SUB1 approximation would
also require the bra GS coefficients t eV~(n) I, the GS ener-

gy E is clearly given in terms of the ket GS coefficients
alone as

(4,~=(e~Se-', S=l+ y S„,
k=1

(2.14) = (4g)~e sUs'He sUs' ~(y) (3.2)

and where Sk is parametrized exactly as in Eq. (2.13), ex-
cept with the replacement I 4 . . . I ~ I S

I

In terms of the parametrization of Eq. (2.5a), it is not
difficult to derive the explicit SUB1-approximation equa-
tions for both the 1D and 2D cases:

p 1——A5, +m eV„(m)+— g nn'S (n)S (n')(5 „+„—5 ~„„~)=0, m =1,2, . . .
J

(3.3)

and a =mS (m), with a = —a and ao =0, (3.5)

p oo

E =A.N —g gn S(n).
p=i n=l

(3.4)
we may readily rewrite Eqs. (3.3) and (3.4) as

In the thermodynamic limit (K ~~ ) considered here,
the coefficients 4 (n) are independent of plaquette index

p by lattice translational invariance. After extension of
the definition of these coefficients to include the negative
modes, i.e.,

5 0+ —A(5, +5, )
2

oo—ma —— g a„a „=0,
n = —cc

(3.6)
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We may now define anwhich is valid for all integers m. We m y
o

' = (B) b the Fourier sumodd function A = A y e

A (B)—= a sin(mB), (3.7)

whose inverse is given by

I dB A (B)sin(mB) .a 2' (3.8)

t E . (3.6) is equivalent to the first-It is easy to show that q.
order Riccati equation:

dA 1 z —g(}—cosB
E

dB 2 Np

Finally, the standard substitution

2 dg
g dB

reduces Eq. . o. (3 9) to the Mathieu equation

(3.9)

(3.10)
00 10 20 30 40

E
+A, (1—cosB) P(B)= P B

B2
p

(3.11)

with the single-plaquette equa-which may be compared wi
tion (2.3).

e re ain the Mathieu equation in ourg
e is not surprising since no mu

1 dd d d thts have been inc u e, ancorrelation effect
1 - 1 uette problem is

I f }li
own the sing e-p aqu

Mathieu equation. n ac,
N h 1 h

}I ot b ti 1

in an dimension. ev
ture of our system as no

E. (3.11) i th i t

h SUB1 level to includey glt o beyond this
nd hi her-order corre-p q g

CCM formalism, as considnsidered in t e
the following section.

e remain at theFor the presen p pt ur ose, however, we re
u led equations (3.6),order to solve the coup e eq

1 d SUB1( ) bhi h11 f
define the so-cal e

~ ~

d t th
tains at the nt eve

onl the single indepen enh
a&~= —a, ( = —a, ) is retained. T e so u

'

er laquette of the U(1) modelFIG. 2. Ground-state energy per p aqu
r several SUB1(n) approximations, in

d to t}1 t ol-
d some results from perturbation of the Mathieu problem, and some resu

tion theory, PT(2n).

SUB1(1) .al= 1,,
p

(3.12)

Bl 2) approximation one retams only
h o1the two independent coe cients a& an a2.

to Eq. . i. (3.6) in this case is given by

A, +—"+A,)' —(QA, + —"—A, )'
(3.13)

=A.—a —az, SUB1(2) .a2-———a, , — —al —a2,
'

rar n and A, to the general SUB}(n)Solutions for arbitrary n an o
i n to E . (3.6) are easily o taine

d a i o o t Alyby a simp e ile iteration method on a m'

for example, is usual y
fi 't tio The GS e rgy

f six si nificant figures, or ex
n about five itera ions.

SUB1 values, which are the exact so u ion

0.5

s values of A, for the U(1) lattice gauge modelgyp per la uette at variou
ith n =1, 2, 3, 4, 8, 20. n er

e accuracy shownthe Mathieu problem; and the SUmodel is equivalent to t e a
for the Mathieu problem.

5 20

SUB1(1)
SUB 1(2)
SUB 1(3)
SUB1(4)
SUB1(8)
SUB1(20)

0.437 5
0.439 123
0.439 117
0.439 117
0.439 117
0.439 117

0.75
0.772 689
0.772 425
0.772 431
0.772 431
0.772 431

1

1.249 117
1.242 552
1.243 018
1.243 021
1.243 021

0.75
1.608 770
1.578 798
1.582 758
1.582 804
1.582 804

—1.25
2.209 359
2.061 439
2.099 494
2.099 974
2.099 977

—80
5.525 510
0.553 501
4.273 716
4.335 206
4.343 306
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equation (2.3) arq
'

( . ), are actually well represented, to the level
of accuracy shown, by the SUB1(20) results for the whole
range of A, displayed. The convergence with index n of
the SUB 1(n) results to the full SUB1 I'

~

d
~

imit is clearly quite
rapi, even in the large-A, (weak-coupling) 1' 't

It is also in
'ng imi .

is also interesting to compare our SUB1(n) scheme
results with the counterparts for the Mathir e at ieu problem
rom perturbation theory in the strong- 1 1rong-coup ing limit.

(2.3)
'

Up to 14th order in this limit the GS
) is given by [29]

e eigenvalue of Eq.

~4 29 ~6 68 6871 7
p 4 256 4608 37 748 736

123 707 ~ip 8022 167 579
209 715 200 39 137 889 484 800

286 241 141 477 i4
3835 513 169 510400

We have explicitly verified [30] that in this limit the

~ e

SUB1(7) approximation for E /X 1exact y reproduces
t is series to the order shown. In general, the A, ~O lim-
iting form of the GS energy in SUB1(n) approximation
exactly reproduces the result from 2nth-order perturba-
tion theory [PT(2n)]. Indeed, the SUB1(n) s
a y provi es a very efficient way to generate the
coefficients of the terms in the perturbation treatment of
the Mathieu problem. A mo d t '1 dre e ai e comparison of
the SUB1(n) and PT(2n) results for the GS
vided b Fi . 2

s or e energy is pro-
c y ig. , where we see clearly that the perturba-

tion results are very poor for k& 1.5. I f
e . L q, the radius of convergence for the series of Eq.

(3.14) is no greater than A, = 1.468 77 , accurate to five de-
cimal places.

Clearly, the range of validity of the SUB1(n) results ex-
tends to values well above k =A, Th e accuracy of

different orders of perturbation th eory as a unction of A,f
is shown more explicitly in Fig. 3. Th e accuracy A of a
quantity E is, roughly speaking, the number of si nifi

e approximate result E, compared with its
exact counterpart E . It is defin de ne more precisely as

E,
A =log)p E, —E,

(3.15)

Figure 3 exhibits rather well the fact that the series of E .

By contrast, the accuracy of the comparable SUB1(n)
results is displayed in the same w F' . 4.e way in ig. 4. It is clear

the PT(2n) a
at t ese resu ts represent a very natural extex ension o

n approximations. They comprise, in effect a
well-defined anal tic cy

'
ontinuation or resummation of the

PT(2n) results
ch of a r

, within the context of a system t' hma ic ierar-
y o approximations. In this sense, the SUB1 n

y e contrasted with alternative rather ad hoc
approaches for extending the range of validit h
cuIac of slmy o similar PT(n) sequences. These include Pade
approximant and related techniques.

In fact the, the nonperturbative nature of the Math'
equation has ionlong made it a testing ground for d'ff

o e at ieu

techni ues'q to attack lattice gauge theories. These have in-
or i erent

eluded variational methods [31] d, an use of the Lanczos
algorithm to improve upon them [32 . M ore generally,
the Hamiltonian version of the U(1) lattice
considered

e attice gauge model
'

ered ere has also been investigated b h
s as strong-coupling perturbation theory [33],

finite lattice calculations [34], various Monte C 1
'q ~, 5,36'j, variational approaches 37 h

method of cof correlated basis functions [26], and a block
es, te

renormalization-group approach [38). Most of these al-
ternative techniques have demo t t d hns ra e t e necessity to

the SUB1 n

inc u e higher-order mode couplings. Our ow lt fnresu s or
(n) scheme have clearly proven the efficacy of

U
&- 3—

U
U U

3

FIG. 3. The accuracy, defined in E . (3.15)in q. . 5, as a function of A,

or e ground-state eneror d gy, eo, of the Mathieu equation (2.3)
calculated in the nth-order strong-couplin (A, —+0'

n n =, , 6, 8), compared to the exact result. The
radius of convergence of PT is A,o=1.46877 [29].

0 'l0 20

FIG. 4. Same as Fis Fig. 3 but with the results from our SUB1(n )

schemes.
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the CCM for handling the nonperturbative sector of the
U(1) lattice gauge model.

As stated before, it is straightforward to include anoth-
er kind of correlation effect in the CCM, namely, the
physical plaquette correlations. This is the subject of the
next section.

IV. U(1) GROUND-STATE ENERGY:
TWO-PLAQUETTE SCHEME

pie, we retain only the single coefficient, a &, which is the
same as the SUB1(1) approximation considered earlier.
In the local two-mode approximation, however, four
coefficients are retained. They are a& and a2 from the
one-plaquette equations, and b, (1,1) and c, (1,1) from
the two-plaquette correlations. The equations in this par-
ticular local two-mode approximation, denoted as SUB2-
1(2), are given together with the energy equation by

In the previous section one-plaquette equations (3.1)
are derived rather easily and solved by a simple numeri-
cal technique. The two-plaquette equations can also be
derived in a similar manner but with more effort. We
thus extend our discussion to the SUB2 scheme, in which
the correlation operator 5 in Eq. (2.4) is truncated as

2 2 z z 2 2

4
=A, —a —a — bc—— (b —+c )

——+a& —a&a2 —za& b&+ —
c& =0,

2a2+ —,'a, =0,

(4.5a)

(4.5b)

(4.5c)

S~SsUH2 S]+S~ (4.1)

m, )m2=1, 2). . . ) p, /p2 )

for the coeflicients 4"' (n i, n& ), and
P(P2

(4.2)

where Si and S2 are written as in Eq. (2.5). Similar to
Eqs. (2.9) and (3.1) of the one-plaquette equation in the
SUB1 scheme, in replacing SsUH, with SsU82, one can
derive the two-plaquette equations, in addition to the
one-plaquette equation. They are given respectively, by,

( cos(miB ) cos(m2B )~e
" 'He " '~@)=0,

—'(1 —az)ci+(I —a2)bi =0,

—,'a2+ —,'(1+a2)b, +(1+a2)ci =0,

(4.5d)

(4.5e)

where we have simplified the notation further by writing
b i

——b i(1, 1) and c i
=—c

&
(1,1), and where z is the number

of nearest neighbors of the lattice, i.e., z =2 and 4 for the
cases of 1D and 2D, respectively.

The SUB2-1(2) approximation reproduces the correct
coefficients in the strong-coupling limit of the U(1) mod-
els up to the fourth order [34,36]:

(si (nmB )sin(m2B )~e
" 'He " '~4) =0,

m, )rn2=1, 2). . . ) p, /p2 ) (4.3)

A,
—

—,'A, +389,A, +O(A, ), 1D,

o A,
—

—,'A, '+ „",,A, '+O(A, '), 2D .
(4.6)

eV„"' (n„n~):—b„(n,, n2),

( „nzn)=c„(n„n2—), r:—p2
—p, .(2)

(4.4)

Clearly, r is simply an integer in the 1D array of pla-
quettes, but a lattice vector of the square lattice for the
2D case.

The first approximation we make is a lowest-order lo-
cal approximation in which one retains those coefficients
with ~r~ =1 only. The coefficients involved are therefore
the one-plaquette coefficients [a„],as defined previously
by Eq. (3.5), and the two-plaquette coefficients
[b, (n„n2)] and [c,(n„n2}].One can see that there is
still the mode coupling to deal with as in the SUB1
scheme. We can also make further truncations.

Within the local one-mode approximation, for exam-

for the coefficients 4„' ' (n „n2). The one-plaquette equa-
P(Pp

tions in this SUB2 approximation, analogous to Eq. (3.1)
in the SUB1 approximation, are simply those obtained
from Eq. (4.2) by setting m2=0, with mi =1,2, . . . .
Again, the equations are highly coupled.

We have derived the full equations in this SUB2
scheme. Obviously, they are quite involved. In the fol-
lowing we consider some partial approximations within
this SUB2 scheme. First we need to simplify the nota-
tions for the two-plaquette coeKcients. Using the
translational invariance, we can write

In a similar fashion the local three-mode approximation,
the SUB2-1(3) scheme, and other local higher-order mul-
timode approximations, can also be made within the
SUB2 equations. The SUB2-1(3) scheme in particular re-
tains seven independent coefficients. The three additional
coefficients are a3, bi(1, 2)[=bi(2, 1)], and
ci(1,2)[=c,(2, 1)]. Tables II(a) and II(b) show the re-
sults for the GS energy per plaquette for the 1D and 2D
models, respectively, at various values of A. within several
SUB2-1(n) schemes (n =2, 3,4), together with the full
SUB1 results [produced by the SUB1(10) scheme to the
same accuracy shown] and the results from perturbation
theory of both weak- and strong-coupling limits for corn-
parison. The agreement with other calculations [26,35] is
good.

Just as the strong-coupling perturbation series of Eq.
(3.14) for the GS energy of the Mathieu problem has a
finite radius of convergence, it seems likely that its coun-
terparts for the 1D and 2D cases of U(1) lattice gauge
theory from Eq. (4.6) also do. Much work in modern
field theory goes into attempts to analytically continue
such series outside their natural boundaries. A typical
recent such attempt for the (2+ 1)-dimensional U(1) mod-
el [39] starts from the strong-coupling perturbation series
of Eq. (4.6), utilizing the known coefficients out to
O(A, '

), as input to generalized Pade approximants.
These results are also included in Table II(b) for compar-
ison. As stated in the previous section for the one-
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TABLE II. (a) Ground-state energy per plaquette at various values of k for the U(1) model in 1+1
dimensions. Shown are the results of the SUB2-1(n) schemes with n =2, 3, 4, defined in the text, to-
gether with the full SUB1 results [given by the SUB1(10) scheme to the accuracy shown] and the results
of both strong (A, ~O) and weak (A.—+ ~ ) coupling limits in perturbation theory, PT4(S) and PT( W),
given by Eqs. (4.6) and (4.7). (b) Same as (a) but for the (2+1)-dimensional model and with additional
results of eighth-order strong-coupling perturbation theory, PT8(S), from Ref. [34].The results from an
analytic continuation of the strong-coupling perturbation series by Hamer, Oitmaa, and Zheng [39]
(HOZ) are also included.

0.5

SUB1
SUB2-1(2)
SUB2-1(3)
SUB2-1(4)
PT4(S)
PT(W)

0.4391
0.4389
0.4389
0.4389
0.4389
0.5744

0.7724
0.7689
0.7703
0.7702
0.7732
0.8624

1.2430
1.1980
1.2319
1.2320
1.3708
1.2697

(a)
1.5828
1.3684
1.5567
1 ~ 5615
2.6273
1.5822

1.8597
1.1115
1.8022
1.8243
5.9333
1.8457

2.1000
—0.3116

1.9833
2.0409

13.236
2.0778

2.3156
—6.3126

2.1047
2.2184

27.038
2.2877

SUB1
SUB2-1(2)
SUB2-1(3)
SUB2-1(4)
PT4(S)
PT8(S)
HOZ
PT( W)

0.4391
0.4386
0.4387
0.4387
0.4387
0.4387

0.7724
0.7652
0.7681
0.7681
0.7690
0.7673

0.5627 0.8434

1.2430
1.1468
1.2216
1.2214
1.3042
1.1358
1.215
1.2402

(b)
1.5828
1.1280
1.5371
1.5428
2.2898

—0.7375

1.5447

1.8597
0.3019
1.7691
1.7994
4.8667

—20.873
1.785
1.8015

2.1000
—2.8326

1.9282
2.0123

10.632
—130.4

2.0276

2.3156
—15.108

2.0153
2.1921

21.638
—555.7

2.2
2.2321

—c,&x——c,'+ o(x-'"),
N 8

(4.7)

where the values of the constant Co are 0.9833 in 1D
[36], and 0.9581 in 2D [26]. We note that the zero-
dimensional analogue (namely, the Mathieu problem) has
a similar weak-coupling limit, but with Co =1. As can be
seen from Table II, the SUB2-1(2) results are not much
better than their counterparts from perturbation theory,
as is the case for the SUB1(1) scheme for the Mathieu
equation. However, the SUB2-1(3) and SUB2-1(4) results
are very much improved. It demonstrates again that to
produce correct numerical results in the weak-coupling
(large A, ) region, the higher-order mode-couplings are
necessary.

Different sub-approximation schemes can also be made
from the SUB2 equations. For example, one can include
only low™mode coupling but retain long-range plaquette-

plaquette approximation (i.e., Mathieu problem), we
again emphasize that our own SUB2-1(n) approximants
themselves represent a natural extension of perturbation
theory. They comprise, in effect, a well-defined analytic
continuation or resurnmation of perturbation theory re-
sults within the context of a natural and consistent
hierarchy of approximations. They may be contrasted
with the rather ad hoc approaches based on Fade and
other resummation techniques, which usually Q.nd it
difficult to approach the weak-coupling limit with the
correct asymptotic form unless this is built in from the
start.

Finally, the perturbation theory in the weak-coupling
limit gives

plaquette correlation. Thus, one might retain the
coefficients b„(1,1) and c„(1,1) with all possible values of
r. From the experience of the application of the CCM to
spin lattice models [25] this approximation can predict a
possible phase transition. Our preliminary results do not
suggest a critical behavior for any finite value of k. This
seems to agree with the general consensus that no phase
transition exists for the U(1) lattice gauge model in either
1D or 2D.

I 1 y 2y ~ ~ ~ (5.1)

which may be compared with its ket-state counterpart of
Eq. (3.1). Explicit evaluation of Eq. (5.1) readily yields

V. U(1) PLAQUETTE ENERGY

In order to calculate the GS expectation value of any
physical operator in the CCM, one needs to calculate &he

GS ket and bra wave functions separately. The CCM pa-
rametrization of the ground bra state for the U(l) model
is given by Eq. (2.6), where as can be seen, (Oo~ is not
manifestly the Hermitian conjugate of ~Vo). The equa-
tions for the one-plaquette bra-state coefficients 4 (n),
for example, are derived from the second variational
equation of Eq. (2.9).

In this section we focus on the SUB1 scheme only, i.e.,
S~SsUHI =SI. From Eq. (2.9), one can derive the fol-
lowing equation for the one-plaquette bra-state
coefficients [S (n)] as

(4&~SsUHIe " '[H, cosmB„]e " '~C&) =0,
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—2a +ma — g a„a „=0,m =+1,+2, . . . ,

(5.2)

where a is defined as before by Eq. (3.5) and a is
defined as

a =g (m), a =a (5.3)

again independent of the index p. As for the analogous
ket-state equation (3.6), Eq. (5.2) is also valid for any di-
mension in this one-plaquette approximation.

A similar SUB1(n) subtruncation approximation to
that discussed in Sec. III may also be employed for the
bra-state coefficients. Thus, in this SUBl(n) scheme, one
retains those coefficients [a,a } with m ~ n, and sets all
others to zero. For example, in the SUB1(1) scheme, we
have

SUB1(1): a, =2a, =A, . (5.4)

As for the earlier case of the coefficients [a }, it is not
difficult to obtain numerical solutions to Eq. (5.2) for
[a }, taking [a } as known parameters, in a general
SUB1(n ) scheme with any finite n

After determination of both the ket- and bra-state
coefficients, we can calculate any physical quantity within
the corresponding approximation. Here, as an example,
we calculate the plaquette energy, which is defined by

U= (1—cosB& ) =(4O (1—cosB )~VO), (5.5)

where U is independent of the plaquette index p because
of the translational invariance of the system. Within the
SUB1 scheme under discussion, U is given by

SUB1: U =1—
—,'a(, (5.6)

and hence depends only on the single coefficient a, . As
for the GS energy, the value of U as a function of A, can
be obtained numerically within the SUB1(n) scheme for
any finite n. This, in effect, reproduces the corresponding
exact results for the Mathieu problem. Hence, we will
not quote them here, except to mention, for example, that
in the strong-coupling limit, the SUB1(3) scheme gives

U —1 —
—,'k+ —'A. ——"A, +O(A, ) (5.7)

which agrees exactly with the first derivative of the GS
energy, Eg /N~, of Eq. (3.14), with respect to A, , as expect-
ed. More generally, the SUB1(n) evaluation of U from
Eqs. (5.2) and (5.6) again agrees with the corresponding
result from 2nth-order perturbation theory, PT(2n).

We note that these findings illustrate the more general
result that the CCM always gives agreement with the ex-
act Hellmann-Feynman theorem at all levels of trunca-
tion with consistent approximations for both correlation
operators S and S. Indeed, this preservation of consisten-
cy with the Hellmann-Feynman theorem is the prime
motivation for the particular parametrization of the
ground bra state given by Eq. (2.14) [7]. By contrast, an
approximation scheme which preserves Hermiticity be-
tween the ket and bra states at all levels of approximation

would be inconsistent with this important theorem, ex-
cept in the exact limit when no truncation was made for
the correlation operator S.

VI. Z(2) LATTICE GAUGE MADEL

In Sec. II we have given the exact CCM forms for the
ket and bra states of the Z (2) model by Eqs.
(2.12)—(2.14). Although we could now perform a SUBn
sequence of approximations for the Z(2) model as out-
lined above for the U(1) model, we prefer here, partly for
pedagogical reasons, to employ a different hierarchy of
approximation schemes, which we call the LSUBn se-
quence. This scheme, which has no simple counterpart
for continuous extended systems, has been recently
developed within the context of quantum spin-lattice
models [25], where it has met with considerable success.
It is particularly suited for treating lattice systems where
the interaction forces are highly localized (i.e. , short
ranged).

In this spirit, we may rewrite the correlation operators
S,S for the Z (2) model in the form

S= g g S, U~(c),
P C

5=1+g gS, U (c),
P C

(6.1)

e He =H + [H,S]+—[[H,S],S ]+ (6.2)

However, whereas the infinite expansion of Eq. (6.2) usu-
ally terminates, in practice, for most standard many-body
problems [12,25] [and, in particular, it terminates at the
second order for the U(1) model considered in previous
sections], this is not the case here.

Nevertheless, for the Z(2) model under consideration,
the nonterminating expansion of Eq. (6.2) can readily be

where U (c) is a product of tr3 operators around a partic-
ular lattice contour of shape and orientation specified by
the index c, and where the index p labels some one partic-
ular plaquette in a specified ordering of the plaquettes in-
side c. We note that the c-number cluster amplitudes

are independent of either the index p or the
orientation of the contour c due to invariance properties
of the lattice. We also note that in rewriting Eqs.
(2.12)—(2.14) in the form of Eq. (6.1), we have used that
since o3=1, the product of operators U for any set of
contiguous elementary plaquettes is equivalent to a prod-
uct of tr3(l) operators around the links forming their
boundary contour.

In the (2+1)-dimensional model, a given LSUBn ap-
proximation includes in the set [c } all possible closed
(not necessarily connected) contours which lie inside the
closed, connected contours formed by all distinct groups
of n contiguous elementary plaquettes on the lattice. Fig-
ure 5 shows the lowest three approximations in this
scheme in diagrammatic form.

In order to evaluate the GS energy expectation value H
of Eq. (2.8), one needs to calculate the similarity trans-
form e He . As usual, we utilize the well-known nested
commutator expansion
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(b)

omitted and the ordering of the plaquettes inside c is re-
laxed. Both the terms coshG and sinhG in Eq. (6.3) can
then be expanded using the usual expansion rules for
cosh( A + B ) and sinh( A +B). Finally, using
[ U'(c;l)] =1 for all c, p, and 1, since o'&=1, we have the
relations

(c)

cosh [S, Ut (c;l) ]=cosh', ,

sinh[S, U'(c; l) ]= U'(c; l)sinhS, ,
(6.5)

(e)

FIG. 5. The six configurations retained in the LSUB3 scheme
for the Z(2) model in 2+ 1 dimensions. The LSUB1 scheme re-
tains only the single configuration (a), and the LSUB2 scheme
the two configurations (a) and (b).

resummed. Thus, for a general correlation operator S of
the form given in Eq. (6.1), we find that

e He = —g [o &(l)coshG —io z(l)sinhG] —
A, g U„,

p

(6.3}

which enable us to rewrite Eq. (6.3) in a form in which
the hyperbolic functions act only on the c-number ampli-
tudes [4, J.

We quote only the final result for H for the 2D Z(2)
model in the LSUB1 approximation,

NI

HtsUH, = —g cosh (2S, )+—S, [A, —2sinh(4$, )]
2

(6.6)

where, in writing the result as a sum over link index l
only, we have used the fact that the number of links is
equal to twice the number of plaquettes for the 2D square
lattice, i.e., XI=2% . As for the U(1) model, the equa-
tions for the coefficients 4& and 4, are derived by requir-
ing H to be stationary with respect to them. We find1, A, — 1LSUB1: 4& =—arcsinh

4 2 &1+X'y4 '

(6.7)
where the operator G is defined by

G—:2 g g 4, U'(c;I),
p&1 c

(6.4) and the GS energy per link is then given as

wherein the sum over plaquettes is restricted to those
which include the links l, and where U'(c;l) is identical
to the product of o.

3 operators comprising U (c) except
that the single operator o3(l) on the particular link l is

I

LSUB1: = ——(1++1+1,/4) .2

2

For the LSUB2 approximation we find in a similar
fashion that

HtsUHz = —g cosh (2$, )cosh (2$z)+ [A, +sinh(2$, )cosh(2$, )[12sinh(2$z) —4 cosh(2$z)]cosh (2$z) I

+ [sinh (2$&)[2sinh (2$z)+cosh (2$z)]cosh (2$z) —6cosh (2$&)sinh(2$z)cosh (24z)]
2

(6.9)

E 2

Nl A, o 16

X4

3072
+O(A, ) . (6.10}

196 608

Our LSUB1 result of Eq. (6.8) is clearly seen to agree

As before, H is now required to be stationary with respect
to each of the retained configuration coefficients. The re-
sulting numerical solution for E /NI is shown in Fig. 6,
together with the corresponding LSUB1 results from Eq.
(6.8).

3 priori, we expect the above LSUBn approximations
to be most accurate in the strong-coupling regime, where
we may compare with the known perturbation theory re-
sults for the 2D Z (2) model [40]:

I

with Eq. (6.10) to the second order. An analytic small-k,
expansion for LSUB2 reproduces the result of fourth-
order perturbation theory. Also, without calculating the
full expression for H in the LSUB3 approximation, we
have shown that the sixth-order perturbation theory re-
sult is retrieved in this approximation. Although we have
not attempted a strict proof, we conjecture that the gen-
eral LSUBn approximation will reproduce the results of
2nth-order perturbation theory, PT(2n), in this small-k,
limit, for all values of n.

It is also interesting to compare the weak-coupling
(A,~~ ) limits of our LSUB1 and LSUB2 results with the
corresponding results froIn perturbation theory in this re-
gime [40]:
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Eg
N PT(4) (weak)

This formalism, first due to Emrich [41], for the excita-
tions is identical to a more general theory based on func-
tional derivatives [7]. We shall use Eq. (7.1) here. How-
ever, it is important to point out that in this and other
cases not all elementary excitations can be constructed by
an excitation operator X identical in structure to S. This
is because the symmetry of the excitations can be
different from that of the ground state. For example, in
antiferromagnetic spin-lattice systems, the ground state is
in the sector of s,'„,1

=0, where s„„1is the total spin of
the system, whereas the low-lying excitations have
s,'ot, i=+1 [25]. In the U(1) lattice gauge model under
discussion, one has the odd-parity excitations as well as
the even-parity ones. In this case the odd-parity excita-
tion operator X' is similar in construction to the even-
parity excitation operator X' and the GS operator S, but
with each term in X' obeying the odd-parity symmetry.

-6
0

FIG. 6. Ground-state energy per link of the Z(2) model in
2+1 dimensions as a function of A, . Shown are our LSUB1 and
LSUB2 results, and the fourth-order perturbation theory, PT(4),
results in both the strong-coupling (A,~O) and weak-coupling
(A,~~ ) limits given in the text.

1+—
A, + A, +O(A, )

N) x oo 2 2 32
(6.11)

This LSUB2 result is rather close to the exact value of
Eq. (6.11) to the same order.

VII. KXCITATIONS OF U(1) AND Z (2) MODELS

In this section we extend the CCM to the excited states
of the U(1) and Z(2) models. In the conventional CCM,
the excited states are constructed by acting on the ground
state with the excitation correlation operator X [37,12],
which is partitioned in a similar fashion to the GS corre-
lation operator 5 discussed in Sec. II, replacing all GS
coefficients [S~ (n„.. . )] with the corresponding ex-

Pl
citation coefficients j

X' (n„.. . ) ]. Thus, the excitedPl
state I+, ) is linear in X, by contrast to the ground state
I %o ) where S is in the exponentiated form. The
Schrodinger equation is then written as

&IV, ) =E, IV, ), with I+, )—:Xl+o) =Xe IN) . (7.1)

As expected, we do not get agreement in this limit. Nev-
ertheless, both LSUB1 and LSUB2 approximations give
the correct leading asymptotic behavior, namely, linear in
A, , albeit with an incorrect coefficient. More precisely,
Eq. (6.8) trivially gives E /%&~ —0.25K, as X~ co in the
LSUB1 approximation, whereas the leading-order
LSUB2 result is Es/X& ~ —kA, as A,~~, where

k =(7+3&7)/28=0. 533 .

A. Kxcitations of the U(1) model

e'= E'—Ee g
(7.3)

(~ I cosm&qe '[H, X']e'I@& =e'(el cosmic, X'IC &,
e'= E'—Ee g

and similarly for the multiplaquette excitations. The
quantities E; and E,' are the energies of the odd and even
excited states, respectively. In the SUB1 approximation
under discussion, we apply the truncation of Eq. (7.2) for
X' and X' and replace S by SsUn, as given by Eqs. (3.3)
and (3.6). Equations (7.3) then become

—6 —m no 2 o
m nm+n+n 0,

(7.4)

pI = oo

As stated above, there are two branches of excitations
for the U(1) model, described by the even-parity correla-
tion operator X' and the odd-parity correlation operator
X', respectively. Within the SUB1 approximation X'
and X' can be written, respectively, as

p oo

X'~XsUB, = g g X'( n )sinn8
p=l n=l

(7.2)
p oo

X ~XsUai = g g X (n) cosn8
p=1 n =1

As can be seen from the above equations, the proper sym-
metry is observed in each case. It is not difficult to gen-
eralize to higher-order approximation schemes, such as
to the SUB2 approximation. However, we focus on the
SUB1 scheme in this section.

From Eq. (7.1) together with the Schrodinger GS equa-
tion, and after a straightforward manipulation, it is easy
to derive the following equations for the single-plaquette
excitation coefficients in general:

(@Isinm8 e [H,X']e I@)=e'(@Isinm8 X'I@&,
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where the SUB1 GS coefficients [a„]are as defined by
Eq. (3.5) and determined by Eq. (3.6), and where the
[a„I are defined accordingly as

a'„=X'(n), a' „=—a'„,
a'„=X—'(n), a' „=a'„. (7.5)

These coeScients are also independent ofp because of the
translational invariance. Together with Eq. (3.6) we can
again employ the SUB1(n) scheme in which one retains
only those coefficients a and a with

~
m

~

~ n. Equation
(7.4) becomes an eigenvalue problem where [a ] are tak-
en as known parameters from Eq. (3.6). Hence the
SUB1(n) approximation corresponds to an n Xn matrix
diagonalization.

Consider, for example, the SUB1(2) scheme in which
we retain a„and a„with ~n~ =1,2 only. The eigenvalue
problem from Eq. (7.4) is simply to diagonalize a 2X2
matrix. We obtain the following eigenvalues for the
odd-parity excitations: 0

PT(4)~, ~PT(8)

ei = 5 —a i
—Q9 —14a i +a i,

SUBl(2) '

@2=5—a, ++9—14a, +a, ,
(7.6)

where a, is given by Eq. (3.13). The expressions for the
even-parity excitations are similar; but generally speak-
ing, the even-parity excitation energy is higher than its
counterpart of odd parity. The glueball mass m of lat-
tice gauge theory is defined as the lowest excitation ener-

gy gap. Hence we have m =e', for the U(1) model.
For a general SUB 1(n) scheme, we diagonalize the cor-

responding n X n matrix of Eq. (7.4) by a numerical tech-
nique. The solutions for the low-lying excitations within
several SUB1(n) schemes are shown in Fig. 7. As can be
seen from the figure, the pattern of convergence of the
solution is rather rapid as n increases, and quite similar
to that for the GS energy calculations discussed in Sec.
III.

Since the one-plaquette approximation (i.e. , the SUB 1

scheme) for the U(1) model is identical to the Mathieu
problem as mentioned earlier, it is interesting to compare
also our results for the excitations in this sequential
SUB1(n) scheme to the corresponding exact Mathieu
solutions. From Ref. [29] the first excitation gaps of the
Mathieu problem in the strong-coupling limit are given
to the fourth order by

FICx. 7. The first odd-parity excitation gap, e&, of the U(1)
model within various SUB1(n) schemes, compared with the ex-
act Mathieu solutions (given by the full SUB1 scheme). The
dotted sections of the curves for the SUB1(2) and SUB1(4)
schemes represent the corresponding results for the second gap,
e2, which connect to e& at some A, . Also shown are the results of
strong-coupling (X~O) perturbation theory, PT(n) with n =2,
4, 6, 8.

tion gaps of the corresponding Mathieu problem to the
2(n —1)th order in A, for the first gap, ei, 2(n —2)th or-
der for e2, and so on until finally to the zeroth order for
&n.

We should also point out that without including multi-
plaquette correlations, as in the SUB1 scheme under con-
sideration, one cannot expect to observe the exponential-
ly decaying behavior for the glueball mass in the weak-
coupling (A,~ ~ ) limit. The plaquette correlations are
included in the SUB2 scheme as discussed for the ground
state in Sec. IV, but it is beyond our consideration for
present introductory purposes. Nevertheless, in the
remainder of this section, some local two-plaquette corre-
lations are taken into account for the Z(2) excitations in
the so-called LSUB2 scheme, as we shall see in Sec.
VII B.

e' —2+ —'A, —"'
A, +O(A, )24 27 648

e; —2+ —"A, —'"'
A, +O(A, )24 27 648

(7.7)

We have again explicitly verified that our SUB 1(3)
scheme reproduces these results. Furthermore, the
SUB 1(3) scheme also reproduces the correct results for
the second and the third excitations, e2 and e3, but to a
lower order, i.e., to the orders of A, for ez and of A, for e3,
respectively. This suggests the following general picture:
Our SUBl(n) scheme reproduces the exact perturbation
results in the strong-coupling (A, ~O) limit for the excita-

B. Kxcitations of the Z(2) model

x= g gX, U (c),
p c

(7.8)

where [X', J are the excitation coefficients to be deter-

We now focus our attention on the excited states of the
(2+1)-dimensional Z(2) model via the LSUBn approxi-
mation scheme discussed in Sec. V.

As mentioned in the beginning of this section, we
define the linear excitation operator X to be of the same
form as, and also to include the same set of contours as,
the correlation operator S, i.e.,
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mined, and U (c) is defined as before by Eq. (6.1). If a
particular LSUBn approximation retains m independent
configurations (i.e., m distinct shapes in the contour set
[c} ), then the CCM excitation equations will result in an
m Xm eigenvalue problem, with the m distinct eigenval-
ues corresponding to the excitation energies [ e;,
i =1,2, . . . , m }, similar to Eq. (7.4) for the U(1) model
discussed earlier. Again, the glueball mass will be given
by the lowest eigenvalue, e, .

From the strong-coupling perturbation theory, this
glueball mass is given for the 2D Z (2) model by [42]

m —8 ——'k +—"A, +O(A. )g~ 4 768 (7.9)

For the LSUB1 approximation we find our single excita-
tion energy e& given by

LSUB1: e& —= m =8+1+X /4, (7.10)

whereas an analytic small-k, expansion for the two excited
states in our LSUB2 approximation gives

e =—m —8 ——'A, +O(A. ),g~-O 4

ez —12+—,'A, +O(k ) .
A, ~o

(7.1 1)

Thus, we observe that e& is correct to the second order in
X, while ez is correct to the order of k . Thus, a similar
pattern to that for the SUB1(n) excitation energies for
the Mathieu problem emerges: The LSUBn scheme will
produce the correct strong-coupling expansion to the
2(n —1)th order for the first excitation energy gap (glue-
ball mass), to the 2(n —2)th order for the second gap,
and so on.

VIII. SUMMARY AND CONCLUSION

In this paper we have developed a CCM analysis for
the lattice gauge models, U(l) in 1+1 and 2+1 dimen-
sions, and Z(2) in 2+1 dimensions. Several systematic
truncation schemes have been employed. In particular,
for the U(1) model, the mode couplings are studied in de-
tail within both the SUB1 approximation and a local
SUB2 scheme. The LSUBn sequence is also applied to
the Z(2) model. The GS energy, plaquette energy [for
the U(l) model], and the excitation energies (e.g. , glueball
mass) are calculated as functions of the coupling constant
A, for both models. Comparisons with other theories, par-
ticularly the strong-coupling perturbation series and its
extensions, are made and discussed in great detail.

We note that the underlying simplicity of the Z(2)
model in 2+1 dimensions renders it particularly amen-
able to various variational approaches using several
classes of trial wave functions. In particular, it is of spe-
cial interest here to note that Cardy and Hamber [43] and
also Suranyi [44] have used a trial GS wave function of
precisely our LSUB1 form, within the context of a stan-
dard Rayleigh-Ritz approach using an energy expectation
value based on bra and ket trial states which are mani-
festly the Hermitian conjugates of each other. We note

that such an approach reproduces the exact leading
behavior of the GS energy in both the strong- and weak-
coupling limits. It also very straightforwardly leads to a
second-order phase transition at a critical value, A,, =4.
Similarly, by employing a larger class of variational trial
wave functions with great similarity (but not identical) to
our LSUBn sequence, Dagotto and Moreo [45] were able
to obtain a sequence of approximants for A,, which, how-
ever, showed only very slow convergence to the "exact"
limit as the number of retained configurations increased.

Although our own CCM results presented here for the
(2+1)-dimensional Z(2) model show no sign of a phase
transition, we note that we have employed a fixed and
very simple form for the uncorrelated or model state
~@). In a very general context Kiimmel [46] has shown
how the coupled-cluster methodology employed here can
be extended to find new "maximum-overlap" single-body
orbitals near a shape or phase transition. The lowest-
order implementation of this scheme leads to an uncorre-
lated state which is essentially that of "mean-field
theory. " For example, for a many-fermion system, this is
simply Hartree-Fock theory. For the present case it is
just the variational single-plaquette LSUB1 result re-
ferred to above. It will be of considerable interest to pur-
sue this analysis further in future work. An alternative
extension of the so-called normal (NCCM) version of the
CCM employed here, which also seems to be particularly
well adapted in general for systems which display such
phenomena as phase transitions, spontaneous symmetry
breaking, and topological excitations, is the extended
(ECCM) version of the theory. The application of this
approach would take us too far afield for present pur-
poses. Nevertheless, the interested reader is referred to
the literature [7,10,20] for a discussion of this very
powerful method.

From the preliminary results presented to date, howev-
er, it should be apparent that the key advantage of the
CCM for the lattice gauge models, as for systems in quan-
tum many-body theory to which it has already received
wide applications, lies in its systematic microscopic ap-
proach. The method is manifestly nonperturbative from
the outset, although, as we have shown, easy contact can
be made with perturbation theory. We have demonstrat-
ed, furthermore, that even at relatively low levels of im-
plementation the method provides accurate results far
outside the realm of validity of perturbation theory. In
this sense the method provides a very natural and au-
tomatic extension of the perturbative results. By con-
trast, Pade and similar resummation techniques can be
extremely unreliable, particularly when no or only limit-
ed information is available for the asymptotic behavior in
the continuum (weak-coupling) limit. From this point of
view, the application of the CCM to more realistic gauge
field theories is an obvious next step. For example, we in-
tend to extend the present calculations, ourselves, both to
the U(1) model in 3+1 dimensions, as well as to such
non-Abelian models as SU(2).

Finally, we note that the coupled-cluster methodology
is sufficiently simple and physically well motivated as to
make its extensions to even higher orders of implementa-
tion straightforward, in principle. Naturally, the actual
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coupled equations for the retained cluster configuration
coeScients rapidly become awkward and time consuming
to generate by hand. Nevertheless, they are extremely
amenable to generation by computer-algebraic tech-
niques. Furthermore, although the resulting coupled sets
of nonlinear equations appear a priori to be mathemati-
cally complicated (e.g. , the possibility of multiple solu-
tions exists), all of our practical experience from applica-
tions both to lattice gauge theory and to diverse systems
of condensed matter, indicates that the CCM equations
are extremely robust and simple to solve in practice. For
example, a (unique) physical ground-state solution is al-
most always found in a very few iterations, by even the
simplest numerical algorithms. A corollary is that any
instability (e.g. , the disappearance of the solution at some

critical value of a coupling constant, such as that found
in our earlier calculations [25] of the anisotropic Heisen-
berg spin-lattice model) that does arise is likely to be of
physical origin rather than a mathematical artifice. For
all of these reasons we believe that the CCM merits fur-
ther consideration for use on problems in lattice gauge
theory.
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