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Multiloop gauge-theory amplitudes written in the Feynman-parameter representation are poised
to take advantage of two important developments of the past decade: the spinor-helicity technique
and the superstring reorganization. The former has been considered in a previous paper; the latter
will be elaborated in this paper. We show here how to write multiloop stringlike formulas in the
Feynman-parameter representation for any diagram in @ED, including those involving other non-
electromagnetic interactions, provided the internal photon lines are not adjacent to any external
photon line. The general connection between the Feynman-parameter approach and the superstring
and/or first-quantized approach is discussed. In the special case of a one-loop multiphoton ampli-
tude, these formulas reduce to the ones obtained by the superstring and the first-quantized methods.
The stringlike formulas exhibit a simple gauge structure which makes the Ward-Takahashi identity
apparent, and enables the integration-by-parts technique of Bern and Kosower to be applied, so that
gauge-invariant parts can be extracted diagram by diagram with the seagull vertex neglected.

PACS number(s): 11.15.Bt, 11.20.Dj

I. INTRODUCTION

Feynman diagram calculations for gauge theories are
always complicated because of the presence of spin and
gauge dependence. Spin brings in a derivative coupling or
Dirac algebra; gauge dependence introduces many gauge
noninvariant terms which will be canceled at the end. For
non-Abelian theories such as @CD the situation is even
worse, for there is the additional complication of color
algebra, as well as the presence of three- and four-gluon
vertices, and ghosts.

Two techniques have been developed in the past decade
to simplify gauge theory calculations for tree and one-
loop diagrams. The first is the senor-heticity technique
[1—21], which makes use of the fact that most fermions
can be treated as massless at high energies. Being mass-
less, chirality is conserved, a fact which can be exploited
efFectively to reduce the number of terms in a significant
manner. Even photons and gluons benefit from this con-
servation because a spin-one index can be written as a
pair of dotted and undotted spinor indices. Furthermore,
one may make use of the gauge freedom to choose the po-
larization vectors wisely to render many more terms zero.
Polarized amplitudes benefit enormously from this tech-
nique but even unpolarized cross sections for which this
technique was first invented are greatly simplified. This
technique, however, is applicable only when all the mo-
menta in the problem are linear combinations of massless
momenta. This is so for tree diagrams, but not true for
loop diagrams where ofI'-shell loop momenta are present
to ruin chirality conservation. Consequently most of the
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applications of this technique has been confined to tree
amplitudes [1—21].

This problem can be circumvented if the ofr-shell loop
momenta are integrated out before the spinor-helicity
technique is applied. One way of doing so is to make use
of the connection between a gauge theory and a super-
string theory in the infinite-tension limit [22—24]. There
is a known formula for a one-loop superstring amplitude
in which integrations are over the Koba-Nielsen variables
with internal momenta absent. This formula for a one-
loop multigluon (or multiphoton) amplitude can also be
derived from a first-quantized particle theory interacting
with a background gauge field [25], where the particle
in the theory is taken to be the one running around the
loop. The formula obtained in the Erst-quantized the-
ory is identical to the superstring formula presumably
because the particle theory used in this approach is also
reparametrization invariant.

Unfortunately, the generalization of either of these two
approaches beyond one loop, and to all possible scatter-
ing amplitudes, have not yet been worked out.

A difFerent method to avoid the ofF-shell momenta is
to introduce Feynman parameters to integrate them out
[26]. The spinor-helicity technique is then applicable in
the resulting Feynman-parameter representation, in any
process and to any number of loops [27].

The second technique developed in the last decade is
independent of the spinor-helicity technique, but works
very well in conjunction with it. It can perhaps be la-
beled as string reorganization [23]. For tree and certain
one-loop amplitudes when string formulas are available,
one finds that the individual terms of the string formula
in the infinite-tension limit are not identical to the terms
obtained from the standard Feynman rules, although the
sum of all the terms are necessarily the same for both.
Moreover, as a rule, the terms in the string formula are
organized in a much neater and a much simpler way, and
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this beautiful reorganization can greatly simplify calcu-
lations. Why the string is so clever is not completely
clear; it may have to do with the fact that it treats
spacetime and color on an equal footing. I shall refer
to field-theoretic formulas reorganized in the string way
as stringlike formulas

Because of its neatness and simplicity, and potential
simplifications achieved in actual calculations, it would
be desirable to develop stringlike formulas for all pro-
cesses in any number of loops. It is not a priori clear
that this can be done, and if so in what form the string-
like formulas would take, because we only know them for
some amplitudes and only to one-loop order. Fortunately
it turns out that in many cases the stringlike formula in
one loop is sufhcient of a guide for obtaining string re-
organization in many loops. For example, in tree and
one-loop QCD, the string [4,15—17] reorganizes the usual
color factors into the Chan-Paton factors [28], which have
the advantage of having the corresponding subamplitudes
gauge invariant and cyclic-permutation invariant. This
reorganization can be generalized to all loops and all am-
plitudes [27].

The background gauge emerges naturally from the one-
loop string calculations of QCD [23] and the first quan-
tized approach [25]. Its use simplifies the calculations
considerably in any number of loops as well, especially
when a large number of external gluon or photon lines
are present [27]. This again illustrates the superiority of
string reorganization.

There is yet another important feature in the one-
loop stringlike formula which is the main subject of
this paper. I shall refer to this feature as the gauge
characteristic, because it makes explicit the gauge-
transformation property and the Ward-Takahashi iden-
tity in the Feynman-parameter space. To see its signif-
icance take a momentum-space diagram in spinor QED
with some external photon lines. A gauge transforma-
tion of the polarization vector produces two additional
terms given by shrinking one of the two spinor propa-
gators to which this external photon is attached. It is
this local feature on which the Ward-Takahashi identity
depends. In Feynmcn-parameter space, this local feature
is lost, because rules governing Feynman-parameter am-
plitudes tend to involve the diagram globally as a whole
[26]. Nevertheless, when the amplitude is reorganized
into a stringlike formula, this local feature reappears once
again. The details will be discussed in Sec. III, but what
happens is that in this stringlike form, the additional
terms arising from the gauge transformation are propor-
tional to derivatives of the integrand with respect to some
Feynman parameters o.„.The surface terms obtained by
integrating these derivatives correspond to diagrams with
o.„setequal to zero, which is equivalent to shrinking and
short circuiting the corresponding propagators. In this
way the essential local feature of the momentum space
leading to the Ward-Takahashi identity is restored. This
is the gauge characteristic alluded to before.

This gauge characteristic of the stringlike formula has
been put to good use in the known one-loop stringlike
formulas [22—25]. To explain it let us define a diagram to
be a standard diagram when none of the external gauge-

particle lines are connected to the diagram either through
a seagull vertex (in scalar electrodynamics) or through a
four-gluon vertex (in QCD). All other diagrams will be
called seagull diagrams. Because of the presence of this
gauge characteristic in the standard diagrams, it is pos-
sible to perform integration by parts (IBP) in the Feyn-
rnan parameters. At least in simple cases, the gauge-
dependent surface terms together add up to cancel contri-
butions from the seagull diagrams [22—25]. If this is true
in general then we never have to worry about the surface
terms nor the seagull diagrams. This greatly simplifies
the calculation because there are many many seagull dia-
grams, and because in this way the gauge-invariant parts
can be extracted diagram by diagram after discarding the
surface terms from suitable IBP's.

This gauge clarity of the stringlike formula and the
resulting simplification from the IBP technique makes it
important to ask whether stringlike formulas can be writ-
ten for all loops and all processes. We shall leave non-
Abelian gauge theories aside for future considerations.
The purpose of this paper is to show that stringlike for-
mulas with the gauge characteristic can be written for
standard diagrams in QED, in the Feynman-parameter
representation to any number of loops and for all pro-
cesses, provided a technical restriction to be discussed in
Sec. III is obeyed.

In order to derive such multiloop formulas, consider-
able knowledge of the details of the Feynman-parameter
representation and the electric circuit analogy [26,29—32]
is needed. We therefore start out in Sec. II with a dis-
cussion of these topics. Some but not all of the formulas
appearing there are already contained in [26], but the im-
portant and subtle roles of external vertices and of level
dependence were not suKciently discussed before. Cur-
rents in an electric circuit are the important objects to
be considered in momentum-space amplitudes, and volt-
ages are the primary quantities to be dealt with in the
configuration-space amplitudes. The voltage at a vertex
corresponds to the position of that point in the config-
uration space. Translational invariance in configuration
space corresponds to the impossibility of determining the
absolute (rather than the relative) voltage levels, which
in turn is the cause of the level-dependence problem. Al-
though there is no direct relationship, it is however in-
teresting to note that in many ways level dependence in
an electric circuit is analogous to gauge dependence in a
gauge theory.

Together with the electric circuit analogy of a Feynman
diagram it is also known that there is a particle inter-
pretation of the same, which as we shall see comes very
close to being a multiloop generalization of the string ap-
proach of Bern and Kosower [22] and the first quantized
approach of Strassler [25]. This will also be discussed in
Sec. II.

One feature of the stringlike formula is that it treats
external vertices somewhat differently than the internal
vertices. This can be seen, for example, in the appear-
ance of the background gauge in QCD [23,25]. We shall
see in Sec. II that to some extent this is a general feature,
in that the topological structure of Feynman diagrams is
such that certain relations which hold for external ver-
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tices are no longer true for internal vertices.
The multiloop stringlike formula for scalar QED with

the gauge characteristic will be derived in Sec. III. A sim-
ilar formula for spinor QED will be discussed in Sec. IV.
An explicit two-loop example for a photon-meson Cornp-
ton scattering diagram is given in Sec. V to illustrate
some of these results.

A(a)= ) a
~

)
(s+ r 2

P(a, p)= A(a) ') a I () p)

/+1
J„(a,p)=+A(a) ' ) a, ' a

I () p),
r, (r)

(6)

(7)

II. FEYNMAN-PARAMETER
REPRESENTATION

Any E-loop scattering amplitude with N internal and
n external lines is given by a momentum-space integral

M(p) = (d4~ )
So(q)

Q„r{—q„+m„—ie)

M(p) =
(—16~~)' da„ i A(a)

5;=i )
x exp[ —iD(a r p)]S(J),

where the internal momenta q„areunderstood to be lin-
ear combinations of the external outgoing momenta p,
and the loop momenta k . An external momentum p,
will be assigned to every vertex i; this allows certain alge-
braic manipulations that would otherwise be impossible.
At the end of the calculation all artificially added p, will
be set equal to zero.

Vertex factors as well as numerators of spinning prop-
agators are incorporated into the "primitive spin factor"
Sp (q). We shall work in four dimensions but it is just as
easy to develop formulas for an arbitrary dimension. By
introducing the Feynman parameters o,„,the loop mo-
menta can be integrated out and a Feynman-parameter
representation of the amplitude can be obtained [26]:

and they mean the following. An 8-loop diagram can
be made into a connected tree diagram (a "1 tree") by
cutting E lines, and into a diagram with two disjoint trees
(a "2 tree") by cutting E+ 1 lines. A(a) is given by the
sum over the set T1 of all 1 trees so obtained, with the
summand consisting of the product of the n's of the cut
lines. P(a, p) is given by the sum over the set T2 of all 2
trees so obtained, with the summand being the product
of the n's of the cut lines, times the square of the sum of
all the external momenta p, attached to one of these two
trees. Finally, let T2(r) be the set of all 2 trees in which
line r is cut, and such that when the line r is inserted back
a 1 tree results. Then J„(ar p) is given by the sum of all
2 trees Tz(r) with the summand equal to the product a rs

of all the cut lines except the rth, times the sum of all the
external momenta p, attached to one of these two trees.
The sign 6 in (7) is determined by the orientation of J„.

We proceed now to describe the "modified spin factor"
S{J) in (2). It is made up of the sum of several terms,

S(J) = ) SA,.(J),
k&0

of which the first Sp(J) is just the numerator factor Sp(q)
in (1) with q replaced by J. The other terms Sp are ob-
tained from S0 by contracting k pairs of J's i.n all possible
ways according to the rule

J4'J, ~ g" H„,(a)—,
—

D(a, p) = ) a„m„—P(a, p),
and summing over all the contracted results. The formula
for the contraction function H„,is

N

P(a, p) = ) a„J2.

H„„(o()=—A(a) 'M, (a)/o)n„,
(10)

Equation (2) is written in the Schwinger proper-time for
malism, or the "Nambu representation. " One can recover
from it the "Chisholm representation" quoted in [27] by
making the substitution a„=cr„A,with P„err= 1, and
carrying out the integration over A.

To understand and to describe the quantities J, P, 4,
and S appearing in (2), it is useful to know that a Feyn-
man diagram can be thought of as a passive electric cir-
cuit [26,29—32], in which a„takes on the role of resistance
and p, become the currents Bowing out of the circuit. The
quantity J„is then the current Bowing through the rth
internal line, and P is the power consumed by the circuit.
Explicit formulas for these quantities are available [26],

H„,(a)= +A(a) ' ) (n,a, )
'

~

a ) (r g s),
T2 (rs) kt+r

where T2{rs) is the set of all 2 trees with both lines r
and s cut, and such that when either line r or line s is
inserted back a 1 tree results. The product of a's in (10)
are over all the cut lines except the rth and the sth. If
the lines r and s both point to the same tree, then the
sign in (10) is +1. If they point to diferent trees, then
the sign is —1.

For practical calculations, Eq. (2) may not be the best
to use because the contractions leading up to Sr, (J) are
relatively complicated to compute. It may often be sim-
pler to use the alternate formula [26]



C. S. LAM
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be the voltage drop across the resistor r. The current
flowing through that line is

J„=p„v„.
Combining (16)—{18)one gets

T(q) = ) TI,(q), (12)

wltll To(q) = So(q), and other T~(q) obtained from To(q)
by contracting k pairs of q's according to the rule

q,"q, p.~-e-"
2

(13)

and summing over all possible contractions. The quantity
P, is the conductance of the line r:

where the function T(q) is obtained from the function
So{q) by the formula

p = —(APA') V—:—Y'V, (19)

P= —Vp= VYV. (20)

The absolute level of the voltages V, are of course never
determined; they can all be shifted by a common constant
without changing any physical attribute. This is reflected
in (19) by the fact that

where p, V are n-dimensional vectors with components p,
and V, , respectively, A is the n x N matrix with matrix
elements A,„,and p = n i is a diagonal N x N matrix
with diagonal matrix elements P„=n„.The power
consumed by the network is then

(14)

The contraction rule (13) is far simpler than the con-
traction rule (9). For example, if each q„does not ap-
pear more than once in So(q), then no contraction ac-
cording to (13) is possible because of the 6„factor, so
T(q) = So(q), whereas this is not the case according to
(9) and S(J) g So(J).

In (11), the argument q„in T(q) is replaced by the
operator

d„=——) A,„P„,2, S"

where A,
„

is t;he incidence matrix of the graph, defined
to be +1 if line r points into the vertex i, —1 if the line
points out of the vertex, and 0 if line r is not connected
to the vertex i. Momentum conservation at each vertex
can be expressed with the help of this matrix to be

which follows algebraically from Q, A,„=0. Being a
symmetric matrix we must also have g,. Y~~

——0, and
in (19) this simply expresses conservation of the exter-
nal currents. The matrix Y is singular, so (19) cannot
be inverted to obtain V as a function of p, in agreement
with the fact that the absolute level of V cannot be de-
terrnined. This level dependence is analogous to a gauge
dependence. It is unphysical, it complicates matter, but
often we have no choice but to fix a level scheme (analo-
gous to fixing a gauge) to carry out explicit calculations.
For example, we must fix a level scheme before the inver-
sion of (19) can be carried out.

In order to invert (19) let us fix a level scheme by
choosing V„=0. We shall use a subscript 0 to denote
the remaining (n —1)-dimensional quantities. Then (19)
can be inverted to give

p; =) A;„J„. (16) o = +o Po = oP
—1 (22)

If line r points from vertex i to vertex j, then we shall
also write it as r = (ij). In that case (15) simply says
that each q(,~l should be replaced by (—i/2) p(,~~ [8/Bp, —
0/Bp, ].

Let us now look deeper into the various circuit quan-
tities and their relationships. Some of the relations de-
scribed below already appeared in [26], but the external-
vertex relations and the level-dependent relations have
not. It is important to understand these formulas, espe-
cially the subtle role of level dependence, for they will
be needed in deriving the multiloop stringlike formulas
in Sec. III.

Let V~ be the voltage at vertex i, and

v„=v(,~)
= V, —

V~ = —) A,„V~

Incorporating V„=0 we can enlarge this (n —1)-
dimensional relationship into the n-dimensional relation-
ship

V= —Z'p, (23)

zs
i

0

q 0 0 (24)

(25)

We shall refer to this level scheme as the primitive level
scheme. The chief advantage of this scheme is that an
explicit formula for Z' is available, via Eqs. (24), (22),
and (19).

The impedance matrix Z' is a level-dependent quan-
tity. Because of p conservation, a change
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for any a, simply changes the overall level of V, by an
amount —P.ajpj but it does not change the physical
attributes of the network. This level change is analogous
to a gauge transformation. Physically measurable quan-
tities such as the current J„and the power P must be
level independent. In fact, from (17)—(25),

J= —pA'V = pA'Z'p = pA'Zp,

S = -VI = IZ'I = I Z~ = J~J,
and their level independence follows easily from

(26)

(27)

) p, =) A,„=o. (28)

The variation of these level-independent quantities
with respect to a change of o. is most easily calculated in
the V„=0 level scheme. Using (19) and (22)—(24) one
gets

BP OZ'.= p, p=(pZ'AP). (PA'Z'p). = J.',
BJ„

P,S„,J, —+ [PA'Z'AP]„,(PA'Z'p),

(29)

in which we have used the definition of H„,(n):

H(n)= G(n) —P,
G„,= [PA'ZAP]„,

=
pampa (ZiA; —Zj k

—Zil + Zjl)

(31)

(32)

J„"J, — ([PA'ZAP]„,g"—" —P„6„,g" )

= J„"J, — H„g",(33)—

in agreement with (8) and (9). The equivalence for a
more complicated So(q) can be seen similarly.

One might think that only level-independent quanti-
ties need be considered in the Feynman-parameter rep-
resentation. Indeed both (2) and (ll) contain only level-
independent quantities. This of course does not mean
that certain calculations cannot be carried out more eas-
ily in one level scheme than another. 1n fact, as we shall
see later, the gauge characteristic mentioned in the Intro-

for r = (ij) and s = (kl). The level independence of
(29)—(32) can be easily checked using (28). Note that it
is this same quantity H„,that appeared in (9) and (10)

Equations (26), (27), (31), and (32) allow us to see
directly why (2) and (ll) are equivalent. To that end,
first notice that the only quantity in the scalar integral
in (ll) depending on p is P(a, p). A single operator (15)
operating on exp(iP) then brings down (pZAP)„= J„,
which corresponds to the replacement q„—+ J„used in

(2). If So(q) = q„"q,, then T(d) = d„"d," + (i/„/2)6'„,g"",
so operating on exp(iP), T(d) brings down

duction is borne out only in the particular level scheme
described below.

By using the level freedom (25) one can choose a, so
that

Z, , =0 Vi. (34)

It is in this zero diag-onal level scheme that the gauge
characteristic emerges. It is also in this scheme that the
impedance matrix element Z,~ can be computed most
easily using a graphical rule. This rule can be derived
from the rule (6) for P, using (27) and (34). If we re-
place (g p) in (6) by —(Pp)( p), where the two sums
are, respectively, sums of outgoing momenta attached to
the two disjoint trees, then clearly there are no p2 terms
contributing to (6), and the corresponding level scheme
is therefore given by (34). The graphical rule in the zero-
diagonal scheme is therefore

/+i
Z,, = ——)

T'2
2

a (i g2), (35)

Pa = ~a ~ —~a (36)

We shaH see that external vertices possess special prop-
erties not shared by the internal vertices.

where the sum is over the set of all 2 trees Tz~ in which
the vertices i and j lie in two difFerent trees.

The zero-diagonal level scheme of (34) treats all indices
symmetrically, whereas the primitive level scheme of (24)
does not, though the latter has the simplicity of eliminat-
ing an irrelevant degree of freedom in a simple manner.
In these respects the two level schemes are, respectively,
analogous to the covariant and physical gauges in elec-
trodynamics, in that the former is manifestly covariant
and the latter contains no longitudinal photons.

We will now derive three level depende-nt mlations
[Eqs. (43), (47), and (48) below], which will be the ba-
sis of the stringlike formulas of Secs. III and IV. In this
regard it is important to note that due to external mo-
mentum conservation, neither J„norP is a unique func-
tion of the n variables p, , so the derivatives OP/Op, and
8J„/Bp;,treating each of the n variables p, as indepen-
dent, is not uniquely defined. However, as can be seen
in (26) and (27), this ambiguity is related to the level
dependence of Z. Once a level scheme is defined, such
derivatives become meaningful, though the results are ob-
viously level dependent. Nevertheless, the combination
of the derivatives in (15) is still level independent.

We shall call a vertex with tvio internal lines (and any
number of external lines) an external vertex, and any ver-
tex with more than two internal lines an internal vertex.
This terminology is unfortunately somewhat misleading
because internal vertices can contain external lines as
well. At an external vertex a we will make the conven-
tion that one of the two internal lines points into the
vertex (A« ——+1), and the other points out of the ver-
tex (A~„=—1). The line upstream of the vertex (with
A „=+1) will also be labeled as line a", and the hne
downstream of the vertex will be labeled as line a'. Cur-
rent conservation at that verte~ then takes the form
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For each external vertex a, define the operator for every possible p, subject of course only to the restric-
tion P, p, = 0. This means that

6B.= —) A.
„ 00.'r r

+
00'g, ~ i' Bo,'~ ~

(37) J +J = —2B!!)Z p
2

B A(o, ) = B H„,= B Z,, = 0 (38)

An important property of an external vertex a is that
A(n), Z,j, and H„,depend on a only through the corn-
bination u + a. ~, provided i g a g j and A „=A, =
0, as can be seen from the graphical rules (5), (10), and
(35). As a consequence,

28 V
—2) Z jpj =2V

2

(43)

For an external vertex a, it is also useful to define the
operator

provided i g a g j and A~„=A~, = 0.
Suppose a is an external vertex and s any internal line.

Then it follows from (10) that

0
B(p )~

Then it is clear from (43} that we can also write

(44)

Has =Ha s (39) J +J = —DP.

Alternatively, using (28) and (38) one gets

(4o)

To see that suppose first that lines a', a", 8 are all differ-
ent. Then the claim follows because there is a one-to-one
correspondence between 2 trees t2(a' s) and t2(a"s): in-
stead of cutting line a' to form a 2 tree, just cut line
a". Note that lines a' and a" belong to the same loop
so they cannot be cut simultaneously either in t2(a' s)
or in t2(a"s). With this one-to-one correspondence, the
equality in (39) follows because AH, does not contain
n and AH, does not contain o. No.w suppose
lines a' and 8 are the same. Then we must show that
H = H . Since AH = —M, /Bo, the terms
in 6 linear in n is —a~ H~ . We shall now show
that it is also given by —o;~ H~ ~, thereby showing that
H ~ = H~ . To do so, consider any 2 tree tq(a"a')
used to compute H . Since lines a' and a" are now
adjacent to each other, one of the two trees in tq(a"a')
simply consists of the vertex a, and the other is a tree
obtained from the original diagram with the vertex a re-
moved. There is a one-to-one correspondence between
such a tree and a 1 tree of the original diagram when line
a' is cut. Hence the term of 6 linear in o. is nHO, —
This completes the proof of (39).

Equations (38) and (39) are special features of the ex-
ternal vertices not generally shared by internal vertices.
We shall refer to them as external-vertex relations.

If a, 6 are external vertices, then 6 P can be computed
from (29) and (36) to be

B.P = —) A.„J„'= —J.'„+J.', = —p.(J.- + J. ) .

Next, employ (29) and (30) to compute B BbP:

B BbP = 2) A „Ab,J„H„,J, .
P, S

Since a, 6 are external vertices, (40) is true, so using (36)
and (39) we get

Bg B Pb= 2popbHQ, 'b~

Suppose a g b Then a. n alternative calculation is to use
(38):

BaBbP = BaBb ) pi Zijpj !

——2papbBaBb(Z~b) .

Again these two expressions must be equal for all mo-
mentum configurations, so

H b g" = B Bb(Z b)g" = 2D"DbP—:Z bg",

(a g b), (47)

where (38) has again been used to obtain the last equal-
ity. I"or a = 6, (47) is no longer valid. Instead, (39)
can be used to relate H to H, which can then be
calculated using (47).

There is one more relation for an external vertex a
which we need,

p. J.„+J., + 2B. ) Z.,p, =0

(
BGP = Ba ) piZij pj 2paBu ' ) Zaj pj

)
Equating (40) and (41) one concludes that

(41)

(42)

D"J, = H„,g" (A, =0—),
which is true for r = a' or r = a", and for a' g s g a".
To prove it, consider a situation where the primitive spin
factor is Sc(J) = —(J + J )"J, . The modified spin
factor S(J) is, according to (9) and (39), given by S(J) =
So(J)+iH„,g" . On the other hand, using (ll}—(15), and
the assumption that a' g s g a", S(J) is also given by
exp( —iP)SO(d) exp(iP). Using (45), this becomes
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i e—xp( i—P)d,"D" exp(i P)

i—exp( —iP)D"J, exp(iP),

which is equal to i—(DI"J,")—(J~ +J )"J,". Comparing
these two ways of obtaining S(J), (48) follows.

As it stands, (48) is not true when s = a' or a". For
example, using the explicit example to be considered in
Sec. V, one can show explicitly that when a = 1 and
s = 2, only half of the right-hand side (RHS) of (48) is
obtained from the left-hand side (LHS).

It is this lack of universal validity of (48) that restricts
the validity of the stringlike formula, as we shall see in
the next section.

Because of the importance of this restriction it should
also be pointed out that there is a false derivation of (48)
which makes it appear to be valid for alt a and s. The
false argument follows from (30), (36), (37), (39), and
(44). It is false because strangely enough, (36) is not
a valid equation for the present application, where D
and hence derivative of external momenta are involved.
Equation (36) is of course valid in the physical case when
external momentum conservation (28) is used. On the
other hand, since the operation involving D is level de-
pendent, we must not use this conservation law before
the momentum differentiation. In that case the RHS of
(36) could be equal to, say, —pb+ pb, which is not at all

the same thing as the LHS of (36) as far as momentum
difFerentiation is concerned. The correct way to check
the validity of (36) is to compute the RHS of (36) using
(26), sticking to whatever level scheme one is using and
refraining from ever using external mornenturn conserva-
tion before the momentum differentiation. Without using
momentum conservation, the currents J is no longer level
independent; hence, the outcome of the right-hand side
(RHS) of (36) depends on the level scheme one uses. In

n

(2~r) i'M(p)b ) p,

d x, exp i ) p, x, M'(x), (49)

M'(2;) = ~o( i B/By) 4—+(y„), (50)

where the scalar propagator is given by

1
&+(y.)=

(2 )4

1
16+2

1

16vr2

exp[iq„y„]
m~ —

g~
—zE

m z
dP, exp i " + ——P,y„

r
dO!7

2
—exp

A
(51)

Hence

this way one can show by explicit examples that (36) is
generally invalid in the zero-diagonal level scheme. This
observation once again shows the subtlety of the level
dependence problem.

I et us turn to amplitudes in the configuration space.
Since field theories are local in x, interactions should look
simpler in the x space than in the p space. For con-
ceptual reasons it is therefore worthwhile to look at the
expressions in the x space, although in practical calcula-
tions we must return to the momentum space. Fourier-
transforming the momentum-space amplitude (1), we get

M'(z) =
i

o

N

P = —) P„y„.
r=1

dP„~So
~

/3„y, exp —i) a„m„+iP—
(52)

For a concrete example see Eq. (70) below. In (50) and
(52) we must substitute y„=x, x~ for an r = (ij—) and as
usual, P„=1/o.„.In the electric circuit analogy, x, /2 is
really the potential U, at vertex i, so y„/2 is the potential
drop v„across resistance r [26,29—32]. P is again equal
to the power consumed by the network. One can also
obtain similar formulas and interpretations when some
of the x, 's are integrated over. For details, see [26].

A Feynman diagram can also be given a different inter-
pretation [26,29—32] as a maze in which a particle moves
in. The off-shell four-momentum of the particle along an
internal line r' is J&; the four-distance it travels along r is
y„"= 2:,"—x~, and this is accomplished in an amount of

"proper time" equal to 2m'„.Incidentally, it is perhaps
more appropriate to think of the object traveling around
the maze as a quantum mechanical wave rather than a
classical particle because it is ofF shell, and because it
is easier to think of a wave splitting and recombining at
vertex junctions than a classical particle. In this interpre-
tation, the integrand in the last expression of (51) is es-
sentially the overlap matrix element (x,r, ~x~ r~) under the
Hamiltonian m(x(r) + 1)/2 where r = r, —

w~ = 2ma,
„

is the proper time elapsed.
This interpretation exists for all diagrams and it can

perhaps be thought of as the basis for a multiloop gen-
eralization of the string approach [22—24] and the first
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quantized approach [25] ~ There is however a fundamen-
tal difference between a string propagation on a multi-
genus world sheet and this particle propagating in the
Feynman-diagram maze. The former satisfies the wave
equation everywhere on the world sheet, whereas the lat-
ter can be described by free-particle equations of motion
only between vertices. Vertices are singularities where
interactions take place, where free-particle equations of
motion break down. No such singularities are present on
the world sheet on account of the string's conformal in-
variance [33], but this conformal invariance is lost in the
infinite-tension limit when the world sheet collapses into
a network of world lines because the o variable along the
string disappears. Reparametrization invariance in the
~ variable can however still be kept as is done in [25],
thereby preserving the string characters and the string-
like formulas. As a result of the difference, although a
string amplitude can be written as a path integral of a
free string over multigenus world sheets, a free-particle
path integral no longer exists for Feynman diagrams with
internal vertices, unless their associated singularities and
interactions can somehow be incorporated, as is done in
the Feynman-parameter representation.

III. SCALAR @ED

There are two kinds of electromagnetic vertices in
scalar electrodynamics: the cubic vertex of Fig. 1,

q. ,

FIG. 1. The cubic electromagnetic vertex in scalar @ED.

&~ = «~(a- + ~~')

and the quartic (seagull) vertex of Fig. 2,

2
Qg = 2e Egsg+1 )

with e~ being the polarization vector for the jth photon.
We are interested in finding a stringlike formula for stan-
dard diagrams, which by definition are diagrams without
seagull vertices.

Figure 3 represents a one-loop n-photon standard dia-
gram. All other one-loop standard diagrams are obtained
from it by permuting the external photon lines. The am-
plitude for Fig. 3 can be derived from the first quantized
approach [23,25] to be

M(p) =—
n

(;=i )
~ ~ ~ ~ ~

exp( im t lexpi+—i) p,p&G& —(E,p~ —Eip, )G~+E, q, i) (55)

This formula resembles a formula erst obtained by Bern
and Kosower [22] from string theory for QCD so it shall
be referred to as a springlik formula. The integration
region in (55) is

6].) 62) ~ ~ ~ ) 6~

ri~ld~2 ' ' d~nf(81~ii ~2~2i i enon) (57)

O ( gi & g2 (56) The function G&' and its derivatives are functions of t,i

the notation (f(ei, e2, . . . , s„))means that only terms
multilinear in all the s, 's in f should be kept. In other
words, if L9, are Grassmann variables,

p L p3

FIG. 2. The seagull electromagnetic verte~ in scala~ @ED

FIG. 3. A one-loop n-photon amplitude with outgoing ex-
ternal momenta p; . n = 6 is shown in the diagram. The
numbers around the loop label the internal lines.



48 MULTILOOP STRINGLIKE FORMULAS FOR QED 88I

whose explicit expressions for i & j are

t;,(t„+t,,)/t„,
BG'~~ = (t„+2t,,)/t„,Bt,
B2GU

Bt,,
~ = 2/t„.

(59)

(60)

One can also add in 6 functions to simulate the seagull
vertex contributions [251 but we shall not do that here.

What is crucial in this formula is that the various terms
appearing in the exponent between square brackets are
all given by the functions |& and their derivatives. It
is this gauge characteristic that allows the integration by
parts (IBP) technique discussed in the Introduction to
be carried out. We shall come back to a discussion of the
gauge characteristic after we derive the multiloop string-
like formula in scalar @ED that exhibits this feature.

As we shall see below, a stringlike formula with the
gauge characteristic exists for any process to any num-
ber of loops, provided the following technical restriction
is obeyed. The formula turns out to look very similar to
(55) when no derivative couplings are present, i.e. , when
there are no internal photon lines and when the "strong
interaction" between scalar particles contains no deriva-
tive couplings. In the more general situation, a stringlike
formula with the gauge characteristic still exists, but it
looks a bit more complicated. See Eqs. (62) and (76).

Derivative couplings are present in electromagnetic cu-
bic vertices (53), and perhaps in the strong interactions
between the scalar particles. All of them contribute to
the primitive spin factor So(q) in Eq. (1). The technical
restriction mentioned above is imposed so that Eq. (48)
can be used. As we shall see below, this means that if a
is an external vertex, then So(q) should not contain any
q~ or q~- other than those in C~ of (53). The notation
is that used in Sec. II: a" and a' are, respectively, the
lines pointing into and out of the external vertex a. This
restriction means, for example, that if there are internal
photon propagators, then these internal vertices should
not be adjacent to an external vertex for the following
reason.

Equation (48) is used to replace the contraction func-
tion H„,in (9) by difFerentiation D, thereby reducing
the modified spin factor S(J) of (8) into factorized and
simplified forms shown in Eqs. (55), (62), and (76). The
restriction A, = 0 in (48) means that when an external
photon line is adjacent to an internal photon line, the
current contractions associated with these external and
internal photon vertices are not given completely by Di'.
An additional term will be necessary in (76) for correc-

tion. The precise form of the primitive spin factor So(q),
which is determined by the structure of the internal pho-
ton vertices, will play an important role in understanding
how to deal with graphs that do not obey the technical
restriction. Before discovering how this is done, (76),
subject to the technical restriction mentioned above, is
the best formula one can hope to obtain. Note however
that this restriction does not wipe off all the diagrams
with internal photon lines. For example, a four-loop pho-
ton self-energy diagram obtained by inserting an H into
the simple one-loop diagram, where the horizontal bar
of the H is taken to be an internal photon line and the
rest of letter H are charged meson lines, is a diagram
with an internal photon line which satisfies this technical
restriction.

To obtain a stringlike formula for multiloops, it is nec-
essary to find out first what is the generalization of G&~.
By comparing the terms quadratic in p in the exponents
of (55) with (2) and (27), it is clear that if anything works
G&~ has to be Z,~/2. However, this alone does not tell
us in what level scheme should Z,~ be expressed so as
to capture the gauge characteristic. Before we solve this
problem there is however a second problem that needs to
be considered.

In one loop, 0& is a function of the "time" difference
t,z

——t, —t~. Time is connected to the Feynman param-
eters of Fig. 3 by

t, =) og.
k=1

(61)

For multiloop diagrams, Z;~ is a rather complicated func-
tion Qf Q,' and it is impossible in general to define a time
parameter t, so that Z,~ is a function only of t, —t~. This
is related to the fact that the particle in the more general
diagram has to split and recombine. Given that, the next
important question to solve for multiloops is to determine
what should replace the time derivatives in (59) and (60).
It turns out that the time derivative B/Bt~ should in the
general case be replaced by B defined in (37), and in so
doing the gauge characteristic will be preserved provided
that Z ~ is expressed in the zero-diagonal level scheme of
(34).

We shall use the indices a, b to denote cubic electro-
magnetic vertices (53) with an external photon line, and
the indices i, j to label all the vertices. Note that a, b are
external vertices in the sense of Sec. II, viz. , two inter-
nal lines are connected to each of them. In the simpler
case when internal photon lines and derivative couplings
between the scalar particles are absent, the multiloop
stringlike formula for any multiloop standard diagram is

M(p) = iN —nen

(—16m2)'

N

da„~A(o.) So'
I;=i

N

x exp &
—i o.„m„

r=l

~ ~+i ) p,p~Z;~ —2i ) e~p~Z~~ + x ) e~ebZ~b &

Qig a, b

(62)
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where

Zaj = OaZaj
~ ~

Zab = OaObZub e (63)

with Z,, = 0 and O defined in (37). A similar but
slightly more complicated formula [(76) below] exists
when derivative couplings are present, as long as the tech-
nical restriction mentioned earlier is obeyed.

We will proceed now to demonstrate (62). The prim-
itive spin factor So(J) for any standard diagram is now
given by So (J) = So(J)So', where

S(J) exp(iP) = (—ie)" (exp —) e,D,

x S(')' exp(iP), (68)

Substituting this into (2) we obtain the stringlike formula
(62).

The string formula (62) can be simplified by noting
that

S(')(J) = C [ee (J +J )] P=) pZ, ,p, , (69)

= (—ie)" (exp i ) e, (Z, + Z, )
a

(64)

is the primitive spin factor for the external cubic electro-
magnetic vertices, and So' is the momentum-independent
vertex factors of the rest. Using (43) this becomes

where D is defined in (44).
From the discussions at the end of Sec. II, one expects

the amplitude to be particularly simple when expressed
in the configuration space. Indeed, using (69) and the
definition of the configuration-space amplitude (49), one
gets

S(((J) = ( ie)" (exp — 2i) pe, Z„)—
a,j

(65)
N

M'(x) = (
—ie)" (exp i ) e,—p,z, 6+(2„).

+a+b ~ 2&e &afbHab = —2ie &a&b~ab ~ (66)

Then (8) is used to sum up all the contractions, giving

S(J) = ( ie)"Se'(exp i—) ] 2piZ, ie]—
Gig

To compute the modified spin factor S(J), the contrac-
tion rule (9) is first used to compute the contraction of
a pair of electromagnetic vertices. After using (47) this
becomes

(70)

The stringlike formula (62) exhibits a simple gauge
transformation property, which is probably the reason
why it is inherently important. This is the gauge charac-
teristic we have been talking about. This gauge property
is particularly transparent when (62) is written in the
form of (68), for then a gauge transformation

a+ pe~a

+i ) [e ebZ, b]

a, b

(67) simply brings on the following change of the integrand of
(2):

(—ie)" exp —) e D
~

4 So' exp( —iD)
a

(—ie)" exp
]

—) (e, + i,p )D )
4 Se'exp( iD)—

(72)

(73)

Note that the first equation in (38) has been used, and
we have also used the fact that lines a' and a" have the
same mass. Since the gauge parameters A are multi-
plied by the derivatives O~ = O/On —O/On, they
appear only in surface terms corresponding to diagrams
with o. or o, short circuited. It is these surface terms
that connect the permuted standard diagrams and the
seagull diagrams to enable gauge-dependent terms to be

canceled out at the end. In this way the stringlike for-
mula makes the Ward-Takahashi identity in Feynman-
parameter space almost explicit as the one seen in mo-
mentum space, and it is also this same gauge character-
istic which enables the IBP technique to be applied.

We turn now to the general case where internal photon
lines and "strong interaction" with derivative couplings
are allowed to be present in the standard diagram, pro-
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vided the technical restriction mentioned earlier is met.
The primitive spin factor is then given by

hence we obtain a relation similar to (68), which now
reads

So(J) = St(~)SO'(~) (74) S(/) exp(iP)

where S0(J) is the contribution from the external elec-
tromagnetic vertices which is given by (64), and S0'(2)
is the contribution from the rest of the vertex factors
which is now momentum dependent. The modified spin
factor S(J) is obtained from (74) by binary contractions
with the rule of (9). When the technical restriction is
met, contractions with the currents at an external vertex.
a may be accomplished by the operator D as in (48),

= (—ie)" exp —) e,D S"(J)exp(iP), (75)

where S"(J) is the modified spin factor corresponding to
the primitive spin factor S0'(J) of (74). Substituting this
into (2), we finally obtain the stringlike formula in the
general case to be

iN-"e"
M(p) =

oo (iv

&'='i

N

dn„exp —) e~D A(a.) S"(J)exp i ) n„m„—+ i ) p,p, Z,,
a r=1

(76)

Again, the first equality of (38) as well as the fact elec-
tromagnetic interaction is diagonal in mass have been
used. The gauge transformation property of this is simi-
lar to (73). Note that exp[—P e D~] as defined in (44)
is a translation operator shifting momentum p by an
amount —a~0 . If we carry out this momentum shift
in (76), the exponential will return to the form (62),
but the momenta p implicitly contained in S"(2) must
be so shifted as well, and this shiR contains the gauge-
dependent quantity e . We prefer not to write it in this
shifted form for it makes the gauge transformation prop-
erty more obscure.

where

I= ([m+ @ —ip(0 —ieA)][m+ P+ip(0 —ieA)])

= f(m + P) —ip(0$) + (0 —ieA) — cr" Il„)—

= (m'+ 0') ' ) [(C+ Q + S+ M,
n,=O

+M +M)(m +0) ]" (78)

IV'. SPINOFF +ED

In spinor electrodynamics, an n-photon one-loop am-
plitude has a stringlike formula given in [23,25]. To ob-
tain its multiloop generalization, a Gordon decomposi-
tion has to be made to separate the current into a con-
vective part and a spin part.

Consider a fermion propagating in the presence of a
background electromagnetic potential A"(x) and a back-
ground neutral scalar field P(2:). Depending on what is
required, we can later on replace the background A"(x)
by a polarization vector or one end of an internal photon
propagator, and the background P(x) by an external or
internal "neutral scalar meson" coupled to the fermion
by strong interaction. For definiteness we shall assume a
Yukawa coupling for the strong interaction, but this point
is not crucial for the following discussion. The fermion
propagator is [m —ip(0 —ieA) + P] 6 (x —y); perturba-
tion series are obtained by expanding this in power series
of A and P. Gordon decomposition is accomplished by
noting that

[m+ P —ip(0 —ieA)] = [m+ P+ ip(0 —ieA)]I, (77)

Ml ——

M2 ——

Mg ——

2h'" V"]

ie(0A+ A0),
e A
e—o. F„,
—2m/,

p2

ip(0$) .

(79)

C and Q are just the cubic and the seagull electromag-
netic vertices for a scalar particle. They give rise to the
convective part of the current. On top of these, there is
the spin vertex 8 which gives rise to the magnetic mo-
ment of the fermion. The vertices M, are strong interac-
tion vertices between the fermion and the neutral scalar
meson. Note that M3 is both momentum and spin de-
pendent.

In a scattering diagram, a fermion propagator can end
in two external fermions, in which case the relevant factor
ls
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1-=
u(m —ipse)[m —ip(0 —ieA) + p] (m —ipB)u = 6) [(C+q+ S+ M1 + M2+ M3)(m + 0 ) ] (m + 8 )u,2m n=0

or with the wave functions u, u replaced by v, e. Otherwise, it can close on itself in a loop, in which case the proper
factor is

ln(det[m —ip(0 —ieA) + p]) =
2 in(det[I]} = —Tr ln 1+) (C+Q+ S+ M1+ M2+ M3)(m + 8 )

n=1

(81)

A constant irrelevant normalization factor has been
dropped in the last expression. In other words, other
than signs associated with statistics, the electromagnetic
interaction of spinor QED differs from that of scalar QED
only in having the extra vertex S.

The rest of the discussion is identical to the scalar case,
leading up to the stringlike equation (76) for standard
diagrams, where S"(J) is now the modiFied spin factor
for the vertices S, M, , and the internal C's. The technical
restriction mentioned in Sec. III is automatically fulfilled
for the derivatively coupled vertex M3 because it depends
only on the momentum of the neutral meson but not of
the fermions.

To establish contact with the formula in [22—25] let us
specialize to a one-fermion-loop n-photon amplitude in
the absence of all strong interactions. Then

V'. AN EXAMPLE

To illustrate some of the circuit quantities and relations
let us consider the two-loop Compton amplitude of Fig.
4. The dashed lines are photons and the solid lines are
charged scalar mesons. The external vertices are a =
1,3, and the "internal" vertices are j = 2, 4. Using (35)
one obtains the impedance matrix in the zero-diagonal
scheme to be

(i'll

+ ~2) (O'3 + I14) + &5(O'1 + O'2 + ~3 + O'4)

S"(J)= S, = tr [ ieo~ e,"p,]-
C C

(82)

The trace of a product of 2m p matrices is given by 4
times the sum of all signed contractions, with each signed
contraction given by a product of m factors of (+g~I3)'s,
corresponding to the contraction of ( p . pi1 ). Us-
ing this rule it is easy to compute the trace

2I-IZ12 —~2[(~3 + I14)(~1 + i15) + ~li15] )

2I-1Z13= (~1&2~3 + ~lo'2I14 + o'lo'3~14 + ~2i13~4)
+n5 (n1 + n4) (o,2 + ns),

2+Z14= o'1 [(o'3 + o'4) (I12 + ~15) + o'2o'5] )

26Z23 —Cks [(n1 + n2) (n4 + n5) + n4a5],
—26Z24= n5(o. 1 + n2) (n3 + cR4) )

—26Z34= &4[(n1 + a2) (os + n5) + usa 5] .

(86)

1 2&™
tr [(cia.p1) (e a p )]

Prom these and definition (37) one can compute the var-
ious derivatives Z ~

= ct Z ~ and Z 5 = I9 05Z 5 to be

as follows. Take any permutation t E P~ of m objects
and express it into cycles: t = (tit2 tA, )( ) . . Then
(83) is given by

ni [(e„ui,)(«,p..)( )(«,pi, )] [ ] (84)

summed over all permutations t E P, and summed over
all possible interchanges between every pair

g& is the signature of the permutation, being +1 for even
and jor odd permutations, and a minus sign is to be as-
sociated with each interchange (85).

It is these terms in (85) that give rise to the functions
G) and their associated rules in the formula of [22—25].

FIG. 4. A two-loop Compton scattering amplitude in scalar
@ED.The p, are the external outgoing momenta, and the five
internal lines are numbered as shown.
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—2AZ&2 = (a2 —n&)(cps + ~4)

+o's( —~]. + ~2 —~s —o'4) ~

—2AZgs —(cx2 cr] ) (as + cr4)

+o.'s( —cry + ~2 —o's —~4) ~

—2AZ~4 = (n2 —o.g)(~s + o'4)

+ns( —nq + n2 + o'.s + ~4),

—2AZsg

—2LZ3g
—26Zs4

e ~—2AZgs

(~4 ~s)(~~ + ~2) + cps(~i —~2 mrs + o'4)

(87)

(~4 ~s)(~1 + ~2) + ~s(~1 + cr2 crs + ~4)

(c 4 —c s) (o i + c 2)

+~5( o'1 o'2 ops + ~4))
2&5

Note that the one-loop n-photon relationship Z]3
Zsg is no longer valid.
These are all the quantities needed in the stringlike

formula (62). The stringlike formula is obtained by using
the external-vertex formulas (38) and (39), as well as
the level-dependent relations (43), (47), and (48). Let
us look into the explict form of these relations for the
external vertex a = 1 in the present example. For a = 1
we see from Fig. 4 that a' = 1 and a" = 2, so Bq =
cl/Bnq —8/Bo;2 The . quantities relevant to the level-
dependent relations are

A(Jg+ J2) = 2'
+ +

+~s [(~s + ~4) (p4 —p2)
+(~s ~4)ps]

&(Di JF) = &(Di J.") = 2(~s+ ~4+ ~s)g""

2 LH11g
= —2AHg2g"

a(D,' J,") = z (IJ",J;) = ~.g"
AHg—sg""
AH] 4g — AZgsg

A(D", Js) = (ns+c14)g" = AH—qsg"" .

Consequently (43) and (47) are valid, as they should be,
and (48) is true when a' g s g a", but is not true when
s = a' or a". In the latter cases an extra factor of

&

appears. From (86) and (88) it is also easy to check ex-
plicitly the external-vertex relations (38) to be correct.
We have not written down Hp„but they can be calcu-
lated explicitly to see that (39) is indeed valid.
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