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Estimating perturbative coefBcients in quantum field theory using Pade approximants
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We show how one can accelerate the convergence of a perturbation series by using Fade approxi-
mants. We use the first few coeKcients of each perturbation series to predict the next term. We first
check our method for known results and then predict the value of, as yet, unknown terms. Our results
for a„a„—a„a„,R „and the QCD P function are remarkably good.

PACS number(s): 11.15.8t, 02.60.Cb, 12.20.Ds, 12.38.Bx

It has long been a hope in perturbative quantum 6eld
theory, first expressed by Feynman, to be able to esti-
mate, in a given order, the result for the coeScient,
without the brute force evaluation of all of the Feynman
diagrams contributing in this order. As one goes to
higher and higher order, the number of diagrams, and the
complexity of each, increases very rapidly. Feynman sug-
gested that even a way of determining the sign of the con-
tribution would be useful.

An attempt to do this in the case of e+e annihilation
to hadrons for the quantity

Qp+0 )x + ' +Q~x
[n, m]=

1+b x+ +b x

to the series

(2)

In this paper we first outline our method and then ap-
ply it to some known series to illustrate how it works.
Then we will apply it to several perturbation series in
quantum electrodynamics (QED) and quantum chromo-
dynamics (QCD).

We begin by defining the Pade approximant (type I)

o „,(e+e ~hadrons)
tr(e+e —+p+ls )

S=S +S x+ . +S„+
where we set

(3)

was made recently by West [1]. Although this method
worked well for Xf =5, where Xf is the number of fer-
mions (quarks), it failed [2] for other values of Nf. He is
now attempting to calculate corrections to his result [3].

[n, m]=S+O(x"+ +') . (4)

We have written a computer program which solves Eq.
(4) and then predicts the coefficient of the next term,

TABLE I. This table illustrates the acceleration of convergence one gets from the Pade approxi-
mants by comparing the estimated next term (ESNT) and the known exact next term (EXNT).
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[n, m]

[2,1]

[2,1]

[10,8]

[3,2]

[10,8]

[2,1]

[6,4]
[10,8]

[3*2]

[6,4]
[10,8]

[15,13]

[15,13]

[10,9]

[10,9]

[10,9]

ESNT

0.556 x 10-'

—0.22

0.052 631 578 92

0.0202

0.002 499 999996
—0.0012

0.4821 X 10
0.624 999 987 X 10

0.306
—0.173 911
—0.102 564 102 53

0.277 854959 70x 10-'

0.001 111 111 111 llll

0.514 189044 x 10-'

0.245 184443 x 10-"

0.941 087 8970 X 10

EXNT

0.417 X 10

—0.25

0.052 631 578 95

0.0204

0.0025
—0.0016

0.4823 X 10
0.625 x 10-'

0.308
—0.172 913
—0.102 564 102 56

0.277 85495971 X 10

0.001 111 111 111 1111

0.514 189047 X 10

0.245 184444 X 10

0.941 087 8976 X 10
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I S3=Sq/S, [1,1],
S4=S3/S~ [2,1],

II S3=2S,S2/So —Si/So [0,2],
2S]S2S3 SOS' S2

III S,=, [1,2].
S ( SOS2

(5)

We shall now apply these results to perturbation series
in QED and QCD. We shall use the last 2 terms of the
series for I, 3 terms for II, and 4 terms for III.

If we define

R =SiS3/S2, (6)

then it can be seen that the prediction

S4 =S3 /S2 (7)

S„+ +, . Some illustrative results are presented in Table
I. It can be seen that the Pade approximant predicts the
next coefficient very accurately, with the accuracy of the
prediction increasing as n and m increase.

We now turn to the application of Pade approximants
to perturbation series in quantum field theory. Our re-
sults which we shall use are

TABLE III. Pade estimates for a, are compared with the
known results.

ae
Equation Estimate

—4.21
1.74

—2.12
—1.40

3.22
—2.13

Known result

—1.43
NT
NNT
—1.43
NT
NNT

(7) and (8) ensure that a positive-definite series remains
positive definite, a negative-definite series remains nega-
tive definite, and an oscillating series remains oscillating.
For other unusual series, although the method still
works, it requires more terms.

As we shall see, our method works best for higher-
order terms. But this is just where good estimates are
badly needed, since one has hundreds of Feynman dia-
grams and the calculations are very complicated.

We begin with the di6'erence between the muon and
the electron anomalous magnetic moments {QED contri-
bution) [4,6]:
a„—a, =1.094x +22.87x +127x +570(140)x, (13)

agrees with the prediction

S~ =2S~S3/S, —S~/S, , So=0,

R+R '=2 .

(8)

(9)

where x =(a, /rr) and 570(140) means 570+140, and the
x coefficient is a conservative estimate. The results are
given in Table II. It can be seen that there is beautiful
agreement with the known results. Moreover the next
term is predicted to be about 2500 and this agrees very
well with the estimate

Note that if
a „" ' = 10k 3a

„'
'
( y y ) =2500( 900), (14)

and

R =1+@,
R +R '=2+ g

(10) where we take 2 k 2.5. {See Kinoshita, Nizic, and
Okamoto [5] for a discussion of this method. ) For the
next-next term, we estimate, using k =2.5,

S~ —S4

S4

g2

(1+@)
(12)

a„" '=15k a„' '(yy)=12500(4000) . (15)

Next we consider the anomalous magnetic moment of
the electron [6]:

the two predictions will agree very well. It can also easily
be seen that the condition R +R ' =2 also ensures that
Eq. III agrees with Eqs. I and II [see Eq. (5)]. Equations

a„—a,
Equation Estimate

705
2558
11 480
2415
11 480
2362
11 480

Known result

570(140)
1600—3400 NT
8500—16 500 NNT
1600—3400 NT
8500—16 500 NNT
1600—3400 NT
8500—16 500 NNT

TABLE II. This table compares the Pade estimate for a„—a,
with the known results. NT means the next (unknown) term.
The entry 1600—3400 NT comes from Eq. (14) and the equation
numbers refer to Eq. (5). The entry 8500—16500 comes from
Eq. (15). NNT means next-next term or second unknown term.

a, =——0.3285x + 1.176x —1.43x
x

(16)

TABLE IV. Pade estimates for a„(QED) are compared with
the known results.

ap
Equation Estimate

656
2614

11 925
71.8

2559
11 925

2548
11 929

Known result

573(140)
1600-3400 NT
8500—16 500 NNT
125.6
1600-3400 NT
8500—16 500 NNT
1600-3400 NT
8500—16 500 NNT

The results are given in Table III.
Again there is good agreement with the known results,
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R,
Equation Estimate Known result

TABLE V. Pade estimates for R, are compared with the
known results.

TABLE VI. Pade estimates for Poco are compared with the
known results for Nf =5, 3, and 1. NT refers to the next (un-
known) term and NNT denotes the next-next unknown term or
the second unknown term.

27.0
133.8
678.6

9.4
133.7
678.7
133~ 8
678.8

26.38
NT
NNT
26.38
NT
NNT
NT
NNT

Poco /g

Nf =5
Estimate

—195.0
—846.3

—3959
—841.2

—3959
—3960

Known result

—180.9
NT
NNT
NT
NNT
NNT

especially for the eighth-order coefficient from II, where
the prediction is —1.40 and the known result is —1.43.
Moreover the next term may be about +2.5. It is in-
teresting to note that, if this is correct, the perturbation
series for a, continues to be an oscillating series. The
next term, predicted to be —2. 12, continues this pattern.

We now consider the perturbation expansion for

Xf =3
—455. 1

—6480
—65 213
—5921

—65 213
—65 216

—643.9
NT
NNT
NT
NNT
NNT

a =—+0.7655x +24.05x +125.6x +573(140)xp

(17)

where the x coefficient is a conservative estimate. The
results are shown in Table IV. It can be seen that the
agreement with the known values is quite good and the
prediction for the next term and the next-next term agree
very well with the estimates using Kinoshita's method.
[See Eqs. (14) and (15).] Now we consider the result from
the QCD for

I (r-+hadrons)
I (r~evv)

The known coefficients are given by [7]

R =1+y+5.2y +26.38y

(18)

(19)

LCD/g = ( —1 1+—', Xf )z + ( —102+ —", iVf )z

+( 2857 + 5033+ 325+2)z3
z &8 f s4 f (20)

where z=g /(4n)and X& is .the number of fermions
(quarks). We give our results in Table VI for SU(3), and

Nf =5, 3, and 1 . The results for Nf =5 are extremely

where y=a&/m. . Our results are presented in Table V.
The first estimate from I agrees incredibly well with the
known result. Moreover the three predictions for the
next term are remarkably consistent, with the value being
133.8.

As our final example, we turn to the p function of
QCD. It is given by [8]

Nf =1
—772.3

—14931
—193034
—13 292

—193033
—193036

—1155
NT
NNT
NT
NNT
NNT

One of us (M.A.S.) would like to thank G. B. West for
very helpful discussions, and the Aspen Center for Phys-
ics for its kind hospitality. This work was supported by
the U.S. Department of Energy under Grant No. DE-
FG05-84ER4021 5.

good. The results for Nf =3, and 1, although not as
good, are still quite reasonable. The method also works
for Nf =2, and 4, but not for Nf =6, since, in that case,
the z term changes sign and the series becomes an
unusual series ( —,—,+). However, the magnitude of the
prediction for Nf =6, which is —96.6, does agree very
well with the z coefficient, which is 109.9.

In conclusion, we have shown how one can estimate
coefficients of perturbation series in perturbative quan-
tum field theory. Our results agree well with known re-
sults for a„—a„a„a„,R„and p&cD. In addition, in
each case, we obtain predictions for the next (unknown)
terms.

After this work was completed, we were made aware of
two earlier papers on this subject. Luban and Chew [9]
consider a„and Fleisher, Pindor, Raczka, and Raczka
[10]discuss the R ratio in QCD.
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