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We study duality transformations for two-dimensional ¢ models with Abelian chiral isometries and
prove that generic such transformations are equivalent to integrated marginal perturbations by bilinears
in the chiral currents, thus confirming a recent conjecture by Hassan and Sen formulated in the context
of Wess-Zumino-Witten models. Specific duality transformations instead give rise to coset models plus

free bosons.
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I. INTRODUCTION

Recently there has been a lot of interest in two-
dimensional conformally invariant 0 models with Abeli-
an isometries. The space of theories with d Abelian
isometries transforms under a group of so-called duality
transformations, which is isomorphic to O(d,d). These
transformations are a generalization of the transforma-
tion introduced by Buscher [1] for the case of a single
isometry. Buscher’s transformations, in its turn, can be
viewed as a generalization of the familiar R —1/R sym-
metry in conformal field theory.

Duality transformations are intriguing and powerful
symmetries that may relate conformal string back-
grounds with totally different spacetime geometries.
Indeed they have been used recently to generate new
string solutions from known ones. This paper is an at-
tempt to understand in more detail some properties of
this symmetry. In a recent paper [2] Hassan and Sen
studied duality transformations of the Wess-Zumino-
Witten model and related models. They found that the
marginal perturbations by bilinears in the chiral currents
of specific such models could be reproduced by suitable
duality transformations, and they conjectured that this
result should be generalizable to any Wess-Zumino-
Witten model. Similar results have also been reported by
Kiritsis [3]. In this paper we prove this conjecture in the
more general context of o models with Abelian chiral
isometries. An important example is, of course, the
Wess-Zumino-Witten model, since such a model based on
group G possesses rank G holomorphic and rank G an-
tiholomorphic Abelian chiral isometries, but our con-
siderations will be more general. We will show that gen-
eric duality transformations indeed correspond to in-
tegrated marginal perturbations.

When this representation in terms of marginal defor-
mation fails, the duality transformation appears to be re-
lated to gauged models. Transformations that relate a
given model with chiral isometries to its gauged version
plus a set of free bosons have already been discussed in
the literature. Examples of such duality transformations
have been given by Kumar [4], and by Rodek and Ver-
linde [5] in the case of one holomorphic and one antiholo-
morphic isometry. Here we investigate in detail this
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latter case, and find that specific duality transformations
that yield models related to the corresponding axial and
vector coset models are indeed the ones that cannot be
represented in terms of marginal perturbations by bilin-
ears in the chiral currents. We conjecture that a similar
result should be valid in the general case. We hope that
these investigations could be a step on the way to a better
understanding of the moduli space of conformal field
theories with not only Abelian chiral isometries but more
general chiral current algebras.

This paper is organized as follows. In Sec. II, we give a
quick review of o models with Abelian isometries and the
corresponding duality group. This discussion is special-
ized to models with chiral isometries in Sec. III. We show
that a generic O(d,d) transformation applied to such a
model gives rise to a model of the same type with the
same number of chiral isometries. In Sec. IV, we show
that infinitesimal duality transformations correspond to
marginal perturbations. In Sec. V, we consider in full de-
tail the simplest nontrivial example, i.e., a model with one
holomorphic and one antiholomorphic isometry, and
determine all models which are related to it by duality.
In addition to the previously mentioned models with
chiral isometries we also find models which could be ob-
tained by performing the coset construction on the origi-
nal model plus a set of free bosons. This hints at a deeper
relationship between duality and gauging, which we in-
vestigate in Sec. VI from a slightly different perspective.

II. ABELIAN ISOMETRIES
AND DUALITY TRANSFORMATIONS

In this section we give a brief review of ¢ models with
d Abelian isometries and the associated duality group
O(d,d). Readers are referred to the papers by Rocek and
Verlinde [5] and Giveon and Rodek [6] for more details.

We may choose coordinates so that the isometries act
by translation of the coordinates 6=(6',...,6%. The
remaining coordinates are denoted x° The action may
then be written in the form

S = [ d%2[36E (x)36'+30Fy, (x)3x
2
+0x°F;,(x)360']+S[x], (1)
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where E(x), Fg,(x), and F[,(x) are matrices of type
d Xd, d X1 and 1Xd, respectively. Matrix transporta-
tion is denoted with a superscript . Henceforth we will
often drop the a index on Fg,(x) and F;,(x).

The group O(d,d) is defined as the set of all 2d X2d
matrices g that leave a metric J, of signature d +d in-
variant:

g'Jog =Jo , )
where
0 I
JO_ I O . (3)

Here I is the d-dimensional identity matrix. If we decom-
pose g in block form as

a b

e dl )

g:

where a, b, ¢, and d are d Xd matrices, this is equivalent
to demanding that

a‘c+c'a=0, b'd+d'b=0, a'd+cb=I. (5)

The O(d,d) element g in (4) acts on the o model defined
by (1) by transforming it into a model of the same kind
with E (x), Fp(x), F;(x), and S [x] replaced by

E'(x)=[aE(x)+b][cE (x)+d]™ ',
Fr(x)=[a —E'(x)c]Fg(x),
Fl(x)=F,(x)[cE(x)+d] !,

S’[x]=S[x]—ifdzz 3x“F,,(x)

X[cE (x)+d] 'cFg;(x)ox?®

When accompanied by an appropriate shift of the dilaton
field, as discussed in [1], these transformations preserve
conformal invariance of the model at the one-loop level.
Corrections are known to exist to all orders [7] and
preserve conformal invariance.

Matrices of the form

(ah" ' 0

0 a @)

g:

constitute a GL(d) subgroup of O(d,d) that acts by linear
coordinate transformations among the 6' coordinates.
The matrices

, B+B'=0 (8)

€= lo 1

form an R¢'¢ =12 subgroup which corresponds to adding
total derivative terms to the action. Together these ele-
ments generate a subgroup A(d) of elements of the form

(a7 ' B
0 a

, aB+Ba=0, 9

which act trivially on (1) in the sense that the

transformed model is equivalent to the original one up to
coordinate transformations and partial integrations.

III. ¢ MODELS WITH CHIRAL ISOMETRIES

We now specialize the discussion to the case where the
d isometries may be decomposed as d; holomorphic and
dy antiholomorphic chiral isometries with d =d; +djy.
This will allow us to make more specific statements about
the dual models. We will see that for a generic O(d,d)
transformation the dual model possesses the same num-
ber of holomorphic and antiholomorphic chiral
isometries.

With an appropriate choice of coordinates, the action
may be written in form (1) with

o= [0, eL}z(e}{-~-ej’g o, - 0i) (10)
and
I 2B(x)
E(x)= |, I, >
G (x)
Frp(x)= 0 , (11

F,(x)=[0 G.(x)].

Here I; and I denote the d; - and dg-dimensional iden-
tity matrices, and B (x), Gg(x), and G (x) are matrices
of type dg Xd;,dg X1, and 1 Xd,, respectively.

Written out explicitly, this action is

SLR=ﬁfdzz[86L§6’L+89R§9;+89R2B(x)§62
+030g Gr,(x)0x *+0x G, (x)36, 1+S[x] .

(12)

The equations of motion that follow from a variation of
Oz and 6, are dJz =0 and dJ; =0, respectively, where
the chiral currents are given by

To=(Th, .. Tx¥)=80, +3860, B (x)'+ LGy, (x)dx" ,
(13)

Jo=(}, T =00, +00, B (x)+ 19x°G,,(x) .

The conformal dimension of the holomorphic (antiholo-

morphic) current J; (.TR ) is (1,0) [(O,1)].

Our object is to analyze the orbit of the action (12) un-
der O(d,d) acting as in (6). However, we are only in-
terested in classically inequivalent models, which could
not be obtained from one another by coordinate transfor-
mations and partial integrations, so we should rather
consider the right coset A(d)\O(d,d), where the sub-
group A(d) was defined in (9). Furthermore, there is a
subgroup Q(d; dr) of O(d,d) elements that leave the ac-
tion (12) invariant. We will construct this subgroup ex-
plicitly in a simple case in Sec. V. Our real object
of interest is  therefore the double coset
Ad)\O(d,d)/Q(d; ,dg), ie., the set of equivalence
classes of O(d,d) under the equivalence relation

g~Agw, AEAW),0ENd, ,dy) . (14)
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To analyze this coset, let us first consider O(d,d) ele-
ments such that the submatrix d in (4) is invertible, i.e.,
detd=0. This is certainly true in a neighborhood of the
identity of O(d,d), and for the simplest nontrivial case
d; =dgr =1 we have checked that all O(2,2) elements of
the detd =0 type are equivalent to elements with detd #0
modulo Q(1,1) acting from the right . We conjecture
that also in the general case one needs only to consider
elements of O(d,d) with detd=0, although we have no
proof of this.

We may parametrize an O(d,d) element of the form (4)
with detd0 by the d Xd matrices d, e, and f, where e
and f are defined by

e=d ¢, f=bld, (15)
so that

a b
c d

dH'" (I —fe) (d)7'ft
de d ) (16)

g=

The requirement that g be an element of O(d,d) amounts
to e and f being antisymmetric:

ete'=f+f'=0, (17)

while d is unconstrained, apart from the requirement of
invertibility.

Multiplication of (16) from the left by an element
A€ A(d) of the form (9) yields a new element g’=Ag of
form (16) with d, e, and f replaced by

d'=ad, ¢'=e, f'=f+d'Bad . (18)

We see that e is invariant under such transformations,
and furthermore we may transform d and f to any pre-
ferred values d, and f, (satisfying detd,#0 and
fot+f§=0) by choosing

a=dyd ', B=d}) " Nfi—fd 1. (19)

The equivalence classes of O(d,d) modulo A(d) may thus
be labeled by the matrix e, which is only subject to the
constraint of being antisymmetric.

In the case at hand, a convenient choice of representa-
tive in (almost) every equivalence class may be described
as follows. Introduce the d Xd matrix J as

I, O
=10 —1, | (20)

and define A by
h=(J—e)J +e) !, 21)

which may be inverted to yield
e=U+hn) " I—h)J . (22)

These relations are well defined for generic e and 4 and at
least in a neighborhood of & =1, e =0. We will come
back to the remaining cases where J +e is not invertible
in Sec. V. It is easy to show that the antisymmetry of e is
equivalent to 4 being an element of the group O(d; ,dy),
ie.,

h'iJh=J . (23)
We now choose
d=X1I+h), f=}(1—h’)J(I+h) . (24)

The property (23) implies that f is antisymmetric as re-
quired.

To see the advantage of this choice we write 4 in block
form:

Ve T

h=1s v,

, (25)

where Vi, V., S, and T are matrices of type dg Xdg,
d; Xd;, d; Xdg, and dg Xd;, respectively. The require-
ment (23) that & be an element of O(d; ,dy ) amounts to

ViT—S'V,=0.

ViVe—S'S=Iy, ViV,—T'T=I,,

(26)
Inserting this 4 in (22), (24), and (16) we get
) In+Vy —T
a=5 | -5 I, 4V, |’
_1 IR_VR —‘T
b=51 s —5+v, |’
27)
oy [r vk T
TR -8 -tV
g Ip+Vy T
d==1 s I1,+v, |

We now apply the transformations (6), with a, b, ¢, and
d given by (27), to the model defined by (1) and (11) and
get

I, 2B’'(x)
E'(x)= 0 IL s

G} (x)
F]'Q(x)‘—" 0 ’

(28)
Fl(x)=[0 Gj(x)],

’ 1 a —
S'x)=S[x]+ 5 - [ d%250x°G o (x)[ ¥, —SB (x)] ™"

X SGp,(x)0x" ,
where
B'(x)=[VxB(x)—T][V,—SB(x)]" !,
Gr(x)=[V4—B(x)T']"'Gr(x), (29)

G, (x)=G (x)[V,—SB(x)]"'.

We see that the matrices E'(x), Fg(x), and F; (x) are still
of form (11), and the transformed model is thus of the
same kind as the original one, with d; holomorphic and
dy antiholomorphic chiral isometries. The only restric-
tions that we have imposed on the O(d,d) transformation
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to reach this result is that the submatrix d in (4) and the
matrix J +e in (21) are invertible.

IV. INFINITESIMAL TRANSFORMATIONS
AND MARGINAL PERTURBATIONS

To get a better understanding of the transformations in
the previous section, we will here consider infinitesimal
transformations # =1 +¢eh +0(€?) with

(P T

h= 5 I7L . (30)
The constraints (26) give

Ve +VL5=0, V,+Vi=0, T—§'=0. (31)

Inserting this 4 in (29) yields the infinitesimal transforma-
tion
J

’ — 1 9T
Sir=Six+2e - [ %21, 57}

B'(x)=B(x)+e[VgB(x)—B(x)V,
—S'+B(x)SB(x)]+0(€?) ,
Gr(x)=Gg(x)+e[— Vi +B(x)S]GRr(x)+0(e),

o (32)
G (x)=G.(x)+€eG (x)[—V,+5B(x)]+0(€),

S'[x]=S[x]+ £ - [ d% 8x°G,(x)SGp, (x)3x"
. 2 217

+0(€e) .

These transformations can be interpreted as a marginal
perturbation by a bilinear in the holomorphic and antiho-
lomorphic chiral currents (13), as we will now show. For
an arbitrary d; Xdp matrix S, the operator J; ST} is
(classically) of dimension (1,1) and may be added as a per-
turbation to the Lagrangian (12). One finds that

=§;fd2z{aeR[1R +2€B (x)5136% +036, [I, +2€SB (x)]06% + 036z [2B (x)+2€B (x)SB (x)]36",

+360,26500% +00x [ Iz +€B (x)5]1Gg,(x)3x*+0x°Gy,(x)[I; +€SB(x)]36%,

+930,€SGp,(x)3x°+03x°G,(x)eS0% +(€/2)3x °G,(x)SGg,(x)dx %} +S[x] . (33)

After an infinitesimal coordinate change
OR _)GR +60R VR _60L§ >

. ~ (34)
9L—>9L +69L VL'_EBRSt >

with Vi + 7V, =0, and ¥V, + V[ =0, we get S;x of the
form (12) with B'(x), Gg(x), G (x), and S’[x] given by
(32). The infinitesimal duality transformations (32) are
thus equivalent to marginal perturbations (33). Since the
marginally perturbed model has the same number of
Abelian chiral isometries, we can repeat the process. The
result of applying such an “integrated” marginal pertur-
bation to model (12) is a model of form (29), which is ob-
tained by a finite O(d,d) transformation.

Note that this relationship between duality transforma-
tions and marginal perturbations provides a simple check
that the former preserve conformal invariance. Indeed,
Chaudhuri and Schwarz [8] have proved that marginal
perturbations by a bilinear in commuting chiral currents
preserve conformal invariance.

V. THE CASE OF d; =dy =1

In Sec. III, we have seen that generic duality transfor-
mations of model (12) yield a model of the same type with
the couplings given in (29). In this section we will exam-
ine the simplest nontrivial example with one holomorphic
and one antiholomorphic isometry in somewhat more de-
tail to determine the complete orbit of (12) under duality
transformations.

We begin our investigations by determining the group

Q(1,1) of O(2,2) elements that leave the action S;; in-
variant under the transformations (6). This turns out to
be an Abelian discrete group with four elements:

1000 0 0 —10
0100 0 0 0 1
“Q“=loo1o0p ®"|-10 0 0
0001 0 1 0 O
(35)
1000 0 0 —10
0001 0 1 0 O
3= loo0o10p ® |—10 0 O
0100 0 0 0 1

We have already mentioned that all elements g of
0O(2,2) with the determinant of the submatrix d in (4) van-
ishing are equivalent modulo Q(1,1) acting from the
right to elements with detd%0. We need therefore only
consider the case detd #0. From our previous reasoning
we know that the equivalence classes of such O(2,2) ele-
ments modulo A(2) acting from the left may be labeled
by the 2 X2 antisymmetric matrix e given by

(36)

Here x may take any real value, but the transformation
g —gw,, with w, given in (35), induces
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0 —x!

e — x -1 0 , (37)
so we may restrict our attention to the interval
—1=<x<1.

For —1<x <1 we may use (21) to get
cosht — sinht
— sinht  coshz |’ (38)

where x and t are related by x =(1+cosh¢) ™ !sinht and
— o <t <. The corresponding transformations act on
the model (12) via (25) and (29) as

B’(x)=[cosht + B (x)sinht]~![ sinht + B (x)cosht] ,
Gr(x)=[cosht + B (x)sinht] 'Gg(x) ,

(39)
G (x)=[cosht + B (x)sinht]"'G, (x) ,

S’[x]=S[x]——ifdzz—;—[cosht+B(x)sinht]“1

X sinht3x°Gp,(x)Gg,(x)ox? .

As before, this transformation preserves the number of
chiral isometries d; =dz = 1.

The two remaining values x ==*1 mean that J +e is
not invertible so that (21) may not be used. Instead we
can choose the representatives

R IR
a=5 11 x| =51 x|

(40)
1 —1 =1 1 -1 F1
=511 +1p 4T3 =1 +1|°

which, when inserted in (6) together with (11), yield
1 0
1+B(x) |’
1£B(x)
0
Gr(x) |’
1+B(x)
GL(X)
B(x)*1

E'(x)=

Fr(x)=

Fl(x)= |0 , 41)

s'[x]=S[x]—2i”fdzzl 1 -0x G, (%)

2 B(x)x
XGRb(x)a_xb .

1 1
S, =— [dg— 1
dual 277'f 15 B (x)sin2a

These theories thus consist of a free boson plus a o model
which is, in fact, the coset model S}, and S 4 described by
Rocek and Verlinde [5]:

_ 1 o [1FB() omy OraX) s,
Sv1a= 37 S 4% | Tt 2990 T2p o 20"
+ GL,,(X) 3 ‘150
1B
1 GLa(x)GRb(x) as b
+ 2 T 1B (x) 9x%x? |+S[x].

(42)

It is probably true that all O(d,d) transformations such
that J +e is not invertible give rise to theories with free
bosons. In fact, for the case where d; =dg =d /2, Ku-
mar [4] has given an explicit O(d,d) transformation,
which is such that J +e is not invertible, and which
transforms model (12) into a model with d /2 free bosons.

Note that these models in a sense also have d; holo-
morhpic and dy antiholomorphic Abelian isometries, al-
though in this case the holomorphic isometries are really
pairwise identical to the antiholomorphic ones, both act-
ing as translations of the d /2 free bosons. We conjecture
that, with this definition of the number of chiral
isometries, all models obtained by O(d,d) transforma-
tions of (12) will have d; holomorphic and dy antiholo-
morphic Abelian isometries.

VI. GAUGING AND DUALITY

In this section we will discuss more explicitly the rela-
tion between quotients, quotients by chiral currents, and
duality in the d; =dg =1 case. First of all, to clarify the
constructions in the previous section, we should note that
all we have done there is dualizing a combination of holo-
morphic and antiholomorphic isometries labeled by a
mixing angle a. A way to see this is to change variables
in (12) from 6, and 6y to 8, and 6, defined as

6, 6,
6, Or

cosa sina

(43)

—sina cosa

We then perform a duality transformation with respect to
the isometry which acts as a translation of the 6, coordi-
nate, according to the prescription of Buscher [1].
Namely, one goes to a first-order form for (12) by intro-
ducing V,=9,0, via a Lagrange multiplier, and then
solves for V, through its field equations. The explicit ac-

I
tion for the dual model is then

[06,06,+ 06,360, + (1+ cos2a)B (x)360,36,+ (1— cos2a)B (x)36,06,

+ G, (x)3x % cosadB,—sinadl,)+ G, (x)dx % cosadd, —sinadf,)]+S'[x] (44)
with
e 1 2 sin2a a = b
S'1x]=S[x1=5 [d 214 B (x)sinza O “Oral¥)Gry(x)0x 45)
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To turn (44) into a model of the left-right symmetric
type as in (12), we need to make the further change of
variables

0o sina  cosa | [Or
0, cosa sina | |0} (46)
which is nonsingular for cos2a##0, i.e., for

—m/4<a<mw/4. Then (44) yields the chiral model (39)
with tanht =sin2a. The values =0 and 7/2, corre-
sponding to dualizing a chiral isometry, leave the model
invariant, as was noted in [S]. The corresponding O(2,2)
transformations, their product, and the identity consti-
tute the subgroup (1,1) discussed in the previous sec-
tion. For the values of a=11/4, instead, the change of
variables to 6; and 6] defined by

6o %
0, o 47)

1 |[£1 #£1

:T/7

leads to free boson 6, plus S, or S 4 coset theories (42), as
already discussed in the previous section, and noticed
originally in [5].

Before rederiving (44) in a slightly different, although
probably more enlightening, way, we will discuss gauging
of o models with left and right chiral isometries. Starting
from the action (12) we can gauge any combination of left
and right isometries, parametrized by a mixing angle «,
by using the minimal coupling prescription

1 1 .
80R—>89R +*\/—-{A cosa, 86L—>86L+\/—_2A sina ,
(48)

and analogously for the antiholomorphic partial deriva-
tives. This gives the gauged action

Sgauged SLR+—fd2 2 AA[1+B )sin2a]
+Lab+-Lr,a
v3 Abrt kA
(49)
where
Ly =sinadf; + cosadfg +2B (x) cosadb,
+ cosaGg,(x)dx*
(50)

L; =sinadf; + cosadfy +2B (x)sinadby
+sinaG,(x)dx
After integrating out the gauge field we get the action

L Ly

S = =
fd 1+ B (x)sin2a

gauged SLR
1 2 - —1
- fd z[1+ B (x)sin2a]

X [0000—sinadfGg,(x)dx°
+ cosaG[,3x%0]+S'[x], (51)

where S’'[x] is given in (45) and 6=cosaf; —sinafy is
the gauge-invariant linear combination of 6, and 0y.
The above gauging procedure is fully gauge invariant for
any «, i.e., for any combination of left and right
isometries. However, it is not a very interesting one,
since it does not automatically lead to conformal
theories, even if the starting theory is conformal. From
this point of view, a slightly different procedure, that
mimics the coset construction and allows to couple the
gauge field directly to the chiral currents, seems more in-
teresting. It is possible only for specific “anomaly-free”
combinations of holomorphic and antiholomorphic
isometries. If the starting model is conformally invariant,
the coset model obtained by this procedure is probably
conformally invariant as well, as it certainly is in the case
of the gauged Wess-Zumino-Witten model.

This new procedure amounts to the addition of the
term

1 1 : —
55 [ 4725 (cosaby —sina0, (@4 —34)  (52)

to (49), which completes L; and Ly into the chiral
currents J; and Ji defined in (13). The resulting gauged
action is

S

coset

— L g2 4 i
_SLR+ET—fd z{1 AA4[1+B (x)sin2a]

+V2cosa ATy +V 2sina 4J, } .
(53)

We remark here that it might be possible to understand
the connection between (44) and (53) in yet another way.
Namely, (53) is reminiscent of the first-order form of (12),
which led to (44) upon integrating out an auxiliary gauge
field V,. It might be that (53) could be thought of as a
gauged fixed version of this first-order action, but we
have not been able to prove this.

Anyway, upon integrating out the gauge field in (53) we
get

2sin2a

d?z 2
Scoser = f 14 B (x)sin2a

J T . (54)
However, this procedure is legitimate only for a =+ /4,
since the term (52) is gauge invariant only for these
values. In this case we get

=1 g2, 2 3
T Zﬁfd ek - (55)

These theories are exactly the axial and vector quotients
(42). Notice that gauging by chiral currents (54) and
plain gauging (51) yield different results. Indeed, at
a==m/4, (51) and (42) are different. In both cases,
gauge invariance of course leads to a reduction of degrees
of freedom, and only the gauge-invariant combination
6=06x —0, survives.

Getting back to the dual action (44), an alternative way
to obtain it is by gauging any combination of left and
right isometries in (12) by minimal coupling as in (48) and
introducing a Lagrange multiplier of the form
(1/2m)$(d A —dA). The gauged action is then

Sy,4=SLr
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L 47 11+B (x)sin2a]

1
Sdual=SLR+—2;fd22 2

1 -

+-1—:(LL+8¢)Z

v . (56)

After integrating out the gauge fields, one gets the action

- _1 ro 1 = =
Sawr =St~ 5 [ P2y g oo (L —38)L, +34) .

(57)

The part of (57) independent of ¢ is exactly the gauged
Lagrangian (51), and one recognizes that it is the part of
the dual Lagrangian (44) that depends on 6,=6 only.
One can furthermore show that the terms in (57) that de-
pend on the Lagrange multiplier ¢ give rise to the
remaining pieces in (44), with the identification ¢=20,. So
|

1 2sin2a - 1

By introducing the variables 6, and 6, through the rela-
tions

_ 1 .
Or = cosdar (sinafy+ cosab,) ,
) (61)
6, = cosla ( cosafy+sinab,) ,

which are nonsingular for a7+ /4, we get exactly (44).

The representation (54) of the dual action is interesting
first of all because it makes the relation with marginal
perturbations explicit. The integrability of marginal per-
turbations is also evident if one notes that from (44) the
chiral currents of the dualized model are given by

Tola)= cos2a -
R 1+ B (x)sin2a "%’ 62)
I (@)= cos2a

1+ B (x)sin2a " &
Then, combining (54) and (62), one immediately gets that
Saquala+8a)=8y,,(a)

_ 1 2 48a '
o [d% oo L (@Tr(a@) (63)

27 4 VT B (sinza IR T TF B (x)sin2a

dualizing can be interpreted as gauging in the presence of
a Lagrangian multiplier.

Obviously, one can add to (56) any term of the form
(52), whether it is gauge invariant or not, since it can al-
ways be absorbed in a shift of the Lagrange multiplier

b—d' =¢+ L_( cosafy —sinaf; ) . (58)
V2

The Lagrangian obtained by (56) after the addition of (52)
can always be made gauge invariant, by choosing ¢ to
transform properly under gauge transformation in such a
way to compensate the change of (52). The answer will
still be (44).

Moreover, for a5+ /4 we can also fix the gauge by
setting ¢ =0, or

¢'= \/LE( cosafg —sinab; ) . (59)
Then the gauge fixed action that one gets is exactly (54).
In other words, for a7+ /4, the action (54) is actually
the dual action (44). One can check this by explicit calcu-
lation. Indeed

{[1—B (x)sin2a (36,360, +360;30%)
—25in2a06, 00y +2B (x)30200,
+ G, (x)3x %00, —sin2adb)
+ Gg, (x)0x (30, —sin2a236, )} +S'[x] . (60)

[

which is a marginal perturbation around a70. More in-
terestingly, perhaps, the action (54) seems to be a natural
definition of duality as well as of gauging by a chiral
current, in the case d;, =dz =1. For a¥ =t /4, (54) ob-
tained from (53) by integrating over the gauge fields, is
the dual Lagrangian. At a==®m/4 (53) develops a gauge
invariance which permits gauging away one of the field,
and it turns into the gauged model Sy, ,. This observa-
tion puts duality and gauging on the same footing; gaug-
ing is duality at a point where a gauge invariance devel-
ops. This interpretation is probably generalizable to the
general case of O(d,d) and to any gauging of Abelian
isometries.

We would like to point out that an alternative explana-
tion of the connection between duality and gauging has
been given in [2] for the specific case of an SU(2)/U(1)
coset model.
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