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Role of short distance behavior in ofF-shell open-string field theory
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A recent proposal for a background-independent open-string field theory is studied in detail for a
class of backgrounds that correspond to general quadratic boundary interactions on the world sheet.
A short distance cutoff is introduced to formulate the theory with a finite number of local and
potentially unrenormalizable boundary couplings. It is shown that renormalization of the boundary
couplings makes both the world-sheet partition function and the string field action finite and cutoff
independent, although the resulting string field action has an unpalatable dependence on the leading
unrenormalizable coupling.

PACS number(s): 11.17.+y

I. INTRODUCTION

Recently, a new open-string field action has been pro-
posed using the Batalin-Vilkovisky formalism [1]. For-
mally, this action, defined in the space of all world-
sheet open-string theories, is background independent
and gives the expected classical field equations and on-
shell gauge symmetry.

It has been emphasized in [1] that the construction of
the string field action has been formal because ultravi-
olet divergences associated with unrenormalizable local
world-sheet interactions have been ignored. This ques-
tion is crucial because the generic world-sheet theory is
unrenorrnalizable; the massive states of the string are
represented in the world-sheet Lagrangian by unrenor-
malizable interactions, as are high frequency modes of
massless states. The difficulty in making sense of the
generic two-dimensional Lagrangian has indeed long been
one of the main obstacles to progress in string theory; it
severely limits applicability of the world-sheet approach
to string theory.

Since it is hard to find a general way to remove the
cutoff, one can simply define the string field action in a
space of cutoff interactions. If the cutoff is strong enough,
there appears to be no problem with aDy of the consider-
ations of [1]. However, the expected classical solutions of
the theory probably cannot be found in a space of world
sheet theories with strongly cut-off boundary interactions
(since the standard perturbations are by dimension one
local operators on the boundary which are not "soft");
and a space of such interactions probably cannot be de-
fined in a background-independent way (the obvious way
to get a space of strongly cut-off theories is to start with
a particular background, which cannot be "soft" since
no theory is, and then add to it a family of soft pertur-
bations). So it does not appear adequate to define the
string field action only in a space of strongly cut-off in-
teractions. However, one can begin by defining it in such
a space and then try to remove the cutoff. In fact, that
is what we will do in this paper.

The difficulties with unrenormalizable theories arise
because the short distance behavior is out of control

and depends on the specific Lagrangian; and therefore
the world-sheet anomalies, which are so important in
string theory, are also out of control. To probe these
issues, we will consider a family of free field theories with
quadratic but higher derivative boundary couplings; be-
ing free, these theories are tractable, but the short dis-
tance behavior depends on the specific couplings. For
motivation, we first recall the example considered in [2];
the bulk action was the standard closed string action
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and the boundary action was
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Here the world sheet is a disk Z with unit radius, and
(a, u") is a set of parameters. The boundary interaction
represents a quadratic tachyon background and is super-
renormalizable; thus it only requires proper normal or-
dering (corresponding to absorbing an infinite constant
into a) to make both the world-sheet partition function
and string field action well defined.

The discussion in this paper will follow that of [2]
closely, but now with the most general quadratic bound-
ary action:

L gy
= a+ d 8d8'X„(8) u""(8 —8')X„(8') . (l.3)
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with tI„"" being constants. With such a choice, most ax-

At this stage we need to decide what kind of function u
is to be. The only evident notion of locality is that u
shouM be a finite sum of derivatives of b functions:

S

u""(8 —8') = ) t„" 6(8 —8'),
r=O
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ioms of local quantum field theory are preserved (but
world-sheet unitarity is lost because of the higher deriva-
tives); the short-distance behavior of the propagator de-
pends on s, leading to some unpleasant properties that
we will see later. Alternatively, one can try to take
s ~ oo; this would even appear to be dictated by the
fact that, once massive fields are excited in string theory,
one should expect fields of arbitrarily high mass to be
excited. But with s = oo, the sum in (1.4) is no longer
local. For instance, the "identity"

OO
CP

X(8)X(8+.) = ).—,X(8)„8„X(8)
n=o

shows that any bilocal expression can be expanded for-
mally as an infinite sum of local operators. What kind of
function we get upon taking s —+ oo in (1.4) depends on
what large r behavior we assume for t„" . For instance,
a suitable condition on t„""would give a class of strongly
cut-off boundary interactions, as discussed above. One
of the basic puzzles about our problem is that apart from
the local interactions (finite s) which have their own dif-
ficulties that we have sketched, we do not know a natural
class of boundary interactions to focus on.

The quadratic nature of the boundary interactions
makes the world-sheet theory exactly soluble, even
though the dependence of the short-distance behavior
on the Lagrangian would usually be characteristic of un-
renormalizable theories. This will be discussed in Sec. II,
where the exact partition function is determined from the
exact Green's function. In practice, our way of grappling
with the issues introduced above will be to introduce a
regulator corresponding to a boundary cutoff e that re-
places 6(8 —8') by 6, (8 —8') with lim, 06,(8 —8') =
b(8 —8'). The regularized theory thus has a smooth cou-
pling function u&" (8—8') and a nonlocal interaction (1.3).
After computing the partition function and the string
field action, we will then see to what extent it is possible
to remove the cutoff. To do so, we will renormalize the
local coupling parameters so that the partition function
as a function of renormalized couplings remains finite as
e ~ 0. In fact, the quadratic nature of (1.3) implies that
the only renormalization needed is to absorb into c a di-
vergent term, which is now a nonlinear function of other
couplings, rather than proportional to u" as in the case
of (1.2).

In Sec. III, we proceed to analyze the string field action.
The action is determined from world-sheet two-point
functions of boundary interactions and their Becchi-
Rouet-Stora- Tyutin (BRST) transformation. Here we
argue that to justify the formal considerations of [1], the
BRST transformation of boundary operators should not
be modified by the presence of boundary interactions;
otherwise the proof that the antibracket is closed does

not go through. This in fact is one reason that it is
necessary to begin the construction in a space of cutoff
boundary interactions; if the short distance behavior de-
pends on the Lagrangian, the BRST transformation laws
will also.

In trying to remove the cutoff, our main result is that
the same renormalization that makes the partition func-
tion finite also makes the string field action finite. This is
not obvious a priori. However, after we remove the cut-
off, the fact that the short distance behavior of the local
theory (1.3) depends on the boundary interaction comes
back to haunt us in the following way. The string field
action that we obtain is finite but has an explicit depen-
dence on s in the following sense: the action S(to, . . . , t, )
constructed with one value of s does not coincide, if one
sets t, = 0, with the action S(to, . . . , t, i) that one would
obtain starting from the outset with a smaller value of
s. This behavior is unpleasant, and we do not know the
right interpretation.

II. PARTITION FUNCTION

D,X„(e)+f d8'u, "'(9 —e')X„(8') = 0, (2.1)

Here we have chosen g" = 6" so that the spacetime in-
dices may be raised and lowered freely and later formulas
may be simplified, but it is obvious how to restore the
Minkowski metric g" in what follows. The exact Green's
function G„„(z,ii)) = (X„(z,z)X„(iu, ii))) satisfying the
boundary condition (2.1) can be expressed as

The goal in this section is to solve the world-sheet
matter theory defined by L~ + L~ on the disc by de-
termining its matter partition function. Since the action
is quadratic, the partition function can simply be ex-
pressed as a determinant of a corresponding Gaussian
kernel, which in this case is a differential operator on
the circle, with a conventional (e.g. , (,

' function) regu-
larization. The approach here will be different, in that
the regulator will be introduced directly in the action by
making u(8 —8') in (1.3) a smooth function for a nonzero
cutoff ~, and the local boundary interaction is recovered
in the e —+ 0 limit. The partition function will be deter-
mined by integrating a two-point Green s function, and
will then be made finite (as e —+ 0) by a renormalization
counterterm.

Let the unit disc be parametrized by polar coordinates
(r, 8) with the boundary at r = 1, as well as by complex
coordinates (z, z) with z = re'8. The variational princi-
ple applied to (1.1) + (1.3) gives the following boundary
condition for X„:

G„„(z,ii)) = —b'„(ln [z —ii)[ + ln]1 —zii)[ ) + 2(uo')„—) „„(zii))"+ (zii))"
fk k+u, kk+u ),

(2 2)
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where u&" ——u
&

= g d8 u~" (8) e '" is the Fourier mode
of coupling function. When both positions are on the
boundary, with z = e' and m = e', the Green's func-
tion becomes

(8 8I) ) !
eik(e e—')

„,z &lkl+~A:) „. (2 3)

which determines the partition function Z through the
difFerential equations:

lnZ =—
Bup

d8 d8' e'"( 8 &(X„(8)X„(8'))

1 (
2 (lkl+u-»„. (2.4)

The partition function determined by (2.4) is valid for
general (nonlocal) boundary couplings. Consider now
boundary interactions involving a finite number of local
couplings:

Finite in the limit e —+ 0. It is easy to see that, for
this quadratic theory, it is sufficient to take t„= t' andT
a = a(a', t„', e) = a' + Ea(t„,e), and simply choose the
counterterm Aa to cancel the divergence in the partition
unction. To analyze this in detail, it is convenient to

consider the generating function:

InZ,'(t„a', e) = ——Trlnto —Tr) ln(1+ k i u )
k=1

—4a —a', (2.9)

where ul, is given by (2.6). With cutoff s g 0, one may
take derivatives with respect to t„of the infinite sum in
(2.9), and show that the e —+ 0 divergent term is not a
constant but depends on t, and t, i. Furthermore, the
dependence on t, i is only linear. Thus in a "minimal
subtraction" scheme the counterterm Aa may be chosen
to depend only on those two coupling parameters (for
s & 1):

1
L~ = a+ d8) i" t„" X„BOX (8)

r=p
(2 5)

co f
d a = —Tr ) ln(1 + t, ks ' s a')

This corresponds to u" (8) = Q„o (—i)" t„" b " (8), or
equivalently, u~&" ——Q'„0 t„" k". Now we introduce the
short distance cutoff e by taking

ka —2 e
—Ic6

+ ''
1+/ s j

(2.10)

&P& g ~pv I r
& Ikl

k y r (2.6)

(kT —kE )
+(—1)"

Igk+up ) „ (2.7)

where the subscript s indicates explicitly that the leading

boundary coupling is t, . Using also ~ lnZ, = —1, we

obtain

This is essentially a point-splitting regulator, and the
particular form of the cutoff dependence is chosen here
for later convenience. Viewed as a function of the cou-
pling parameters tl"" = (—1)"t„"I" and a, the partition
function now satisFies

8
8t~„„lnZ, =—

Once the divergences are cancelled, one may take the
e —+ 0 limit of (2.9) or (2.8) to obtain the "renormalized"
generating function or partition function. The generating
function ln Z,' so determined is exact and generates arbi-
trary correlation functions of the (integrated) boundary
operators associated with the couplings t„,0 & r & s. In
particular all these correlation functions are finite once
lnZ,' is made Finite. The correlation functions of other
composite boundary operators are not generated by ln Z,'

and those of operators with higher dimensions, such as

X„8&X„(8)for r ) s, will still be divergent. [Correla-
tion functions of bulk operators can be computed using
Wick's theorem from the exact Green's function (2.2),
and they have the usual short distance behavior. ]

It is worthwhile to consider special examples with s =
0, 1. The s = 0 case corresponds to a quadratic tachyon
considered in [2]. One finds that the divergent part of the
bare partition function is linear in to, and the minimal
counterterm b,a can be chosen to be

Z, = (det to) '~'e ~
~ h 4 1

k=1
det(1+ k 'uI, )

' (2 8)

~
—k~

Aa = —Tr(to) )
k=1

s=0. (2.11)

The partition function (2.8) is divergent; as 6 ~ 0
divergence comes from the infinite sum in (2 7) «r & = s
and r = s —1. To make sense of the partition function as

e —+ 0, one would like to view the "bare" couplings t„and
a as appropriate functions of "renormalized" couplings t„'

and a' and the cutoE e, such that the "renormalized" par-
tition function, Z,'(t', a'; e):—Z, (t(t', a', e), a(t', a', e); e),
now viewed as a function of renormalized couplings, is

This is the same logarithmically divergent counterterm
as used in the normal-ordering prescription in [2]. With
this counterterm, the renormalized partition function Zp
can be seen to agree with that of [2].

For s = 1, the second term in (2.10) is inc divergent,
while the first term contains an e ~ divergence and a
ffnite term. Defining Aa without the finite term and
using t„" = —(—1)"t„" to simplify further, one finds
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T (t2m+2) oo T (t t2m)
Aa =a +1ne, s = l.- (2m+ 2)2 2m+ 1m=o m=O

(2.12)

This can also be compared with known results. Consider
the case to ——0, which describes open string coupled to a
background U(1) gauge field with constant field strength
t~~ . There are X„zero modes and the partition function
will be proportional to the spacetime volume, as indi-
cated by the first factor in (2.8). The free energy (per
unit volume) lnZi(ti) is defined by (2.9) without the
first term. After subtracting the counterterm (2.12) and
setting a' = 0 one finds

ln Z'(ti) = —Tr ln(1 —ti),4

in complete agreement with earlier computations [3,4). It
is easy to see that the particular regulator and the min-
imal counterterm (2.12) used here are in fact equivalent
to the (-function regularization of [3l.

Although the minimal subtraction scheme is most nat-
ural and reproduces earlier results for s = 0, 1 as re-
marked above, one may inquire whether other choices of
La with different finite parts might be more natural for
general s. Recall that in the theory of renormalization,
ambiguities involving finite counterterms are removed by
renormalization conditions and possibly some other phys-
ical requirements such as symmetries. In the present
problem, a natural requirement is the s independence
of the partition function in the sense that

Z (a;tp, ..., t i, t )~i,—p = Z i(a;tp, ... , t i), (2.14)

as well as similar relations for the renormalized correla-
tion functions in the Z, and Z, i theories. This require-
ment is satisfied at s = 1 by the minimal counterterms
(2.11) and (2.12), but is not satisfied by minimal counter-
term (2.10) for s ) l. In fact ln Z,' determined from (2.9)
and (2.10) diverges as t, ~ 0. Such singular behavior of
the renormalized theory as t, ~ 0 is not unexpected
in general, since t, (for s ) 1) is the leading "unrenor-
malizable" coupling which dominates the short distance
behavior. Of course in a theory with a cutoff one may set
t, = 0 without creating divergences. Then the failure of
the partition function to satisfy (2.14) is due to the fact
that the two limiting processes e —+ 0 and t, —+ 0 do not
commute.

The situation is simpler in the present case, as the
bare partition function (2.8) is naively s independent and
thus the s dependence of the renormalized partition func-
tion comes solely from the s dependence of the minimal
counterterm Aa. To satisfy (2.14) one simply needs to
choose a nonminimal but s-independent counterterm Aa.
There are many choices. The simplest one is to take
Aa = —Trg& iln(1+ k iu), ), and the renormalized
partition function following from (2.9) is

Z, = (det tp) 'i2e (2.15)

independent of all couplings except tp, corresponding to
normally ordering Xo)s X to have zero expectation value.
But this does not give the s = 0 and s = 1 results ex-
pected from minimal counterterms and from earlier com-
putations. There is a more complicated but apparently
natural choice that does give the expected s = 0 and
s = 1 results. It gives the following s-independent renor-
malized generating function (with cutoff e set to zero):

k+ „',t kg k+ '„,t k" (2.16)

Note that since all (integrated) correlation functions of
the quadratic boundary operators in the world-sheet ac-
tion can be obtained by differentiation of the generating
function lnZ,' with respect to the couplings, they will
also be s independent. More generally, arbitrary correla-
tion functions of interior or boundary operators may be
obtained by using Varick's theorem from the exact Green's
function (2.2), and they are manifestly s independent as
well.

III. STRING FIELD ACTION

Let the boundary action be represented by $ d86 iO,
where b is the antighost and 0 has ghost number one.
Introduce a basis (0,) of ghost number one boundary
operators, so that 0 = Q,. 2."0,. Here the coupling con-
stants 2:, may be viewed as parametrizing a point in the
space of world-sheet theories and thus also as parametriz-
ing a string field configuration. The string field action is

defined in terms of world-sheet correlation functions by
[1 21:

dd'= —) z'dz' $ dd dd'(O;(d) iQ, O, )(d'))
~t2

d d8' 0 8, 8' (3.1)

&O, o, ) = $
'

d, (.) o, —$
'

d,-(;)o, , (3.2)

where C is a contour approaching the boundary of the
disc and C is its image under z ~ 1/z. Unrenormaliz-

where (Q, 0~) is the BRST transformation of the bound-
ary operator Oz.

Despite the boundary interaction, a conserved BRST
current (J„J~) exists in the interior, given by that of
standard closed string theory. The action of BRST
charge on a boundary operator Qz. is
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able boundary couplings (t„ for r ) 1) in the absence of
a cutoff modify the short distance behavior of the exact
boundary Green's function and thus the canonical struc-
ture between boundary operators, because these bound-
ary interactions dominate the (interior) kinetic term in
the world-sheet action. If the exact Green's function is
used in extracting short distance behavior in (3.2), the
BRST transformation will cease to be geometrical, e.g. ,

{Q,X~(8)j g co)eX„(8), where c is the 8 component of
the ghost field on the boundary.

The BRST invariance of the antibracket defined on the
space of world-sheet theories in fact requires that the
BRST transformation law should not be modified by the
boundary interaction. This invariance is the statement

that dS defined in (3.1) is indeed closed, and in prov-
ing this crucial property [1], one has made an important
assumption that

(3 3). (Q, O, } = 0,

in notations described above. (In a more direct argument
that d S is indeed locally exact [5], this condition must
also be used. ) Thus, to define the string field action, it
appears that one must begin by working in a space of
cutoff boundary interactions, for which (3.3) holds, and
then if one wishes one can try to remove the cutoff.

For a general theory with quadratic interaction (1.3),
we can take O(8) to be of the form

0(8) = c(8)
~

+ X„(8) d8'u"'(8 —8') X (8')) —= c(8)V(8).
sar

(3 4)

The BRST transformation of O(8) can be computed from (3.2) with the standard BRST current in closed string
theory. In this computation, the matter stress energy tensor will be contracted with the matter part of (3.4) to
extract short distance singularities. There will be no double (XX) contractions here, since for a smooth (nonlocal)
coupling function u(8 —8'), X„(8) and X„(8') in O(8) are located at separate points on the boundary. For single

contraction alone (and with the same short distance behavior of two-point Green's function as in the free theory),
one has the general formula (Q, X„(8)) = co)OX„(8). Applying this to (3.4), one finds

(Q, O(8)) = cc'V(8) — cX„(8)$ d 8'u"'(9 —9 )c(8 )Bc'X('8 ). , ' (3.5)

Substituting (3.5) in (3.1) and evaluating the ghost correlation function according to

(c(8")c(8)c(8'))= 2[sin(8 —8') + sin(8' —8") + sin(8" —8)],

one obtains

dS= d d8' dV 8 8' +cos —L9' B ' +sin 8 —O' C8' (3 7)

where matter boundary operators A, B, and C are given by

A (8) = —V(8) + X„(8)$ d 8'siu(8 —8 )u"'(8 —8')8X (8 ),', '
87t.

B(8) = X„(8)$ d 8'u"'(8 —8 )8X(8 ), ', '
4'

C(8) = 0.

(3.8)

Given the exact generating function ln Z for correlation
functions of the boundary operators, it is straightforward
to evaluate dS from (3.7). To simplify the discussion
here, we shall use a general result proven in [2] to write
down S directly. This result states that if the boundary
interaction V(8) as introduced in (3.4) and the operator
A(8) as in (3.7) have the expansion in terms of a basis
(V, (8)) of matter operators:

. , a).~', + g ~(&') (3.10)

where Z is the world-sheet partition function and g is a
constant. Here the set of couplings is (x') = (a, u& ),
with associated basis (V;(8)) = (B~,V(8)). A simple cal-
culation following these definitions gives the correspond-
ing functions (o')—:jo(, n& ):

v(8) =) ~'v, (8),

then the action is given by

A(8) = ) .~*V*(8), (3.9) ~". =-k(u~+i —u~ i) —u.
2

To determine the constant g, one may compute S directly
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from (3.7) for speciai couplings. Such a computation with
u&" ——6'" u), yields g = 1. This, together with (3.10) and
(3.11), gives the string field action for general nonlocal
quadratic boundary interaction:

( pg/ pg/ p~) l9). I -k(u~+i —"k"i) —u„""I,.+ a+1
)

x Z(u, a), {312)
where the partition function Z is determined by (2.4).

Note that since (3.12) is derived for nonlocal bound-
ary interactions, there is no ultraviolet divergence. In
particular, both formula (3.10) and the BRST invari-
ance d2S = 0 (which must be used to derive (3.10) [2])
can be established rigorously. Now let the nonlocal cou-
pling function u(e —8') represent a set of local couplings
(tr, r = 0, ..., sj with boundary cutofF e as introduced in

I

Sec. II. In Fourier modes, this is given by (2 6)

ui = ) t„A:"e t&l
(3.13)

7-=O

Applyi~g this change of variables to (3.12), one finds
explicit E dependence, as well as implicit 6 dependence
through the partition function Z. To remove the cutoff
one must show that the action as a function of renormal-
ized coupling has a finite limit as e —+ 0. Because of var-
ious sources of e -+ 0 divergence in S, it appears at first
almost impossible that the counterterm in a = a'+ b,a
used in Sec. II to make the partition function finite could
also make S finite. But this turns out to be the case, as
will be shown presently.

After the change of variables (3.13), the action (3.12)becomes

[
r 1]—

„„(9ln Z, )9 ln Z,) Czm+i tr g py ) .tr g pv +a+1
m=o )" 2m ) o

($I
)9 lri Zg

m=o k=1 k

8 1

Z. 2
' = —(e '+ e')

8

+(e ' —e') ) (3.14)

(3.i5}

p 1 ) 2) 3) ~ ~ ~ ~

where e" =,&„"'
&,

and &, ln Z is the (integrated) bare Green's function given by (2.7). As e —+ 0, divergences
appear in P& i in the second line. They also appear in &, lnZ for r = s, s —1, and in a, but those can all beattributed to the counterterm Ka when expressed in terms of the renormalized Green's function:

)9 (9 (9
lnZ,' = lnZ, — Aa.

Ot„ ' Bt„
Ior the purpose of demonstrating the cancellation of divergences, it is suKcient to use the minimal form of the
counterterm Aa(t, i, t, ) given by (2.10). To isolate various divergences in (3.14), one uses the following result:

Qs+J7 3 s Alc

lim P =0
p ~ 1+t ks —1 g

—k6
k=1

„(9ln Z,'

r=o

Using (2.4), (3.15), and (2.10), and dropping terms that vanish as e ~ 0, on«nds
L~

—1]( . „ ,„.a i z,
C2m+i r

y~~) ' + l (8 —1)&",' „,+(8 —2)&",'ig „++&) ..1+t I,.-i,-k.
k=1

(3.i7)

The first line in (3.17) is finite, since it involves renor-
malized quantities. The next term in (3.17), with the sum
gP i, comes from the second line in (3.14), and would
not be present if the action 8 was constructed directly
in terms of local couplings without the cutofF. This term
has a nontrivial contribution even as t —+ 0 because the
infinite sum Q& i diverges as e . The remaining part,
proportional to Aa, is also divergent, and is a function
of t, 1 and t, only for minimal counterterm La given by
(2.10). Using (2.10) one finds that the t, i-dependent

I

]

term is in fact finite (for s ) 1) in the limit e ~ 0, and
is given b

OO

fi(t, i, t, ) =(s —1)W), '
~, , )A:=1

(3.18)

The rest of the third term in (3.17) is a function of t, and
is divergent as e ~ 0. But its divergent part cancels pre-
cisely that of the second term in (3.17). This remarkable
cancellation can be summarized by the following equa-
tion:

ks —k6

$8—1 g
—ke

k=1

OO
ys —1 —ke—Tr) in(1+t, k'-'&-"

) (s 1)T )
k=1 1+t A:8

= T'). —& (.-i) (t.) +&(~) =—f2(t, )+&(~), (3.19)
m=1
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where B„are the Bernoulli numbers. The finiteness of
(3.19) as ~ —+ 0 can be seen easily by replacing Q&
with fi dk and integrating by parts. To determine
the finite part f2, we expand each term in (3.19) in
power series of t, [which is absolutely convergent for
t, ( (ee)' /(s —1)' ], and perform the sum P&

The result is a polynomial in e with fz as the 6 term
[the negative powers of e cancel among the three terms in
(3.19)]. The cancellation of divergences for s ) 1 means
that the string field action S has a well-defined e —+ 0
limit given by

('8 l g'l

Ss = ) ) czmil tr Btp~ ) & Bti'~
r=1 m=o r—2m r—0 r

+ f, +f2+a +1 i Z, (t„,a),

So ——
i Tr(to) —t(~)' „+a'+ 1

I Zo,
Bto )

s=0.

(3.21)

This agrees completely with the result of [2]. In [2] there
is no boundary cutoff and the first term in (3.21) can
be traced back to the double contraction in computing
the BRST transformation (Q, O) of the boundary op-
erator. In the present formulation, there is no double
contraction in (Q, O) but the first term in (3.21) does
appear correctly after the cutoff is removed. Therefore
the agreement of (3.21) with [2) is highly nontrivial and
provides an important consistency check. For s = 1 one

finds, using (2.12), that divergences cancel between the
second and third terms in (3.17) also. But there are now

finite contributions from both terms as e —+ 0. Together
they give Tr to (1 —ti2) i, and the action is

, —~(~)" „„+c'+1 Z
1 —t', ' Bt","

(3.22)

Prom the computations described above, it appears
miraculous that the counterterm Ea that makes the mat-

ter partition function Bnite in Sec. II cancels all diver-

gences in the action (3.14). To see that this cancella-
tion is nontrivial, we first note that the action is de-

termined from the bare two-point correlation functions
of the world-sheet theory; there is no counterterm or
renormalization other than those present in the world-

sheet Lagrangian. When expressed in terms of renor-
malized couplings, the action (3.14) contains divergences

[the third term in (3.17) coming from the world-sheet
counterterm Aa]. The additional divergence [the second
term in (3.14) or (3.17)] can be traced back to the BRST
transformation of the leading unrenormalizable bound-

ary operator XB&X. Because (Q, X&(8)) = cBsX&(8),
the operator XBs+ X with one higher dimension may
be produced by BRST transformation, and its two-point

where Z,'(t„,a')—:Z, (t„,a' + Aa) is the renormalized
partition function (2.9).

The analysis of (3.17) for s = 0, 1 is slightly different.
For s = 0, the third term in (3.17) is zero, since Aa given
in (2.11) is linear in to. The second term in (3.17) is in

fact finite as e ~ 0 and gives Tr(to). One obtains the
action for the quadratic tachyon:

function will contribute to the string field action. More
precisely, as can be seen from the second term in A(8),
this contribution is multiplied by the short distance cutoE
[sin(8 —8') e) and it corresponds to precisely the diver-
gent second term in (3.14) and (3.17). From the world-
sheet point of view, correlation functions of boundary
operators XBs+ X can be made finite only if the corre-
sponding coupling and its renormalization is introduced.
Then by induction one would seem to require an infinite
number of couplings and their renormalization to obtain
a finite string field action as e —+ 0. What actually hap-
pens is a complete cancellation of divergence with only
renormalization of a finite number of local couplings.

Other choices of counterterm Aa with different fi-

nite part will also give a finite and cutoff independent
string field action (3.20), but with possibly different fi-

nite term fi + fz For the. minimal counterterm, the
action (3.20) is not s independent, as the t, —+ 0 limit
is singu1ar. As shown in Sec. II, a nonminimal but s-
independent counterterm can been constructed to give
an s-independent renormalized partition function. Un-

fortunately these s-independent counterterms still do not
give an s-independent action. This is because of the ex-
plicit s dependence of the second term in (3.17); the
two limits ~ —+ 0 and t, ~ 0 do not commute for this
term. The failure of the action to be s independent may
present difhculties to the notion that the space of open
string theories should be represented by 1ocal world-sheet
boundary interactions. It could be that, in fact (as has
been suggested to us by Gross), the cutoff should oiily
be removed if one is sufBciently close to classical solu-
tions. (For the specific boundary interactions considered
in this paper, the massive spacetime fields are taken at
zero momentum and so are far off shell. ) However, we do
not know any systematic way to proceed —or to achieve
background independence along those lines. We do be-
lieve that the problem of interpreting or dealing with the
unrenormalizable world-sheet interactions is one of the
main obstructions to progress in string theory.
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