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We present an effective quantum action for the gauged WZW model G_; /H _,. It is conjectured that
it is valid to all orders of the central extension ( —k) on the basis that it reproduces the exact spacetime
geometry of the zero modes that was previously derived in the algebraic Hamiltonian formalism. In ad-
dition to the metric and dilaton, the new results that follow from this approach include the exact axion
field and the solution of the geodesics in the exact geometry. It is found that the axion field is generally
nonzero at higher orders of 1/k even if it vanishes at large k. We work out the details in two specific
coset models: one non-Abelian, i.e., SO(2,2)/SO(2,1), and one Abelian, i.e., SL(2,R)®SO(1,1)¢ ~2/SO(1,1).

The simplest case SL(2,R) /R corresponds to a limit.

PACS number(s): 11.17.+y, 02.40.Dr, 04.20.Jb

I. INTRODUCTION

A gauged Wess-Zumino-Witten (WZW) model can be
rewritten in the form of a nonlinear o model by choosing
a unitary gauge that eliminates some of the degrees of
freedom from the group element and then integrating out
the nonpropagating gauge fields [1,2]. The remaining de-
grees of freedom are identified with the string coordinates
X*(1,0). The resulting action exhibits a gravitational
metric G,,(X) and an antisymmetric tensor B, (X) at the
classical level. At the one-loop level, there is also a dila-
tion ®(X). These fields govern the spacetime geometry of
the manifold on which the string propagates. Conformal
invariance at the one-loop level demands that they satisfy
coupled Einstein equations. Because of exact conformal
properties of the gauged WZW model, these equations
are automatically satisfied.

For a restricted list of noncompact gauged WZW mod-
els, there is only one time coordinate [1,3,4], thus making
them suitable for a string-theory interpretation in curved
spacetime. The list may be extended to supersymmetry
heterotic models [5—-7]. Then these models can be viewed
as generating automatically a solution of these rather
unyielding Einstein equations. One need only do some
straightforward algebra based on group theory to extract
the explicit forms of G,,,B,,,®. Following the lead of
[2], in which the SL(2R)_, /R case at k =2 [1] was inter-
preted as a string propagating in the background
geometry of a black hole in two dimensions, several
groups have worked out the geometry for all possible
cases up to dimension 4 [5,8—10]. The resulting new
geometries are generally nonisotropic and have singulari-
ties that are more intricate than a black hole, and may
have physical interpretations in the early string Universe.
The global aspects of these higher geometries have been
understood [11,12,7]. They all have very interesting du-
ality properties that correspond to interchanges of
patches of the global geometry. This duality may be
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viewed as inversions in group space [11] and are related
to asymmetric left-right gauging that involves a twist on
the right relative to the left of the group element [8].

Since these are singular geometries, it is clearly desir-
able to go beyond the one-loop expansion of the effective
o model and consider the effect of the exact conformal
invariance that underlies the gauged WZW model. It is
the purpose of the present paper to accomplish this by
considering the full quantum effective action. Of course,
the full quantum action is of interest in its own right
since the range of its applications goes far beyond the ex-
act geometry of the model. However, at this point, rath-
er than a complete derivation, we are able to present a
conjecture on the form of the full quantum effective ac-
tion. We will justify its form by deriving the exact
geometry and comparing to our previous exact results ob-
tained with algebraic Hamiltonian techniques. Therefore
let us first briefly review the status of conformally exact
results.

In recent papers [12—14] we showed how to improve
on the perturbative Lagrangian results by using algebraic
Hamiltonian techniques to compute globally valid and
conformally exact geometrical quantities such as the
metric and dilaton (and, in principle, other fields) in
gauged WZW models. We have applied the method to
bosonic, heterotic, and type-II supersymmetric four-
dimensional (4D) string models that use the noncompact
cosets. The main idea is as follows. It is part of the folk-
lore of string theory that Ly+L, is the Laplacian and
that when applied to the tachyon T it takes the form
(1.1)

(Lo+Ly)T 3,(e®V' =G G*d,T) .

—1
e®V -G
This equation follows from the general form of the low-
energy effective action of string theory which concen-
trates on the low-lying spectrum. Equation (1.1) was
used in [15] where the SL(2,R)_, /R geometry to all or-
ders in 1/k was “conjectured” to arise from it. Indeed,
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this simplest case has been checked to work up to four
loops for the bosonic string and up to five loops for the
type-II superstring [16]. In [13] we developed the general
methods to use (1.1) to extract the global and conformally
exact geometry for all G/H models, including the
heterotic superstring case. This was based on the follow-
ing proof of (1.1), which was implicit but was not stated
explicitly in [13]: Evidently, L,+L,, as constructed
from currents in a G /H theory, is exact to all orders in
1/k. The tachyon is annihilated by all n > 1 currents J.Z,
so that only the zero-mode currents J g are relevant, as
they appear in L,+L,. We further made the reasonable
assumption that the tachyon wave function depends only
on the zero modes of the group parameters. Therefore
we only need to know how to construct the zero-mode
currents from the zero modes of the group parameters as
differential operators. Then, after using the crucial obser-
vation that the tachyon T is constructed from certain
gauge-invariant combinations of group parameters and
then applying the chain rule as described in [13], Ly +L,
indeed takes the general form of the Laplacian in (1.1)
with a nontrivial dilation and metric. Since this Lapla-
cian is exact to all orders in 1/k, the resulting metric and
dilaton must be identified with the exact ones to all or-
ders in 1/k.

The Hamiltonian approach has effectively concentrat-
ed on the zero modes. Therefore, in comparing the old
results to the new exact quantum action of the present
paper, we must take care that the exact geometry is in
agreement first and foremost for the zero modes. We
shall see that the geometry for the higher modes may be
nonlocal on the world sheet. Our approach here will ap-
ply to Abelian cosets such as

SL(2,R)/R,
SL(2,R)®S0(1,1)*~!/80(1,1) ,
or
SL(2,R)_,.®SU(2), /(R®R) ,
as well as non-Abelian ones such as
S0O(2,2)/80(2,1)~SL(2,R)®SL(2,R)/SL(2,R)
or
S0(3,2)/80(3,1) .

For related results for the Abelian coset SL(2,R)/R, see
also a paper by Tseytlin [17] with whom the present in-
vestigations were initiated [18].

II. EFFECTIVE QUANTUM ACTION

The effective quantum action for any field theory is de-
rived by introducing sources and then applying a Legen-
dre transform [19]. The effective action, which is then
used as a classical field theory, incorporates all the
higher-loop effects. Based on a perturbative analysis in
[20,21], it has been argued [17] that for the ungauged
WZW model G _,, this procedure gives

SWzw=(—k +g)I,(g) , oD

-1 -1
Io(g) SqrfMTr(8+g d_g)

1 —14,13
+o fBTr(g dg) .

Therefore the full quantum effective action differs from
the classical one only by the overall renormalization that
replaces (—k) by (—k +g), where g is the Coxeter num-
ber for the group G, not to be confused with the group
element g(o*,0 ) (we have also assumed a conformally
critical theory with the Virasoro central charge at ¢ =26
that fixes the value of k and we have neglected possible
field renormalizations [27] for the group element g since
they give rise to nonlocal terms in the o model). Instead
of relying on the perturbative approach in [20,21,17], we
can justify the result (2.1) by the following argument on
the geometry: Before the quantum effects are taken into
account, the classical o-model geometry of the WZW
model is given by the group manifold metric and the an-
tisymmetric tensor (the axion), both multiplied by (—k).
To derive the exact geometry by the algebraic Hamiltoni-
an approach, one must use the quantum exact stress ten-
sor to construct Ly+ L, as described in Sec. I. The con-
formally exact quantum stress tensor follows from the
classical one by a well-known renormalization that re-
places (—k) by (—k +g). It follows from this that the
exact geometry in the Hamiltonian approach is the same
as the classical geometry except for the aforementioned
renormalization. To agree with this quantum result, the
exact effective action must be the same as the classical
one except for the proportionality constant (—k +g) as
given in (2.1). Furthermore, g(o™,07) is now treated as
a classical field.

We now extend these arguments to the gauged WZW
(GWZW) model for G_; /H _,, which is defined by the
classical action [22,23]

Sowzw = —kly(g)—kI (g, 4,,4_), 2.2)

_ 1 —1_ -1
Lig A, A )=7—[ Tr(4_3.gg"'~4,27 '8¢
+A_gA. g '—A_ A_).

Here g is a group element in G and A, is valued in the
Lie algebra for the subgroup H. This action is invariant
under the local gauge transformations that belong to the
subgroup H:!

g—>ATIgA, AL >ATNAL—3 A . 2.3)

It is useful to make a change of variables to group ele-
ments h, EH, A, =d,h hi', A_=3_h_h_' After
picking up a determinant and an anomaly from the mea-
sure, the path integral is rewritten with a new form for
the action [24,23]

Sowzw=—kIo(hZ'gh ) +(k—2mIy(h='hy),  (2.4)

IThe more general left-right-asymmetric gauging of [8] may
also be discussed in a straightforward fashion (for an applica-
tion, see [12]).
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which is manifestly gauge invariant under A, —A " 'h,.
The new path-integral measure is the Haar group mea-
sure D, Dh,Dh_. We want to take advantage of the
similarity of this action to the classical WZW action:
The first term is appropriate for G with central extension
(—k), and the second term is appropriate for H with cen-
tral extension (k —2h). Defining the new fields
g'=hZ'gh,,h’=h"'h ., h"=h_ and taking advantage
of the properties of the Haar measure, we can rewrite the
measure and action in decoupled form Dg’'Dh’'Dh'’ and
S=—kl,(g')+(k —2h)Iy(h’). This decoupled form em-
phasizes the close connection to the WZW path integral
and gives us a clue as to how to guess the effective quan-
tum action.

However, g’,h’ are not really decoupled, since we must
consider sources coupled to the original fields. Indeed, to
derive the quantum effective action one must introduce
source terms and perform a Legendre transform. Since
these coupled g’,h’',h" integrations are not easy to per-
form, we will guess [18] the answer based on the remarks
above and then try to justify it. By analogy to (2.1) we
suggest that the quantum effective action is given by sim-
ply shifting (—k) to (—k+g) and (k—2k) to
(k —2h)+h=k —h (again we neglect possible field re-
normalization):

SHvzw=(—k +g)o(h_'gh )—(—k+h)I,(h"'h ).

(2.5)
This may now be rewritten back in terms of classical
fields g, 4, A_ by using the definitions given before.
We obtain

S&wzw=(—k +g) Iy(g)+1,(g,A,,A_)

g—h
+ X gIZ(A+,A_)

L(A,, A_)=I,(A)+I,(A_)

, (2.6)

1 2
+EfMd oTr(A, A_),

where we have defined I,(A)=1y(h ),
I,(A_)=I,(hZ") and used the Polyakov-Wiegman for-
mula [24] to rewrite Io(h_'h )=I,(A,,A_) in the
form above. Note that I,(A4 ., A4 _) is gauge invariant.
Our proposed effective action differs from the purely clas-
sical action (2.2) by the overall renormalization (—k +g)
and by the additional term proportional to (g —h). In
the large-k limit (which is equivalent to small #), the
effective quantum action reduces to the classical action,
as it should.

This is not yet the end of the story, because what we
|

are really interested in is the effective action for the o
model after the gauge fields are integrated out (and a uni-
tary gauge fixed for g). In other words, sources are not
introduced for the original A4 ., but only for g. The effect
of this is that the path integral over the above 4, (or )
still needs to be performed. At the outset, with the classi-
cal action, the path integral over 4, was purely Gauss-
ian, and therefore it could be performed by simply substi-
tuting the classical solutions for 4, = A4_(g) back into
the action. This integration also introduces an anomaly
which can be computed exactly as a one-loop effect. The
anomaly gives the dilation piece to be added to the
effective action

Sa~ [ d70VYRP(y)®(g) , 2.7)
where v, v, and R?) are the metric, its determinant,
and curvature on the world sheet for any genus, respec-
tively. In order to obtain the exact dilaton, we need to
perform the A, integrations with the effective action,
not the classical one. However, in (2.6) the parts I5( 4 ;)
are nonlocal in the 4, (although they are local in A ).
The reason is that

Ij(A)=Io(h )~ [Tr(A 3 _h hiH+ - -

and we cannot write d_h . h ;! as a local function of 4 .
Furthermore, in the non-Abelian case, I;( 4, ) have addi-
tional nonlinear terms. So, if we believe that the quan-
tum effective action is indeed (2.6), then the effective o-
model action we are seeking seems to be generally nonlo-
cal even in the Abelian case (see also [17]). We will there-
fore concentrate on just the zero modes. As shown
below, we have managed to obtain exactly the zero-mode
sector of the o model and proved that the geometry does
indeed reproduce correctly the exact geometry derived
before in the Hamiltonian formalism [13,14]. This is our
justification for (2.6).

III. ZERO-MODE SECTOR

To restrict ourselves to the zero-mode sector, we do di-
mensional reduction by taking all the fields as functions
of only 7 (i.e., world line rather than world sheet). This
extracts the low-energy point-particle content of the
string. This technique proved to be very useful in the
analysis of the GWZW model at the classical limit [11],
and we now use it for the conformally exact action. The
derivatives 0. get replaced by 9, and 4. get replaced by
a. =03 hi'. Then all nonlocal and nonlinear terms
drop out and we obtain the effective action in the zero-
mode sector:

Seﬂ~=;l:‘n_ﬂfd’rTr(%a,g_‘E),g-{-aJi,gg“l—-a+g“afg+a~ga+g“—a+a_)—-g—g-—;?}ifd1-Tr(a+—a_)2 .

This action is gauge invariant for 7-dependent gauge
transformations A(7). Most notably, the path integral
over a. is now Gaussian, and this permits the elimina-
tion of a through the classical equations of motion,

(D,gg p=5""(a, —a_),
k:h (3.2)
(87D _g)y =3 —gla+—a),
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where we have defined the covariant derivatives D, on
the world line D,.g=09,g —[ay,g] and the subscript H
indicates a projection to the Lie algebra of the subgroup
H. The system of equations (3.2) is linear and algebraic
in a4, and therefore it can be easily solved. To do that
and for further convenience, it is useful to introduce a set
of matrices {f,} in the Lie algebra of G which obey
Tr(t 4t5)=7 45, where the Killing metric 1 45 is diagonal
and normalized to have *1 eigenvalues. The subset of
matrices belonging to the Lie algebra of the subgroup H
will be denoted by {t,} with a lowercase subscripts or su-
perscripts. Then we define the quantities

L7=(g7'3,8)y, L3 X"=Tr(g 'd,gt"),
R¥=(—3,¢ "y, RO X'=—Tr(dgg "t4), (3.3
Mab:Tr(tagtbg;l_tatb) >

]

where X¥, u=0,1,...,d —1, are of the d =dim(G /H)
parameters in g that are left over after going to a unitary
gauge for g. Then the solution of (3.2) for a is

a,=M"™M—-AMM+M)]"IMTRE—-MLE+RH)],
(3.4)
a_=[MMT—AM+MD ] " YMLE—-MLE+R™)],

where A=(g —h)/(k —g). Substitution of these expres-
sions back into (3.1) gives

e k— v
Sp‘;m=—#g— [drG,,0x" x", (3.5)

where the metric G, is defined as

Gy =8u T HIIM ™M — MM +MD)] " (MT=AD)} 4, L{, R — A MM — MM +MT)],'LoLY

—IAMMT—MM +MT)]'RERE

with g, being the part of the metric due to the kinetic
first term in 1,(g);

g#v:%L:LfﬂAB:%R:RfﬂAB > 3.7)
and where the curly brackets denote symmetrization with
respect to the appropriate indices.

We will illustrate applications of the above result for
several Abelian and non-Abelian cosets. The simplest
case is SL(2,R)/R, but since this can be presented as a
limit of more complicated cases, we will give the results
for it after discussing others. This provides a check of
our methods.

Let us specialize to the three-dimensional non-Abelian
coset SO(2,2)/S0O(2,1) whose exact metric and dilaton was
found in [13] with the Hamiltonian approach. We will
find the metric in a patch of the manifold corresponding,
in the notation of [11,13] to b=cosh2s,
u =sin’6(cosh2t — 1), v =cosh2r + 1, where {b,u,v} are
the global coordinates which cover the entire manifold.
The set of three matrices {z,} in the subgroup
H=80(2,1) is

1 010

to1=7§ 1 g 8 )
| 001

102 7—5 1 g g Py (3.8)
1 0O 0 O

Y

r

The columns of the matrices L #", R “" may be given as
vectors L“,R#,th, o,r:

2¢,—2s3(c,—1) —
L,=V2| 2sgcolc,—1) |, R,=V2|0 |,
0 0
0 0
Lo=V2| 0 |, Ry,=V2|s,(1—¢,) |, (3.9)
1—¢, c,(1—c,)
L,=0, R,=0,
and similarly the matrix M, is
cilc,—1) sgcolc,—1) 0
(M,,)=| c;59celc,—1) c,(c5+sk,)—1 s,c, ,
—s,5¢colc,—1) —s,(c3+5s%,) l—cc,
(3.10)

where ¢, =cosh2r, cg=cosf, c,=cosh2t and s, =sinh2r,
sg=sinb, s,=sinh2¢. The nonzero components of the
matrix g,,, are g, =g, =1, g§go=(c, —1)/2.

Using (3.6)—(3.10), the nonzero components of the
metric (3.6) take the form
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1 1
G,,=1, G,=p |tanh? coth?t tan’0— coth? — ,
" «=F |tanh’r co an 020 k—1 cos’0sinh’t
(3.11)
G go=p |tanh?r — 1 —1—2— , G,p=PBtanh’r cotht tan6 ,
k—1 cos’0
where the function B(r,t,0) is defined as
_ 1 coth?r 1 1
l=1——— | == —tanh? +coth’t tan%0 | | — . (3.12)
d k—1 | cos?0 anir sinh’ | © (k —1)* cos’0sinh’t
. . l
It is not hard to check that the expression for the metric B b—1 1
i i i B, = . 4.3
(3.11) is the same as the one we found in [13] with the WS k=1 bF1 (0 —2)0 —u —2) (4.3)

Hamiltonian approach.?

IV. EXACT AXION

To obtain the axion B wv» We need to retain the d, on
the world sheet and then read off the coefficient of

LHA_X"3,X"—8_X"3,X")B, (X) .

As already explained above, we cannot do this fully be-
cause of the nonlocal terms and non-Abelian nonlineari-
ties, but we can still obtain the axion as follows. We for-
mally replace the R, L# in the expressions for ¢, and
elsewhere by R¥ LY where R¥=(—3,g¢g ')y and
L7 =(g7'3,g)y. We justify this step by the conformal
transformation properties for left and right movers. We
then substitute these forms of 4., back into the action
(2.6) and extract the desired axion from the quadratic
part (which is local and a partner of the metric). The ex-
pression we find for the axion B, (X) is

B,,=b,, +{IM™ —AM+MT]!
X(MT—AD},,LE,RS, ,
(4.1)

where b, is the part of the axion due to the Wess-
Zumino term in Iy(g) and the brackets denote antisym-
metrization with respect to the appropriate indices.

In the particular case of the SO(2,2)/SO(2,1) coset
model, we have found [8] that for the semiclassical
geometry (k— o) the axion field vanishes. However,
when k is finite we obtain a nonvanishing result, which is
given by the expression

B
By=—"—
2k —1)
with the rest of the components being zero. In terms of
the global coordinates {b,u,v}, the corresponding expres-
sion is

tanh?r cotht tanf , (4.2)

2To compare, one should change variables from (b,u,v) to
(t,0,r) according to the prescription above.

In Sec. VII we will obtain the exact axion for the
three-dimensional black string model discussed in the
semiclassical limit kK — o in (second reference in [9]) and
for any k in [14].

V. EXACT DILATON

To obtain the exact dilaton we must compute the
anomaly in the integration over 4,. However, as was
the case with the metric and axion, the local part of the
dilaton can be obtained by going to the point-particle
limit. The effective action (3.1) contains a quadratic part
in the gauge fields, which can be rewritten

_k +g _ )\, 2 2
deTTr a_(M—ADa, + (a2 +a%)

(5.1)

Integrating out the gauge fields a, gives a determinant
that produces the exact dilaton by identifying,
determinant=e®, that is,

®(X)=In[det(M)(det{I —A[M ~'+(MT)"1]})1/?]
+const (5.2)

As an example, for the non-Abelian coset SO(2,2)/SO(2,1)
this gives

sinh?2r sinh?# cos?6

d=In ‘/B

+const , (5.3)

or, in terms of the global coordinates {b,u,v},

(bz—l)(v_—u —2)

d=In VB

+const , (5.4)

which is exactly the expression found in [13] with the
Hamiltonian approach.

We can use the general expressions for the exact metric
(3.6) and dilaton (5.2) to check a theorem which we sug-
gested before [13]. We noted some time ago [8] that the
combination e®V'—G that appears in the Laplacian (1.1)
is actually independent of k. We had first conjectured
this by noting that, in the large-k limit, we could write
this quantity as the product of the Haar measure for g
times the Faddeev-Popov determinant for fixing a unitary
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gauge for any G /H gauged WZW model’:

e®V'—G =(Haar) X (Faddeev-Popov) . (5.5)

Both G, and ® receive 1/k corrections. But by noting
that the right-hand side is purely group theoretical, we
first conjectured that the combination e®V'—G must
remain k independent. In our later work for several
non-Abelian cases [13], we verified that this conjecture is
indeed true. Therefore we stated the following theorem:

e®V'—G (any k)=e®V —G (at k=) . (5.6)

We can reinforce this result by making additional obser-
vations. First, the path integral reasoning that allowed
us to observe (5.5) is equally valid when the effective ac-
tion (2.6) is used in place of the classical action (2.2).
Since the right-hand side of (5.5) is purely group theoreti-
cal, (5.5) should be valid both for the exact and classical
G,, and ®. Since we have already computed the exact
metric and dilaton, one is now in principle in a position
to check the relation (5.6) in general. However, the alge-
bra required to compute V' —G seems difficult. Instead,
the result for all cases relevant to strings in four-
dimensional curved spacetime has already been computed
explicitly in our previous papers, and indeed for Abelian
and non-Abelian cases the theorem (5.6) is true.

To include the effects of the dilaton, we must add one
more piece to the effective o-model action

S =sftgel | (5.7
where S has the same form as (2.7) but with the exact
dilaton replacing the perturbative one. Here we have dis-
cussed mainly the zero-mode part of the total effective
string action. The effective action for the higher modes
that follows from (2.5) and (2.6) is generally nonlocal.

VI. GEODESICS IN THE EXACT GEOMETRY

In [11] the string (or particle) coordinates were defined
as certain gauge-invariant combinations of the group pa-
rameters in g. In a specific unitary gauge, these invari-
ants are related to the gauge-fixed form of g that defines
the string coordinates. Using this formalism, a group-
theoretical method for obtaining the solution to the geo-
desic equation was found and used to obtain the geodesics
in the classical geometry. It was shown that the solution
to the geodesic equation, which generally is a complicat-

3For a related statement for SL(2,R)/R, see also [25], and for
clarifications, see [17]. In our previous work [8,5], we errone-
ously stated that the path integral for the GWZW model re-
quires an extra gauge-invariant factor F(g) in the measure. Our
error was due to the omission of an anomaly factor. The
correct measure at the outset is the Haar measure for g times
the naive measure for the gauge fields 4. and F=1. This
correction does not alter our theorem. We thank E. Kiritsis and
A. A. Tseytlin for comments on this point.

ed nonlinear differential equation for the string coordi-
nates and hard to solve directly, could be obtained by first
solving the equations of motion of the original variables
g(7),a(7) (which is easy) and then forming the gauge-
invariant combinations from the solutions for the group
parameters in g(7). We now apply the same method to
solve the geodesic equations in the exact geometry. So
we seek a solution to the classical equations of motion
given by (3.2) and

D_(D,gg )=3/a_—a,)+[a_,a,], 6.1)

which follows from varying g and where D, have the
same meaning as in (3.2). The method for solving these
equations is identical to that used in [11], and the solu-
tion as a function of the proper time 7 is

k—g

% —h at |geexp[(P —a)r],

g(r)=exp

6.2)
[go(P ‘a)go_l lg+a=0,

where a and P are constant matrices in the Lie algebra of
H and G /H, respectively, and g, is a constant group ele-
ment. These matrices, which are constrained by the
second equation in (6.2), define the initial conditions for
any geodesic at 7=0. The line element evaluated at this
general solution becomes

2
ds
dr

k—g
——=T
8w T

= P2+g_ha2

(6.3)

The sign of this quantity determines whether the geodesic
is timelike, spacelike, or lightlike, and it can be chosen a
priori as an initial condition. The large-k analysis of (6.2)
was given in [11]. With the new k dependence and using
the same methods as [11], we have checked in a few
specific cases that the geodesic equations for the exact
metric are indeed solved with this group-theoretical tech-
nique.

VII. AXIAL GAUGING AND
THE SL(2,R)®S0(1,1)"2/S0O(1,1) MODELS

So far, we have concentrated on the vector gauging of
the WZW models. For the axial gauging, the subgroup H
should be Abelian with zero Coxeter number. The action
is given by (2.2), but with I,(g, 4 ., A _) replaced by

Izlaxial(g,A+’A_)=ﬁIMTI(A_a+gg~1+A+g_la—-g

—A_gA. g '—A,.A_).

(7.1
Then, if A, =—03.h, k7!, the analogue of (2.6) is
SN =(—k+g) |Io(e)+I1{"(g, 44, 4_)
g -1
+ _k+g10(h_ hy)| . (7.2)

Let us specialize to the SL(2,R)®SO(1,1)¢2/80(1,1)
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coset models. For d =3 the semiclassical aspects of the
model were worked out in the second reference in [9], for
d =4 in the fifth reference in [9], and for general d in [4].
The conformally exact geometry was found in [14] with
the Hamiltonian approach. It 1is convenient to

parametrize the group element of G=SL,(2,R)
®S0(1,1)? "% as
gO 0 o .. 0
0 g 0
g8= [ . : ’ (7.3)
0 o0 84—
where
a u
&= |_, p| abtw=1, (7.4)
and
cosh2r; |sinh27;
&= sinh2r; |cosh2r; |’ i=12,...,d=2. (7.5)

The infinitesimal generators for SL(2,R) are

. _ 90 1 O
Jom % lo —1°
01
J+=40 |9 o] (7.6)
. 0 O
J-"490 —1 0}

and those for the SO(1,1)’s are

01

1 0l i=12,...

Ji=q; ,d—2. (1.7

The coefficients g; parametrize the embedding of
H=S0(1,1) into the factored SO(1,1)’s in G and are nor-
malized to Ef;gqiz: 1. The subgroup elements A, are
parametrized in terms of two variables ¢ as

hi =exXp _'Lju(”(ﬁi s (7.8)
90
where
jO 0 o e 0
0 Jj; 0
Jun=1|: : (7.9)
0 0 Ja—2

If we define two new variables ¢=¢_—¢_,, d=¢_+¢,
then in the gauge b ==ta the action (7.2) takes the form

k d—2

xial — k' 1
Sg%?zvé—mf — [8+(uv)8ﬁ(uv)—2(uv—1)(8+u8‘u+8+v8_u)]+4k, iél K;0,r;0_r;
d—2 B
+ ua+v—va+u—2—k—, >, k;m;04r; |(3_¢p+0_¢)
i=1
k 422 ~ k , 2
+ ua_v—va_u+2? >, k;m;0_r; |(31¢p—0,4)+ uv—l—? T 0,¢d_¢
i=1

- k .
+ |1 uv+k,p

where k’=k —2 is the renormalized value for the central
extension k and 1, =q; /9., k; =k, /k, p*= 3¢k,

To extract the effective string model, we now need to
integrate out ¢ and @, which is equivalent to integrating
out 4. As discussed before, this gives nonlocal contri-
butions. Therefore we may again concentrate on the zero
modes by dimensional reduction. Furthermore, as dis-
cussed in Sec. IV, we may restore formally d,—9d.. in or-
der to compute the axion. This procedure extracts the lo-
cal part of the effective action and preserves gauge invari-
ance with respect to 7-dependent gauge transformations
A(7). In fact, the local part of the effective action is an
ambiguous notion and the principle of 7-dependent gauge

(3,40_¢+03_¢3.$—0.43_4) ,

(7.10)

-

invariance resolves this ambiguity.* The upshot of these
steps boils down to keeping the local part of the solutions
of the classical equations for the gauge fields ¢ and ¢:

4Our gauge-invariant results differ in general from the local
part discussed in [17], which is not gauge invariant with respect
to A(7). Our form is required to produce the correct geometry
that agrees with the algebraic results. However, for the special
case SL(2,R)/R the results for the metric and dilaton agree ac-
cidentally with [17].
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vO4LuU —ud4v

S} = ,
i¢|local uv _1__(k/k,)p2_2/k,
2.8 . ¢l Kimdsr;
+% llocal kl uv_l__(k/k,)pz *

(7.11)

Substitution of the above expressions into the action (7.10) gives the following expression for the local part of the

effective action:

k' 1 1+2/k 1+p?
local — & _P
s =—[ Py TP ———y s =1y O+ (B _(uv)+ === (3, ud v +3_ud,v)
k 422 Mi7;K;
+—= K; |6;+ d,r0_r;
k' ,.,]2:1 Y Kk —1)—p2 T
172 diz[(ua+v—v8+u)K,.nia_r,-—(ua_v—ua_u)xin,-a+r,-] . (7.12)
k'/k(1—uv)+p? &
I
The first two lines in the above expressions define a ®=1In[r(r —r,)]+;Ink’ . (7.16)

metric which is precisely that found in [14] with the
Hamiltonian approach. The third line defines an an-
tisymmetric tensor (axion). As in Ref. [14], it is useful to
diagonalize the metric. Since the procedure is exactly the
same, we are not going to repeat it here. The answer is
that only a three-dimensional part of the metric is non-
trivial, and the rest corresponds to flat directions. The
three-dimensional nontrivial part of the metric, which de-
scribes a black string, has the form [14]

r r_—r
dsip=— |1—— |di®+ |1— L ldx?
r—rq
, ’ -1 ’ -1
e I E e P IR E)
8r r
where [14] r.=vV2/k'(p*+1)C, r_=v2/k'

X(p2+2/k)C, and r, =2/kV'2/k’'C (for C, see below the
expression for the dilaton). For the axion and its field
strength, we obtain a new result: B, =B, =0, and

_ 172
o |r-—r, r—ry
B, = . .
+ q
r r 12 —r 714
— — - q + q
Hrtx_arth— 2
Ty (r—ry)

To obtain the dilaton, one has to integrate out ¢ and ¢ in
(7.10). Then one gets for the conformally exact dilaton
the expression which was found in [14]:

Ce“’=(1—uu)[ 1+p2+(p2+2/k)lf;v
172
+p2—2/k +p*—22 , (1.15
X |[1+p /k+p I—av (7.15)

where C is an arbitrary constant. In the variables which
diagonalize the metric, the dilaton takes the form [14]

Therefore an additional piece S§T(®) must be added to
the action in (7.12). The expressions for the metric, the
dilaton, the axion, and its field strength tend to their
semiclassical values (see the second reference in [9]) in the
k — oo limit, because then r,—0.

It would be interesting to check that the expressions
we found for the metric, the axion, and dilaton in this
simple Abelian model indeed satisfy the perturbative
equations for conformal invariance beyond the one-loop
approximation. For large k the backgrounds of the (2D
black hole)® R and the 3D black string are related by a
duality transformation as it was shown in [26]. Knowing
the exact backgrounds (any k) for both geometries may
shed some light into the form of the duality transforma-
tion beyond leading order in o'~ 1/k.

VIII. SL(2,R)/R MODEL

Since the simplest case SL(2,R)/R is just a limit of the
previous case, we will briefly derive in this section all the
well-known results. In order to specialize the action
(7.12) to the case of the SL(2,R)_; /R model, one should
take k;=0. It follows that x;=p?=0, and the action
(7.12) and dilaton (7.15) take the form

k 1 1/k
eff = — —
Slocal Svfuv—l—Z/k’ uv_la-q-(uv)av(ul))
+(0, ud_v+0_ud,v)
+S3(®) (8.1)
and
2 1/2
[ - . __ < uv
Ce®=(1—uv) |1 Pp— , (8.2)

where C’ is a constant related to C in (7.15). In the re-
gion where uv > 1, we change variables from (u,v)—(¢,7)
as
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u =coshre’, v=coshre™". (8.3)

Then the action (8.1) and the dilaton (8.2) can be written
as

Slzcgal=7f;fa+ra_r—f(r>a+ta_z +Sg (@),

(8.4)
®=In[sinh2r/f (r)]+const

where f(r)=1/(tanh?*» —2/k), thus reproducing the ex-
act expressions for the metric and dilaton of the two-
dimensional (2D) black hole as they were computed in
[15,13]. One could also use the effective action appropri-
ate for vectorial gauging (2.6) to obtain all of the results
in this section.

IX. CONCLUSION

We have suggested the form of the effective quantum
action for the general Abelian or non-Abelian GWZW
model and verified that it works, at least in the zero-mode

sector. Furthermore, we have obtained new general re-
sults for the conformally exact axion field and geodesics.
The zero-mode sector determines the point-particle
behavior of the underlying string theory and is the only
part relevant for the low-energy physics. Therefore, al-
though our methods have yielded incomplete results for
the full string theory, they are adequate to extract the
most relevant physical information on the curved space-
time geometry. Based on the agreement with the algebra-
ic Hamiltonian approach in the zero-mode sector, we
conjecture that, before the integration over 4., the
forms (2.5), (2.6), and (7.2) may be trusted for all the
higher modes as well.
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