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We study the dynamics of phase transitions out of equilibrium in weakly coupled scalar field

theories. We consider the case in which there is a rapid supercooling from an initial symmetric
phase in thermal equilibrium at temperature T, ) T, to a final state at low temperature Tf 0. In
particular we study the formation and growth of correlated domains out of equilibrium. It is shown

that the dynamics of the process of domain formation and growth (spinodal decomposition) cannot
be studied in perturbation theory, and a nonperturbative self-consistent Hartree approximation is

used to study the long time evolution. We find in weakly coupled theories that the size of domains
grows at long times as (ri(t) gt((0). The size of the domains and the amplitude of the fluctuations
grow up to a maximum time t, which in weakly coupled theories is estimated to be

with ((0) the zero-temperature correlation length. For very weakly coupled theories, their final size

is several times the zero-temperature correlation length. For strongly coupled theories the anal size

of the domains is comparable to the zero-temperature correlation length and the transition proceeds
faster.
PACS number(s): 11.10.Ef, 05.70.Fh, 64.90.+b

I. INTRODUCTION AND MOTIVATION

Phase transitions play a fundamental role in our under-
standing of the interplay between cosmology and particle
physics in extreme environments. It is widely accepted
that many different phase transitions took place in the
early Universe at different energy (temperature) scales
and with remarkable consequences at low temperatures
and energies, in particular, broken symmetries, and pos-
sibly the observed baryon asymmetry in the Universe.

Phase transitions are an essential ingredient in infla-
tionary models of the early Universe [1—6]. The impor-
tance of the description of phase transitions in extreme
environments was recognized a long time ago and efforts
were devoted to their description in relativistic quantum
field theory at finite temperature [7—9]. For a very thor-
ough account of phase transitions in the early Universe
see the reviews by Brandenberger [10], Kolb and Turner
[11],and Linde [12].

The methods used to study the equilibrium proper-
ties of phase transitions are by now well understood and
widely used, in particular Beld theory at finite tempera-
ture and efFective potentials [14].

These methods, however, are restricted to a static de-
scription of the consequences of the phase transition, but
can hardly be used to understand the dynamics of the
processes involved during the phase transition. In par-
ticular, for example, the effective potential that is widely
used to determine the nature of a phase transition and

static quantities such as critical temperatures, etc. , is
irrelevant for the description of the dynamics. The efFec-
tive potential corresponds to the equilibrium free-energy
density as a function of the order parameter. This is a
static quantity, calculated in equilibrium, and in partic-
ular to one-loop order it is complex within the region of
homogeneous field configurations in which V"(P) ( 0,
where V(P) is the classical potential. This was already
recognized in the early treatments by Dolan and Jackiw
[8]

In statistical mechanics, this region is referred to as
the "spinodaV' and corresponds to a sequence of states
which are thermodynamically unstable.

At zero temperature, the imaginary part of the effec-
tive potential has been identified with the decay rate of
this particular unstable state [26].

The use of the static effective potential to describe
the dynamics of phase transitions has been criticized by
many authors, among them Mazenko, Unruh, and Wald
[15]. These authors argued that phase transitions in typ-
ical theories will occur via the formation and growth of
correlated domains inside which the Beld will relax to
the value of the minimum of the equilibrium free energy
fairly quickly. It is now believed that this picture may be
correct for strongly coupled theories but is not accurate
for weak couplings.

The mechanism that is responsible for a typical second-
order phase transition from an initially symmetric high-
temperature state is fairly well known. When the temper-
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ature becomes lower than the critical temperature, long-
wavelength Huctuations become unstable and begin to
grow and the field becomes correlated inside "domains, "
the order parameter (the expectation value of the vol-
ume average of the field) remaining zero all throughout
the transition.

Recently, de Vega and one of the authors have studied
the inHuence of these instabilities in the evolution of the
order parameter out of equilibrium [16] in the case when
a nonzero (but small) initial value of the order parameter
was assumed.

In this work we continue the study of the non-
equilibrium aspects of second-order phase transitions in
typical scalar Geld theories, with a view towards a deeper
understanding of the dynamics of phase transitions in in-
Hationary scenarios of the early Universe. In particular
trying to describe the process of domain formation and
growth in the case in which the initial state is symmet-
ric and in equilibrium at a temperature higher than the
critical temperature and cooled down below the critical
temperature.

Although there have been several attempts to study
the time evolution of the scalar field either in Hat space-
time or de Sitter space [17—21], to our knowledge there
has not as yet been a consistent treatment of the dynam-
ics of domain formation and growth.

Recently, Kolb and Wang [22] have reported on an
equilibrium study of the static properties of domains pro-
duced in late-time phase transitions, but it becomes a
pressing issue to understand the process of domain for-
mation and growth, especially the time scales involved
and the size of the correlations.

Although our initial motivation, and ultimate goal,
is to study the dynamics of the phase transition in an
expanding universe, in this work we report our studies
on the dynamics of the phase transitions in Minkowski
space. We do not attempt in this article to study the
nonequilibrium properties in the necessarily more com-
plicated setting of inflationary cosmologies, and restrict
ourselves to introducing the methods of nonequilibrium
quantum statistical mechanics and apply them to the
study of formation and growth of domains in Hat space-
time.

We would like to point out at this stage, that the situ-
ation under consideration is very different from the clas-
sical description of the process of spinodal decomposition
in statistical mechanics. The classical approach to spin-
odal decomposition is based on a "coarse grained" time-
dependent Landau-Ginzburg equation, which is first or-
der in time and purely dissipative. Thermal fluctuations
are usually introduced as a I angevin noise, typically un-
correlated [23, 24), that obeys the fluctuation dissipation
relation.

In our case we are studying a quantum field theory,
the Heisenberg Beld equations are second order, non-
dissipative (in Minkowski space), and both quantum and
thermal Huctuations are present in the initial state (den-
sity matrix), furthermore, as is typical in these scalar
theories, the order parameter is not conserved.

This article is organized as follows. In Sec. II we
present our arguments that suggest that phase transi-

tions in expanding cosmologies must be studied away
from equilibrium for weakly coupled theories. We empha-
size that the important long-wavelength modes that be-
come unstable below the critical temperature and whose
dynamics is relevant for the process of phase separation
and domain growth will easily be out of equilibrium dur-
ing the transition for weakly coupled theories.

In Sec. III, we introduce our model and the methods
of non-equilibrium statistical mechanics as applied to the
description of the dynamics of the phase transition.

In Sec. IV, we analyze the real time correlation func-
tions in zeroth order and obtain the first quantitative ex-
pressions, a scaling law for the size of the domains and the
growth of the amplitude of the Huctuations. In Sec. V,
we carry out a perturbative calculation and show quan-
titatively that the dynamics cannot be studied within a
perturbative framework.

In Sec. VI we introduce a nonperturbative self-
consistent Hartree approximation to study the evolution
of correlations and growth of domains. We provide an
analytic and numerical analysis of the process of domain
growth and establish a scaling law for the size of the do-
mains at long times, and an estimate for the maximum
size of the domains for very weakly coupled theories.

We summarize our findings and pose further questions
in Sec. VII.

II. THE CASE FOR A NONEQUILIBRIUM
DESCRIPTION

Before entering into the technical details, let us sketch
the arguments that suggest that when the temperature is
very near the critical temperature, the relevant dynamics
must be studied out of equilibrium.

As in any dynamical process, in order to try to describe
the time evolution of the system, one must Grst try to
determine the typical time scales involved in the different
dynamical processes. This understanding becomes more
pressing when one tries to understand the dynamics of
phase transitions.

In particular, is it possible to describe the phase tran-
sition in an environment in which the temperature is
changing at some particular rate, in local thermodynamic
equilibrium? To address this issue one must compare the
typical collisional relaxational rates of the particles to the
rate of change of the temperature.

The typical collisional relaxation rate for a process at
energy E in the heat bath is given by I'(E) = w i(E)—
n(E)cr(E)v(E) with n(E) the number density of parti-
cles with this energy E, o (E) the scattering cross sec-
tion at this energy, and v(E) the velocity of the incident
beam of particles. The lowest-order (Born approxima-
tion) scattering cross section in a typical scalar theory
with a quartic interaction is o (E) —Az/Ez At very high.
temperatures, T )) mc„with mc, the mass of the field,
n(T) —T, the internal energy density is U/V —T4,
and the average energy per particle is (E) —T, and
v(T) 1. Thus the typical collisional relaxation rate
is I'(T) —AzT. In an expanding universe, the con-
ditions for local equilibrium will prevail provided that
I'(T) )) [a(t)/a(t)] = H(t), with a(t) the Friedmann-
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Robertson-Walker (FRW) scale factor. If this is the
case, the collisions occur very quickly compared to the
expansion rate, and particles will equilibrate. This ar-
gument applies to the collisional relaxation of high fre-
quency (short-wavelength) modes for which k )) mc.
This may be understood as follows. Each "external leg"
in the scattering process considered carries typical mo-
mentum and energy A:, E = T ) T, . But in these typical
theories T~ = mc, /~A. Thus for weakly coupled theories
T )) mc.

To obtain an order of magnitude estimate, we concen-
trate near the phase transition at T —T, —10 GeV,
H = T2/Mpi = 10 T, this implies that for A ) 0.01 the
conditions for local equilibrium may prevail. However, in
weakly coupled inflaton models of inflation, phenomeno-
logically the coupling is bound by the spectrum of den-
sity fluctuations to be A = 10 2 —10 i4 [12, 13]. Thus,
in these weakly coupled theories the conditions for local
equilibrium of high-energy modes may not be achieved.
One may, however, assume that although the scalar field
is weakly self-coupled, it has strong coupling to the heat
bath (presumably other fields in the theory) and thus
remains in local thermodynamic equilibrium.

This argument, however, applies to the collisional re-
laxation of short-zuavelength modes. We observe, how-
ever, that these type of arguments are not valid for the
dynamics of the long-wavelength modes at temperatures
below T, for the following reason.

At very high temperatures, and in local equilibrium,
the system is in the disordered phase with (C) = 0 and
short-ranged correlations, as measured by the equal time
correlation function (properly subtracted)

(C (r, t) C (0, t)) = T exp[ —[r[/((T)],

((T) = = t!(0)
1 T, &

AT T)

(2.1)

(2.2)

As the temperature drops near the critical ternpera-
ture, and below, the phase transition occurs. The onset
of the phase transition is characterized by the instabilities
of long-wavelength fluctuations, and the ensuing growth
of correlations. The field begins to correlate over larger
distances, and correlated domains will form and grow. If
the initial value of the order parameter is zero, it will
remain zero throughout the transition. This is the pro-
cess of spinodal decomposition, or phase separation. This
growth of correlations cannot be described as a process
in local thermodynamic equilibrium.

These instabilities are manifest in the equilibrium free
energy in the form of imaginary parts, and the equilib-
rium free energy is not a relevant quantity to study the
dynamics.

These long-wavelength modes whose instabilities trig-
ger the phase transitions have very slow dynamics. This
is the phenomenon of critical slowing down that is ob-
served experimentally in binary mixtures and numeri-
cally in typical simulations of phase transitions. The
long-wavelength fluctuations correspond to coherent col-
lective behavior in which degrees of freedom become
correlated over large distances. These collective long-
wavelength modes have extremely slow relaxation near

the phase transition, and they do not have many available
low-energy decay channels. Certainly through the phase
transition, high frequency, short-wavelength modes may
still remain in local equilibrium by the arguments pre-
sented above (if the coupling is sufflciently strong), they
have many channels for decay, and thus will maintain
local equilibrium through the phase transition.

To make this argument more quantitative, consider the
situation in which the final temperature is below the
critical value and early times after the transition. For
small amplitude fluctuations of the field, long-wavelength
modes "see" an inverted harmonic oscillator and the am-
plitude fluctuations begin to grow as (see below)

(C'g(t)C' i, (t)) —exp[2W(k)t],

W(k) = Qp2(T) —k2,

(2.3)

(2.4)

(2.5)

for k ( p~(T).
In particular this situation, modeled with the "in-

verted harmonic oscillators, " is precisely the situation
thoroughly and clearly studied by Guth and Pi [25] and
Weinberg and Wu [26].

The time scales that must be compared for the dy-
namics of these instabilities are now the growth rate
I'(A;) = Qp2(T) —k2 and the expansion rate H
T /Mpi = (10 5)T, if the expansion rate is comparable
to the growth rate, then the long-wavelength modes that
are unstable and begin to correlate may be in local ther-
modynamic equilibrium through the cooling down pro-
cess. Using T, = p(0)/~A, we must compare [1 —(T ) ] ~

to 10 s/~A. Clearly for weakly coupled theories, or very
near the critical temperature, the growth rate of the un-
stable modes will be much slower than the rate of cooling
down, and the phase transition will be supercooled, sim-
ilarly to a "quenching process" from a high-temperature,
disordered phase to a supercooled low-temperature sit-
uation. For example, for A —10 the growth rate of
long-wavelength fluctuations is much smaller than the ex-
pansion rate even for a final temperature Tf = 0, and the
long-wavelength modes will be strongly supercooled.

As mentioned previously, we do not attempt in this
work to study the situation in an expanding gravitational
background, and limit ourselves to studying the dynam-
ics of the phase transition in Minkowski space by model-
ing the important features that are relevant for the phase
transition in a weakly coupled theory. Our goals here are
to introduce the methods to study this type of phase
transition out of equilibrium, and to study the physics of
domain formation and growth within a simplified situa-
tion. Eventually we propose to extend these methods to
the case of an inflationary background.

We do not envisage here to account for the cooling
down process (which requires a clear understanding of
gravitational effects, and time scales) and restrict our-
selves to assuming a supercooled phase transition in a
weakly coupled theory and propose a particular model
to understand this situation in Minkowski space.
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III. STATISTICAL MECHANICS OUT
OF EQUILIBRIUM

a(t) = U(t)AU (t) (3.7)

A period of rapid temperature change may be mod-
eled by considering a time-dependent Hamiltonian with
a time-dependent mass term of the form

H(t) =

+ -m'(t)C'(x) + —,C'(x), (3.1)

(3.2)

(3.3)

(3 4)

H, =H(t & 0).
(3.5)

(3.6)

In the Schrodinger picture, the density matrix evolves
in time as

with p ) O, T, ) T„Tf &( T,. The introduction of
the T;, Tf in the above mass term is just a parametriza-
tion of the model, which incorporates the ingredients of
a high-temperature state at t & 0 and a low-temperature
situation for t ) 0. Again, the mechanism that drives
the phase transition may either be a period of rapid in-
flation or a sudden coupling to a heat bath at a much
lower temperature. The above parametrization incorpo-
rates by hand this "rapid supercooling" situation.

Clearly this is a simplification, but in view of the above
comments, we believe that this approximation is justified
insofar as we are trying to understand the dynamics of
the instabilities of the long-wavelength modes and the
growth of correlations in weakly coupled theories. This
assumption of a rapid "quench" may be relaxed at the
expense of complications. As will become clear below,
this approximation will allow us to obtain analytic results
and to perform explicit calculations. Furthermore, we
assume that for all times t & 0 the system is in thermal
equilibrium at the initial temperature T, , thus described
by the density matrix

with U(t) the time evolution operator.
An alternative and equally valid interpretation is that

we consider an initial condition in which the system is
in thermodynamic equilibrium at temperature T, ) T,
in the symmetric phase for t & 0, and evolved in time
with a Hamiltonian with a "negative mass squared" that
allows for broken symmetry states for t ) 0.

This interpretation in fact describes the situation stud-
ied by Guth and Pi [25] and Weinberg and Wu [26].
These authors prepare an initial Gaussian state or den-
sity matrix, and study the time evolution of this initially
prepared state with a Hamiltonian for a collection of "in-
verted harmonic oscillators. " Preparing an initial state,
and evolving it with a Hamiltonian of which the initial
state is not an eigenstate (in the language of density ma-
trices, the density matrix does not commute with the
Hamiltonian), is the quantum mechanic equivalent of a
"quenching process" or a "sudden approximation. " It is
in this sense that we are thus generalizing the situation
studied by the above authors.

The expectation value of any operator is thus

(0)(t) = T e ~ "'U '(t)0U(t)/T e (3.8)

This expression may be written in a more illuminating
form by choosing an arbitrary time T & 0 for which
U(T) = exp[ —iTH, ] then we may write exp[—P;H, ] =
exp[ —iH, (T —iP, —T)] = U(T —i/3, , T). Inserting in the
trace U r (T)U(T) = 1, commuting U r (T) with j, and
using the composition property of the evolution operator,
we may write (3.8) as

(0)(t) = TrU(T —iP, , t)0U(t, T)/TrU(T —i/3, , T).
(3.9)

The numerator of the above expression has a simple
meaning: start at time T ( 0, evolve to time t, insert
the operator 0, and evolve backwards in time from t to
T ( 0, and along the negative imaginary axis from T to
T —i/3, . The denominator just evolves along the negative
imaginary axis from T to T —i/3, The contou. r in the nu-
merator may be extended to an arbitrary large positive
time T' by inserting U(t, T') U(T', t) = 1 to the left of 0
in (3.9), thus becoming

(0)(t) = TrU(T —ip, , T)U(T, T')U(T', t)0U(t, T)/TrU(T —iP', T). (3.10)

The numerator now represents the process of evolving
from T & 0 to t, inserting the operator 0, evolving
further to T', and backwards from T' to T and down
the negative imaginary axis to T —iP; This proc. ess is
depicted in the contour of Fig. 1. Eventually we take
T —+ —oo, T' —+ oo. It is straightforward to generalize
to real time correlation functions of Heisenberg picture
operators.

This formalism allows us also to study the general case
in which both the mass and the coupling depend on time.

I

The insertion of the operator 0, may be achieved as usual
by introducing currents and taking variational derivatives
with respect to them.

Because the time evolution operators have the interac-
tion terms in them, and we would like to generate a per-
turbative expansion and Feynman diagrams, it is conve-
nient to introduce source terms for all the time evolution
operators in the above trace. Thus we are led to consider
the generating functional
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Z[J+,J, J~] = T U(T —P, , T; Js') U(T, T', J )U(T', T; J+). (3.11)

The denominator in (3.9) is simply Z[0, 0, 0] and may be obtained in a series expansion in the interaction by considering
Z[0, 0, J ]. By inserting a complete set of field eigenstates between the time evolution operators, finally, the generating
functional Z[J+, J, J~] may be written as

Z[J+ J, J~] = DC'DC1DC2 'DCt+'DC) 'DCt~e'JT' ~ ~ ' I ~ ' j)e'JT (3.12)

with the boundary conditions C'+(T) = C)S (T —ip ) = C, 4+(T') = I (T') = C'2, C' (T) = CtS (T) = C i. This may
be recognized as a path integral along the contour in complex time shown in Fig. l. As usual the path integrals over
the quadratic forms may be evaluated and one obtains the final result for the partition function:

Z[J+,J, J~] = exp i
T'

dt l:;„g( i6/—s) J+) —8;„|,(i6/6J )
T

T—iP;
x exP t dtd, ;„,, ( td/6d ) exP — —dt's dted, (t~)d(te)tP, (tf te,))T C C

(3.13)

where J, stands for the currents on the contour as shown in Fig. 1, G, are the Green's functions on the contour [27],
and again the spatial arguments were suppressed.

In the limit T —+ —oo, the contributions from the terms in which one of the currents is J+ or J and the other is
Ji vanish when computing correlation functions in which the external legs are at finite real time, as a consequence
of the Riemann-Lebesgue lemma. For this real time correlation function, there is no contribution from the J( terms
that cancel between numerator and denominator. Finite temperature enters through the boundary conditions on the
Green s functions (see below). For the calculation of finite real time correlation functions, the generating functional
simplifies to [28, 29]

Z[J+, J ]=exp i
T' T'

dt g;„,( j6/6J+) —2;„—, (ib/'6J ) exp — dti
T 2 T

Ts

di2 Jtt('ti) Jb(52) Gttb(hit i2)

(3.14)

with a, b =+, —.
e Green's functions that enter in the integrals along the contours in Eqs. (3.13) and (3.14) are given by (see

above references)

G++(ri, &1, r2, t2)

(rl tl r2 t2)

(&1 ~i &2 &2)

G (+r tirit2)2
G (ri, ti, r2, t2)
G (ri, T; r2, t2)

= G (r1, t 1, r2, t2) O(ti —t2) + G (r 1, ~1; &2, 4)e(4 —~i)
=G (ri, &1', &2 4)e(t2 tl) +G (ri tl ~2 t2)e(tl t2)
= —G (ri, 81, 1'2, t2),

G)(r it ir 2t )2= —G (ri, ~i;r 2& )2,

= (@(ri, ti)C'(r2 i2)),
= G (r 1,T —i P, ; r2, &2).

(3.15)
(3.16)
(3.17)
(3.18)
(3.19)
(3.20)

Condition (3.20) is recognized as the periodicity con-

djtjon jn imaginary time and is a result of considering an

equilibrium situation for t & 0. The functions G, G
are homogeneous solutions of the quadratic form, with

appropriate boundary conditions and will be constructed
explicitly below.

This formulation in terms of time evolution along a
contour in complex time has been used many times in

I

nonequilibrium statistical mechanics. To our knowledge
the first to introduce this formulation were Schwinger [30]
and Keldysh [31] (for an early account see Mills [32]).
There are many clear articles in the literature using this
technique to study real time correlation functions [28, 29,
33—37].

Our goal is to study the formation and growth of do-
mains and the time evolution of the correlation functions.
In particular, the relevant quantity of interest is the equaL

time correlation function

ss JP

FIG. 1. Contour in a complex time plane to evaluate the
generating functional for nonequilibrium Green's functions.

S(r; t) = (C (r, t}C{0,t)),
d3k

S(r; &) = se'"'S(k; t),

S(k'~) = (C'k()')C'-1 (&)) = [
—iGk+(&; &)],

(3.21)

(3.22)

(3.23)
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where we have performed the Fourier transform in the
spatial coordinates (there still is spatial translational and
rotational invariance). Notice that at equal times, all the
Green's functions are equal, and we may compute any of
them.

Clearly in an equilibrium situation this equal time cor-
relation function will be time independent, and will only
measure the static correlations. In the present case, how-
ever, there is a nontrivial time evolution arising from the
departure from equilibrium of the initial state. This cor-
relation function will measure the correlations in space,
and their time dependence.

The function G&~ (t, t') is constructed from the homoge-
neous solutions to the operator of quadratic fluctuations

~+„(t.)
ice—& (A:) t O( t)

—i~& (k)t + g i~& (k)g O

M i, (t) = 0+i,(t)

~) (k) = k2 —mfz,

1 ( ~&(k) )
o(k)) '

1 u)&(k) i
2 (u)(k)) '

(3.27)

(3.2S)

(3.29)

(3.30)

(3.31)

The solutions are as follows: (i) stable modes (k2 ~
m2f )

d2

, + k'+m'(t) 4'„+ =0 (3.24)
(ii) unstable modes (kz ( mzf)

with m (t) given by (3.2).
The boundary conditions on the homogeneous solu-

tions are

(3.32)

(3.33)
(t ( 0) eyscu&(k)t

~&(k) = k +m,

(3.25)

(3.26)

~(k) = f (3.34)

(3.35)
corresponding to positive frequency (particles) and neg-
ative frequency (antiparticles) [U& (t); M& (t), respec-
tively].

With these mode functions, and the periodicity condition
(3.20), we find

G~(t, t') = „(„)M~+(t)M„, (t') + e ~' (")Mk (t)M~+(t')

G„ (t, t') = G (t', t).

(3.36)

(3.37)

The zeroth-order equal time Green's function becomes

[G„(t;t)] = coth[P, ~, (k)/2]
24J& k

for t (0, and

(3.3s)

[Gk (t; t)] = [ (1+2A~BA, (cosh[2W(k)t] —l))O(m —k )2cu& (k) f
+(1+2aAbgfcos[2m&(k)t) —1))O(k —mf)] coth[P, ~&(k)/2], (3.39)

fort) 0.
The first term, the contribution of the unstable modes,

reflects the growth of correlations because of the insta-
bilities and will be the dominant term at long times.

IV. ZERO-ORDER CORRELATIONS

Before proceeding to study the correlations in higher
orders in the coupling constant, it will prove to be very
illuminating to understand the behavior of the equal time
nonequilibrium correlation functions at the tree level.
Because we are interested in the growth of correlations,
we will study only the contributions of the unstable
modes.

The integral of the equal time correlation function over
all wave vectors shows the familiar short distance diver-
gences. Prom the above expression, however, it is clear
that these may be removed by subtracting (and also mul-
tiplicatively renormalizing) this correlation function at
t = 0. The contribution of the stable modes to the
subtracted and multiplicatively renormalized correlation
function is always bounded in time and thus uninterest-
ing for the purpose of understanding the growth of the
fluctuations.

We are thus led to study only the contributions of the
unstable modes to the subtracted and renormalized cor-
relation function', this contribution is finite and unam-
biguous.
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mf

m2
L 2

2mf

T2 T2

T —T
w =mft, x=mfr.

(4.1)

For this purpose it is convenient to introduce the di-
mensionless quantities

furthermore for the unstable modes k & mf, and for
initial temperatures larger than the critical temperature
T~ = 24pz/A, we can approximate coth[P, co&(k)/2]—
2T, /a&(k). Then, at the tree level, the contribution of
the unstable modes to the subtracted structure factor
(3.23) S~ &(k, t) —S& i(k, o) = (1/mf)8~ &(K, r) becomes

S~o&(«) =
1

/T, i
z I

1+ 2 l [cosh(2W r) —1],
qA[1 —~]) &T ) 2~'

& ~') (4 2)

+I
~„=1—K .

(4.3)

(4.4)

To obtain a better idea of the growth of correlations, it
is convenient to introduce the scaled correlation function 4 (t) = (8~2) '&(0) (4 9)

A
'D(x, r) =

6m2f
[S(k, t) —S(k, 0)].

(4.5)

The reason for this is that the minimum of the tree-
level potential occurs at AC' /6mf ——1, and the inflection

(spinodal) point, at ACz/2mzf ——1, so that 'D(0, r) mea-
sures the excursion of the fluctuations to the spinodal
point and beyond as the correlations grow in time.

At large r (large times), the product Kz8(r, r) in (4.5)
has a very sharp peak at r, = 1/~r. In the region
x ( ~r the integration may be done by the saddle point
approximation and we obtain for Tf/T, —0 the large
time behavior w, = 10.15 (4.1o)

An important time scale corresponds to the time r,
at which the fluctuations of the field sample beyond the
spinodal point. Roughly speaking, when this happens
the instabilities should shut off as the mean square root
fluctuation of the field g(Cz(t)) is now probing the sta-
ble region. This will be seen explicitly below when we
study the evolution nonperturbatively in the Hartree ap-
proximation and the fIuctuations are incorporated self-
consistently in the evolution equations. In zero order we
estimate this time from the condition 3'D(o, t) = 1, we
use A = 10, T, /T, = 2, as representative parame-
ters (this value of the initial temperature does not have
any particular physical meaning and was chosen only as
representative). We find

or, in units of the zero-temperature correlation length

( )
2:2 sin(x/~r)

( 8r) (~/Kr)
(4.6) t = 14.2((0) (4.11)

'D(o, r) =
i

exl [2rl
(12vr') ([~ 1]) r 8

(4.7)

for other values of the parameters w, is found from the
above condition on (4.7).

These are some of the main results of this work.

V. PERTURBATION THEORY AND ITS DEMISE

exp [v 2t/$(0)]
V&t/~(0)] ' (4.8)

Restoring dimensions, and recalling that the zero-
temperature correlation length is ((0) = 1/v 2p, we find
that for Tf —0 the amplitude of the fluctuation inside
a "domain" (42(t)), and the "size" of a domain (~(t)
grows as

The results presented in the previous section rely on a
zero-order (tree-level) analysis of the nonequilibrium cor-
relation function. Clearly one needs to incorporate the
effects of the interaction. The nonequilibrium formalism
introduced above lends itself to a diagrammatic expan-
sion of the nonequilibrium correlation functions. We now
present a one-loop calculation of the equal time correla-
tion function (Ci, (t)O k(t)).

There are two vertices, corresponding to forward
(+) and backward (—) time propagation, with oppo-
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site couplings and four difFerent propagators as given in
Eqs. (3.15)—(3.18) [see Fig. 2(a)]. The Feynman rules
are the standard ones. The Feynman diagrams that con-
tribute up to one loop to the structure factor (3.23),

are depicted in Fig. 2(b). Then up to one loop, and in
terms of the zero-order Green's functions, we And

d3

(2~)s, ( &o,,(t, t )([G'o', (t t )]' —[&o', (' ' )]'&

x coth[p, ~&(q)/2] coth[p, ~&(k)/2]), (5.1)

where in the one-loop integral we wrote the finite temperature Green's functions in terms of the zero-temperature
ones Go . Clearly because of the complicated time dependence, the Dyson's series for the propagator may not be
summed exactly and we only analyze here the one-loop contribution given above. Before proceeding further with the
analysis, let us understand the renormalizations that are necessary.

It becomes more illuminating to write the one-loop contribution explicitly in terms of the mode functions:

(C~+(t)C „(t)) = " " coth[p, ~&(k)/2] +-u~+(t)u„-(t) A

2id& k
dtl

dsq ( i ( i
(2 )' &2~ (q) &2~ (k)p

( u„+(t)u„-(t,) —u„+(t,)u„-(t) )
x coth[p, ~& (q) /2] coth[p, ~& (k)/2]. (5.2)

Clearly, in the one-loop contribution, the terms with wave vectors k correspond to the "external legs, " whereas the
terms with q which are integrated over correspond to the loop line in Fig. 2(b) (because at equal time the ++ and——terms are equal).

First let us study the above contribution for t & 0, in which case we should recover the usual result. In this case
both t, ti & 0, and performing the time integration with an adiabatic cutofF we find

1
(C k(t)C k(t)) = coth[P;a& (k)/2] ——

24)& k coth[P, ~&(q)/2] coth[P, ~&(k)/2].
dsq 1 5 ( 1

27l 2M& q ) (2Ld& k

(5.3)

Iq; (t&&0)=
dsq ( 1

(2 )' &2 .(~))

In fact this is the familiar equal time Green s func-
tion up to one loop of the time-independent theory. The
one-loop term has a temperature-independent ultraviolet
divergent contribution arising from the q-integral. Intro-
ducing an upper momentum cutofF A and an arbitrary
renormalization scale iC we obtain

the time-dependent part (2aqbq cos[2w&(q)ti]) will yield
to a finite contribution because the strong oscillations
(for ti ) 0) ensure convergence at large momenta. Thus
the divergent term arises only from the time-independent
term, (aq+bq), in the product of mode functions. Finally
we And the divergent term to be temperature indepen-
dent and for tl & 0 given by

1 ~ z (Al i

A —m, ln
/

—
/8~' ' qK)

(5.4)

In any case, it becomes clear that the potential diver-
gences of the one-loop contribution can be traced to the
integral (again only the zero-temperature contribution is
divergent) t' t

(a)

+
t'

Iq; (ti) = u+(t, )u;(t, ). (5.5)
d'q ( 1

27I ( 2Cd& q
+ + + + — +

t" t'
(b)

For t ) 0, the time integral in the one-loop correc-
tion can be split into the integral f dt's and fo dt's. In
the first integral (from —oo to 0), uq+(ti)uq (ti) = 1 and
the divergence structure is the same as that analyzed for
t & 0. In the second integral (from 0 to t) the diver-
gent contribution arises solely from the stab/e modes as
the unstable modes are cut off at q = mf. By analyzing
the product of the mode functions, it becomes clear that

+ ir +

FIG. 2. (a) Two vertices and four propagators gener-
ate the Feynman diagrammatic expansion for nonequilibrium
Green's functions. (b) Diagrams that contribute up to one
loop to (C'k(t)C' k(t')). (c) Two mass counterterms.



808 DANIEL BOYANOVSKY, DA-SHIN LEE, AND ANUPAM SINGH 48

1
dlV (5.6)

Again in terms of an ultraviolet cutoff (A) and renormalization scale (K), we find

KA)4;.(&& ) o) = A' —(—mf)»
~

—
~8~' kKy

(5.7)

These divergences may be canceled by introducing a local but time dependent counterterm in the original Lagrangian
density:

Z., = 6m'(t)C'(r, t),

bm (t) =- A

8Vr2

2

dq (0(—t) + O(t)O(qz —m~~)(a2 + tIz) ) .
gq'+ m,'

(5 8)

(5.9)

On the forward and backward time contour for the non-
equilibrium theory, this counterterm translates in the two
counterterm insertions shown in Fig. 2(c). The introduc-
tion of these counterterms renders finite the one-loop con-
tribution to all the nonequilibrium one-particle Green's
functions as may now be easily checked.

Having disposed of the renormalization problem, we
must however address the issue of the instabilities. The
instabilities and growth of correlations at zero-order had
been analyzed before. We now realize that in the loop
integral there is a contribution to the loop from the inte-
gration over the unstable modes which will enhance the
exponential growth in the correlation functions.

The maximum instability in the one-loop term is when
the mode functions for both momenta q, k are unstable
(q, k ( mf). For the initial temperature T, ) T„ for
these values of the momenta we use the high-temperature
approximation coth[P, w&/2] 2T, /w&. It is conve-
nient to introduce the dimensionless quantities defined
in Eq. (4.1) and Q = q/mf. Using Eqs. (3.3) and
(3.4) and T, = 24p, /A, and the same conventions as
for the zero-order structure factor given by Eqs. (4.3),
(4.4), and (4.1), we obtain, for the most unstable contri-
bution to the one-loop correction to the structure factor
S('&(k, t) = (1/mf)8&'&(r, r)

(j) 6 5 T2
~ ~T [1-(T /T)]

d71
qz 1(

dQ 2 z sinh[W„(r —rq)] 1 + —
~

1 + z ~
[cosh(2Wqrq) —1]

(u~2u2&„ 2 I Wq~)

x 1+ "2
~

cosh[W„(r+rq)]+
~

1 — "z
~

cosh[W„(r —rq)]W2)
(5.10)

The integral over 7.1 may be carried out yielding a rather
cumbersome result, but it becomes clear that this result
will grow roughly as the square of the zero-order result
at large ~. Introducing the scaled correlation function
as in Eq. (4.5) both for the zero-order and the one-loop
order D&o)(x, r) and 'D&~&(2:, 7), respectively, in Fig. 3(a)
we show the behavior for 3'D(o)(0, r) (solid lines) and
3D( )(0, r) (dashed lines) for the values of the parame-
te» & = 10, (T,/T, ) = 2. It is clear that eventually
the one-loop term becomes much larger than the tree-
level term even in the case of very weak coupling. This
is a consequence of the instabilities and the growth of
correlations that are a hallmark of the phase transition.
Clearly the dynamics of the phase transition cannot be
studied in perturbation theory. In fact this result in a very
quantitative manner confirms the ideas that the onset of
the transition and the time evolution of the system after
the phase transition cannot be studied perturbatively.

VI. BEYOND PERTURBATION THEORY:
HARTREE APPROXIMATION

It became clear from the analysis of the previous sec-
tion that perturbation theory is inadequate to describe

12.88-
/

/

l

/

/

I

/

/

/

h
CO

8 ~ 88 I I I I I I I I I i I I I I I I I I I i I I I I I I I I I
i

I I I I I I I I I i I I I I I I I I I

9.68 18.88 18.08 18.88 11.28 11.68

I IG. 3. Zero- and one-loop contributions to the structure
factor. The solid line represents 3'D (O, w), the dashed line
represents 317 (0, ~).
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the nonequilibrium dynamics of the phase transition, pre-
cisely because of the instabilities and the growth of cor-
relations. This growth is manifest in the Green's func-
tions that enter in any perturbative expansion thus inval-
idating any perturbative approach. Higher-order correc-
tions will have terms that grow exponentially and faster
than the previous term in the expansion. And even for
very weakly coupled theories, the higher-order correc-
tions eventually become of the same order as the lower-
order terms.

As the correlations and fluctuations grow, field configu-
rations start sampling the stable region beyond the spin-
odal point. This will result in a slowdown in the growth
of correlations, and eventually the unstable growth will
shut off. When this happens, the state may be described

I

by correlated domains with equal probability for both
phases inside the domains. The expectation value of the
field in this configuration will be zero, but inside each do-
main, the field will acquire a value very close to the value
in equilibrium at the minimum of the effective potential.
The size of the domain in this picture will depend on the
time during which correlations had grown enough so that
Buctuations start sampling beyond the spinodal point.

Since this physical picture may not be studied within
perturbation theory, we now introduce a nonperturbatiee
method based on a self-consistent Hartree approximation
[38—40].

The self-consistent Hartree approximation is imple-
mented as follows: in the initial Lagrangian write

(6.1)

the first term is absorbed in a shift of the mass term

m'(t) m'(t) + —(c'(t))

(where we used spatial translational invariance). The second term in (6.1) is taken as an interaction with the term

(42(t)) C z(r, t) as a "mass counterterm. " The Hartree approximation consists of requiring that the one-loop correction

to the two-point Green's functions must be canceled by the "mass counterterm. " This leads to the self-consistent set

of equations

(C' (t)) = —iG~& (t, t)2vr3-
dsk 1(,s, L(q+(t)Ui, (t) coth[P, ~& (k)/2], (6 2)

„,, +k'+m'(t)+ —(c'(t)) u„+ = o. (6.3)

Before proceeding any further, we must address the
fact that the composite operator (@z(r, t)) needs one sub-

traction and multiplicative renormalization. As usual the
subtraction is absorbed in a renormalization of the bare
mass and the multiplicative renormalization into a renor-
malization of the coupling constant. We must also point
out that the Hartree approximation is uncontrolled in

this scalar theory; it becomes equivalent to the large-N
limit in theories in which the field is in the vector repre-
sentation of O(N) (see, for example, [8]).

At this stage our justification for using this approx-
imation is based on the fact that it provides a non-

perturbative framework to sum an infinite series of Feyn-

man diagrams of the cactus type [8, 40].
In principle one may improve on this approximation by

using the Hartree propagators in a loop expansion. The
cactus-type diagrams will still be canceled by the coun-
terterms (Hartree condition), but other diagrams with

loops (for example diagrams with multiparticle thresh-

olds) may be computed by using the Hartree propagators
on the lines. This approach will have the advantage that
the Hartree propagators will only be unstable for a Bnite
time t & t, . It is not presently clear to these authors,
however, what, if any, would be the expansion parameter
in this case.

It is clear that for t ( 0 there is a self-consistent solu-
tion to the Hartree equations with Eq. (6.2) and

(6.4)

~'(A) = k'+m,'+ —+ (c'(0-)) = k'+ m,'„, (6.5)

where the composite operator has been absorbed in

a renormalization of the initial mass, which is now

parametrized as rnz& ——@2&[(T2/Tz) —1]. For t ) 0

we subtract the composite operator at t = 0+ absorbing
the subtraction into a renormalization of m& which we

now parametrize as mf & ——p&[l —(Tf /T, )]. We should

point out that this choice of parametrization only repre-
sents a choice of the bare parameters„which can always
be chosen to satisfy this condition. The logarithmic mul-

tiplicative divergence of the composite operator will be
absorbed in a coupling constant renormalization consis-
tent with the Hartree approximation [41]; however, for
the purpose of understanding the dynamics of growth of
instabilities associated with the long-wavelength fluctua-
tions, we will not need to specify this procedure. After
this subtraction procedure, the Hartree equations read
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[(C"(t)) —(C"(0))] = d3k

(2vr)s 2u)&(k)
[M~+ (t)M„(t) —1] coth[P, u)& (k) /2], (6.6)

dt2, +I'+ '„(t)+ " (C"(t)) —(C"(0)) u„+(t) =0, (6 7)

(6.8)

with T, ) T, and Tf « T, . With the self-consistent
solution and boundary condition for t & 0,

[(C"(t o)) —(C"(0))] = o

M&+ (t ( 0) = exp [~in& (k) t],

u)& (k) = k2 + m2R.

(6.9)
(6.10)

(6.11)

the instabilities shut off, this equality determines the

This set of Hartree equations is extremely complicated
to be solved exactly. However it has the correct physics in
it. Consider the equations for t ) 0, at very early times,
when (the renorrnalized) (C2(t)) —(Cz(0)) = 0 the mode
functions are the same as in the zero-order approxima-
tion, and the unstable modes grow exponentially. By
computing expression (6.6) self-consistently with these
zero-order unstable modes, we see that the fluctuation
operator begins to grow exponentially.

As [(C2(t)) —(4 (0))] grows larger, its contribution
to the Hartree equation tends to balance the negative
mass term, thus weakening the unstabilities, so that
only longer wavelengths can become unstable. Even for
very weak coupling constants, the exponentially growing
modes make the Hartree term in the equation of motion
for the mode functions become large and compensate for
the negative mass term. Thus when

"spinodal time" t, . The modes will still continue to grow
further after this point because the time derivatives are
fairly (exponentially) large, but eventually the growth
will slow down when fluctuations sample deep inside the
stable region.

After the subtraction, and multiplicative renormaliza-
tion (absorbed in a coupling constant renormalization),
the composite operator is finite. The stable mode func-
tions will make a perturbative contribution to the fluctua-
tion which will be always bounded in time. The most im-
portant contribution will be that of the unstable modes.
These will grow exponentially at early times and their ef-
fect will dominate the dynamics of growth and formation
of correlated domains. The full set of Hartree equations
is extremely difficult to solve, even numerically, so we will
restrict ourselves to account only for the unstable modes.
From the above discussion it should be clear that these
are the only relevant modes for the dynamics of forma-
tion and growth of domains, whereas the stable modes
will always contribute perturbatively for weak coupling
after renormalization.

Introducing the dimensionless ratios (4.1) in terms
of mf R, m, R (all momenta are now expressed in
units of my R), dividing (6.7) by mf R, using the
high-temperature approximation coth[P, co& (k) /2]
2T, /u&(k) for the unstable modes, and expressing the
critical temperature as T, = 24psR/AR, the set of Hartree
equations (6.6) and (6.7) become the following integro-
difFerential equation for the mode functions for t & 0:

d2
+q —1+gd72

1 2dp, , [u+(t)u„-(t) —1] u,+(~) = 0+2+ J2 P (6.12)

with

U+(t ( 0) = exp[~i(u&(q)t],

~&(q) = qz+ L2R,

m, R [T,2 —Q]
mf R [T,' —Tf]

(6.13)

(6.14)

(6.15)

/24AR T,
(6.16)

4vr [T& —T~] kc f
The effective coupling (6.16) reflects the enhancement
of quantum fluctuations by high-temperature eKects; for
Ty/T, = 0, and for couplings as weak as AR —10
g = 10 7(T, /T, ).

Eqs. (6.12) may now be integrated numerically for the
mode functions; once we find these, we can then compute
the contribution of the unstable modes to the subtracted
correlation function equivalent to (4.5):
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~(HP) ( ) —,~ [( ( ~)~(0 ~)) -(~(,0)~(0, 0))], (6.17)

3z)(HP) ( )
1 2p l sin(px) - +

~~

~p, , M+(t)M„-(t) —1 . (6.18)

In Fig. 4 we show
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maximum size of a domain is approximately determined
by the time at which Buctuations begin probing the stable
region, this is the spinodal time t, and the maximum size
of the domains is approximately (~(t, )

An estimate for the spinodal time is obtained from
Eq. (4.7) by the condition 3D(w, ) = 1, then for weakly
coupled theories and Tf —0, we obtain

sideration, but certainly for completely different reasons.
At the tree level, we can identify this scaling behavior
as arising from the relativistic dispersion relation, and
second-order time derivatives in the equations of mo-
tion, a situation very different from the classical descrip-
tion of the Allen-Cahn-Lifshitz [23, 24, 42j theory of spin-
odal decomposition based on a time-dependent Landau-
Ginzburg model.

~s

~2((o)
= —ln

E, 47r )
q [~ 1]y

(6.2O)
A. Beyond Hartree

It is remarkable that the domain size scales as (~(t) =
t& just like in classical theories of spinodal decomposi-
tion, when the order parameter is not conserved, as is
the case in the scalar relativistic field theory under con-

The Hartree approximation, keeping only the unstable
modes in the self-consistent equation, clearly cannot be
accurate for times beyond the spinodal time. When the
oscillations in the Hartree solution begin, the field Buc-
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tuations are probing the stable region, This should cor-
respond to the onset of the "reheating" epoch, in which
dissipative eKects become important for processes of par-
ticle and entropy production. Clearly the Hartree ap-
proximation ignores all dissipative processes, as may be
understood from the fact that this approximation sums
the cactus-type diagrams for which there are no mul-
tiparticle thresholds. Furthermore, in this region, the
contribution of the stable modes to the Hartree equation
becomes important for the subsequent evolution beyond
the spinodal point and clearly will contribute to the "re-
heating" process. A possible approach to incorporate the
contribution of the stable modes may be that explored
by Avan and de Vega [43] in terms of the effective action
for the composite operator.

Thus, although the Hartree approximation may give a
fairly accurate picture of the process of domain forma-
tion and growth, one must go beyond this approxima-
tion at times later than the spinodal time, to incorporate
dissipative efFects and to study the "reheating" period.
Clearly, one must also attempt to study the possibility
of "percolation of domains. " Furthermore, the Hartree
approximation is essentially a Gaussian approximation,
as the wave functional (or in this case the functional den-
sity matrix) is Gaussian with kernels that are obtained
self-consistently. The wave functional must include non-
Gaussian correlations that will account for the correc-

I IG. 7. Scaled correlation functions for 7. = 4.15, as func-
tion of x, D( (x, w) (solid line), and'D l(x, 7) (dashed line).
A = 0.01, ~ = 2.Tc

tions to the Hartree approximation and will be important
to obtain the long time behavior for t & t, .

VII. CONCLUSIONS AND LOOKING AHEAD

The motivations of this work were twofold. First we
pointed out that the dynamics of typical phase transi-
tions in weakly coupled theories must be studied away
from thermodynamic equilibrium, and introduced the
methods and techniques of nonequilibrium quantum sta-
tistical mechanics to study this situation.

Second we studied both analytically and numerically
the case of a strongly supercooled phase transition in
which the system initially in thermal equilibrium at an
initial temperature larger than the critical is cooled down
to temperatures well below the transition temperature.
The motivation here was to model a period of rapid in-
flation in a weakly coupled theory and to study the for-
mation and growth of correlated domains. We indicated
that the dynamics of the phase transition cannot be stud-
ied within perturbation theory because of the instabilities
that drive the process of domain formation and growth,
that is spinodal decomposition.

We used a nonperturbative self-consistent Hartree ap-
proximation to study the time evolution of domain
growth, reflected in the equal time two-point correlation
function (Ci(r, t) C'(0, t)).

We conclude that, for weakly coupled theories at long
times (and distances),

exp [~2t/((0)] 2 2 sin [~8r/Q& (t)]
(C(r t)C(0 t) =, exp —i ~ t

[ / ( )]
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with ((0) the zero-temperature correlation length. The
domains, however, will grow up to a maximum time at
which the fluctuations begin sampling the stable region.
This maximum "spinodal time" is approximately given
for weakly coupled theories by

t, = —v 2((0) ln

When the self-couplings are strong, the phase transi-
tion proceeds rapidly, and domains will not have time to
grow substantially, and their sizes will be of the order of
the zero-temperature correlation length.

In principle the "sudden approximation" (quenching)
may be relaxed at the expense of complications; however,
the formalism presented in this paper is completely gen-
eral, once the initial state is specified and the boundary
conditions for the mode functions are understood, the
time evolution of correlation functions may be studied
numerically.

Clearly, the next step is to study the dynamics of the
phase transition in FRW cosmologies. In this case, there
are several physical effects that will play a very impor-

tant role in the dynamics. In particular, the redshift of
physical wave vectors will tend to enhance the instabili-
ties, because more wave vectors are entering the unstable
region as time evolves. On the other hand, the presence
of a horizon, and the "friction" term in the Heisenberg
equations of motion, will prevent domains from growing
bigger than the horizon size. Thus there seems to be a
competition between the different time scales that must
be studied carefully to obtain any meaningful conclu-
sion about formation and growth of correlated domains
in FRW cosmologies.
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