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Acceleration through the Dirac-Pauli vacuum and effects of an external field

E. Bautista
Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364 Mexico, D.F. 01000 Mexico

(Received 8 September 1992)

The Dirac equation for a charged spin- —' particle with an anomalous magnetic moment p' in a back-
ground magnetic field is solved in Rindler coordinates (uniformly accelerated frame). A method based
on the existence of a spin operator is presented, which permits us to solve the Dirac-Pauli equation in
curvilinear coordinates. This is applied to the Rindler coordinates, and the spectra of conserved quanti-
ties such as the energy, particle, and spin densities are calculated. The ratio of the energy and particle
densities is not given by a Fermi-Dirac distribution, except in the limit p —+0. Furthermore, the spec-
trum of the energy density takes a complicated form that cannot be simply interpreted as thermal even in
the zero mass limit. Finally, it is shown that, at this level of approximation, a possible effect on the spin
polarization cannot arise from acceleration effects on the electron.

PACS number(s): 03.70.+k, 98.80.Hw

I. INTRODUCTION

It has been shown by Pauli [1] that the Dirac equation
in the presence of an external field can represent a parti-
cle having an arbitrary magnetic moment p' if one adds a
term —,'p'F„y"y, that is,

[y"(d„ieA„—)+im + ,'p'F„,y"y']$—=0

with

F„=c)„A

whereupon the particle behaves as if it had an "anoma-
lous" magnetic moment p' in addition to its normal mo-
ment e/2m. Equation (1) is conventionally called the
Dirac-Pauli (DP) equation. In the case of an electron,
this anomalous term incorporates radiative corrections to
the electrodynamic vertex in an effective way.

Only a few exact solutions of Eq. (1) are known to date.
Most authors [2—4] investigated the solutions of this
equation in a constant and homogeneous magnetic field,
and studied how the anomalous moment affects the elec-
tron spin precession. Exact solutions in Minkowski coor-
dinates of the DP equation for a constant and homogene-
ous magnetic field were first obtained in Ref. [5].

The aim of this paper is to study the DP field in a uni-
formly accelerated frame, including a background mag-
netic field which interacts with the particle. To this end,
we find an exact solution in Rindler coordinates. We also
present a method for solving the Dirac or DP equation
using the spin operator integral of the motion.

The study of spin fields in a uniformly accelerated
frame was first carried by Candelas and Deutsch [6], who
calculated the vacuum expectation value of the energy-
momentum tensor for the simplest case of a massless free
field and found that the energy density spectrum has a
Planckian form multiplied by a factor which depends on
the spin. Later on, the massive Dirac field in Rindler
coordinates with a uniform magnetic field was studied by
Ja,uregui, Torres, and Hacyan [7], who calculated the en-

ergy density with the Bogoliubov coefFicients relating
Rindler and Minkowski modes. The ratio of the energy
and particle densities is given by a Fermi-Dirac distribu-
tion, but the spectrum of these quantities takes a compli-
cated form that cannot be simply interpreted as a thermal
spectrum [8]. In this work we extend the previous results
to the case of a particle with an anomalous magnetic mo-
ment using the DP equation which includes the effects of
this additional magnetic moment interaction as effective
radiative correction.

This paper is organized as follows. Section II briefly
presents the main equations and definitions of the energy
momentum and spin tensors appropriate to the problem
under consideration. In Sec. III, we give the exact solu-
tions of the DP equation with a constant and homogene-
ous magnetic field, both in Minkowski and Rindler coor-
dinates. Finally, in Sec. IV, the Bogoliubov coefFicients
are calculated, and we give explicit expressions for the
particle, energy, and spin densities calculated in the Min-
kowski vacuum state as detected by an uniformly ac-
celerated observer; we also consider the massless case
with p'WO.

II. THE GENERAL RELATIVISTIC DP EQUATION,
BASIC TENSORS, AND CONSERVED QUANTITIES

In an arbitrary coordinate system one substitutes the
derivative with minimal coupling:

(B —ie A „)Q~D„Q= (V'„—ie A„)P
=(8 +I „—ieA„)g,

where I „are the afFine connections. The covariant y"
matrices generate the Clifford algebra

(4)

where g" is the metric tensor.
Using the DP equation one can easily verify the fact

that the current 8~=ePy"g obeys the conservation equa-
tion
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Srgvg —SPvg (17)

T„.= it—'r(—„D.) 0+v'4~. („4F:)pv (7)

and its divergence takes the form

V„T" =F Q
where

J =e4r 0+S'V„(P~ "4) (9)

is the DP current which clearly satisfies the continuity
equation (5). The current J can be found easily by vary-
ing the action with respect to the vector potential 2„,as
has been shown by Pauli [1].

To appreciate the physical significance of the addition-
al term in the current, split J into two parts:

J =J +J1

where

and hence, the scalar product can be defined by the in-
tegral over a spacelike surface

(4( 02)= f,& —g4)r"Ad~„. (6)

By varying the action with respect to the metric g", one
gets the energy-momentum tensor

e= f TodV (18)

turns out to be time independent.
If dealing with the projection of the total spin in the

direction of a given axis through which the system exhib-
its a rotational symmetry, we may consider the spin
four-vector S as proposed in [7]:

s =-'s t'&v k
2 (19)

and it makes no difference which of the two operators is
used. However, Eq. (17) does not hold when an interac-
tion such as the Pauli term is added to the Dirac equa-
tion.

It is well known that a divergence free four-vector
yields a conserved quantity which is its time component
integrated over all space. The current (9), for instance, is
divergence free and gives the particle number as a con-
served quantity. Thus, the problem is reduced to defining
the appropriate four-vector for quantities of interest such
as the energy density and the spin, which are conserved
only if the spacetime admits a Killing vector associated
to time invariance or rotational symmetries.

Thus, given a timelike Killing vector t one can con-
struct the four-vector T ~t

p which is divergence free pro-
vided that the "electric" four-vector t F ~ is zero, and
the total energy

and

Ja
1

+(M' V (po g)2' where k& is the Killing vector associated to the rotational
symmetry. Then, in flat space with a constant and homo-
geneous magnetic field along the z axis, where the Killing
vector is k =(0, —y, x, 0) and its properties

(12)

S;i'=yr, S i'lt+H. c. ,

where S ~ is the spin operator

Spv =epvaP& & D5 a P

(13)

(14)

Looking closely to Eq. (11) we note that the additional
term in the current, Eq. (9), is a radiative correction asso-
ciated with the intrinsic magnetization (magnetic dipole
density [9]) of the electron due to the coupling of the
external field with the anomalous magnetic moment.

For the DP equation, an important role is assigned to
the spin-operator-valued integrals of the motion. It is
convenient to define the spin tensor as

V&k =5IP ), k () =xB —y()

we obtain the basic conservation equation

v,s~=o .

Therefore, the integral over a spacelike surface

S,= S"'dV

(20)

(21)

(22)

is conserved and is the projection of the total spin along
the symmetry axis. In the particular cases of some exter-
nal fields, the component S' of the operator (16) com-
mutes with the DP Hamiltonian (the case of a homogene-
ous and constant magnetic field is an example, as we shall
see in the following). Explicitly,

with
H =Ho —i p'By y'y

12 —i(r(D2 rzDi) imrlr2

where Ho is the Dirac Hamiltonian, and hence

(23)

S'" =i(y"D —y D")—mar('

If g is a solution of the Dirac equation ((M' =0), then

(16)

Integrals of motion have been found in Refs. [10,11] for a
few external fields in Minkowski coordinates using this
spin operator. At this point, a remark must be made
with respect to the tensor spin operator studied in Refs.
[7,12—15]:

[H,S' ] = i p'B [r y'y, S—' ]=0,
where use has been made of the fact that [HO, S' ] =0
[16]. It is an easy task to verify that the system

S' itt=+kit
has a solution of form (26) using that

(S' ) =(D') +(D ) +eBcr3+m
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is diagonal. However, when one subjects g to be an
eigenfunction of the DP Hamiltonian

the trivial solution C; =0 is obtained for the spin
coefficients. This is because the spin-polarization opera-
tor should have a term proportional to p' accounting for
the anomalous magnetic moment of the particle, which,
as can be seen, does not emerge from S'" . This problem
does not exist when one uses the spin operator (14).

where y„(p) are related to the Hermite polynomials H„:

(i2)
—2

—n /2( nf)
—I/2ir —1/4e p —/2H ( ) (27)

(28)

A complete determination of the wave function is
achieved introducing the operator

where p =&eB (x —k2/eB ) and n =0, 1,2, . . . are the
principal quantum numbers. The coeKcients in Eq. (26)
satisfy the normalization condition

III. THE DP EQUATION
IN MINKQ%'SKI AND RINDLER

COORDINATES (EXACT SOLUTIONS)
S' =mo 3+i''8+i pa, (i' +exB )+pa28 (29)

A. Minkowski coordinates

A =(0,0,xB,O) . (24)

The DP equation is a set of first-order coupled equations

In the case of the magnetic field (B=Be,) parallel to
the z direction, the vector potential is

which is the projection of the total spin on the direction
of the magnetic field. Note that the difference between
the spin operators S' and S' is the presence of the
anomalous term p'8; according to the discussion follow-
ing Eq. (17), the spinor (26) should be eigenfunction of
this operator, and therefore

iB,Q=HQ, H=a p exBa2+—pm+p'Bpo3, (25) Si2y=0+F. 2 k', q= 0—kq, —0=+1. (30)

ik2y—tEt e

&2m

C, tp„[&eB (x —k2/eB )]

C2@„,[&eB (x —k2/eB )]

C3p„[&eB (x —k2 /eB ) ]

C4y„, [&eB (x —k2/eB ) ]

(26)

where H is the Hamiltonian. To solve them, one pro-
poses an eigenfunction of the form [17] One could have used this equation as a starting point to

find g, since the square of the operator S' is diagonal
and we get a system of second-order decoupled equations
from where it follows that the general solution has neces-
sarily the form (26).

The systems (25) and (30) can be solved together to
yield

C)= 1

2&2

C2=— 1

2&2

C3=— 1

2&2

k —Op'B + 61m

k —Op'B

~ 1/2
k —Op'8 —Om

k —Op'B

1/2
k —Op'B +Om

k —Op'B

&1+tanhP+ 0&1—tanhP

v'1+ tanht)tt —0&1—tanhP

&1+tanhg —0&1—tanhP

(31a)

(31b)

(31c)

1C4=
2&2

k —Op'B —6Im

k —Op'8

1/2

&1+tanhP+ 0&1—tanhP (31d)

where we have used the usual representation of the Dirac
matrices

1 0 . 0 o'
(32)

tors: right (I), left (II), future (F), and past (P) with
respect to the origin z =t =0, where z is the axis of ac-
celeration. One defines the Rindler coordinates ( ), 2yx, g)
in sectors I and II according to (regions F and P will not
be considered here)

in which the cr', i = 1,2, 3, are Pauli spin matrices, and

E=+k cosh/, k3 = k sinhP . (33)

B. Rindler coordinates

Owing to the dynamics of the uniformly accelerated
observer, the Minkowski space is divided into four sec-

t =g'sinhi), z =g'cosh'),

ri=arctanh(t/z), g=sgn(z)+z —t

The line element in the new coordinates is

ds =g dpi dx dy2 dg2, — — —

(34a)

(34b)

(35)
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and curves of constant g correspond to world lines of ob-
servers undergoing uniform acceleration of g

Let us consider a relativistic spin- —, particle with

charge e possessing an anomalous magnetic moment in
the presence of a constant and homogeneous magnetic
field in the direction of acceleration (e, ). The DP equa-
tion in Rindler coordinates has the form

—'yo(a„——,
' y,y, )+ i y'a, + i y'a,

+iy (B~ iexB—) ip'B—y'y , 4=m@ . (36)

Mq(g) =K+ P++K P (44)

where p+ are projection operators defined as

P+= —,'(1+y y'),
and with the property

~0~3p +p

so that

(46)

To separate this equation, we propose the following an-
satz for the matrix M:

1 e
a', + —a,+, 1 ie+ K+ P+yl, (x)

4(2 $2

Hereafter, we will concentrate on region I and the
positive-energy solutions. The Dirac matrices have the
form This equation is satisfied only if

=k K+P+yq(x) . (47)

yP =ePy" (37)

where y" are the standard Dirac matrices, and e„" is a
tetrad such that eg=(g ', 0); et'= —6", for i =1,2, 3.
The affine connection in I is given by

~2
a', +—a, +

1 i'e+ E+=k K+,
4(2 $2

from which it follows that

(48)

1„=( ,'yo—y—3 o) . (38)
K+(g) =K+]y2 (kg) (49)

Under these conditions, we can separate the functional
dependence of the wave function in the form

ik2y

C&( yx, g, ri) =N'"'e "" MA. (()yl, (x), (39)

1
Sz =ysy Bg+ 'V 'Y (8„——yoy ) (40)

where k is a separation constant (k =F —k3 in Min-
kowski coordinates) and e is the "energy" in the Rindler
coordinate system, M are 4 X 4 matrices and y are bispi-
nors. To determine each functional dependence of the
exact solution, it is convenient to introduce the operator
of projection of the total spin on the direction of the mag-
netic field; i.e., on the z axis

S~ 4=[y 8, +y'(8 iexB)+i—my'y +p'B]C&, .

from which it follows that

[y 8, +iy'(k2 exB)+imy—'y +p, 'B]P+yj, (x)

=9k P+yg (x ),

(50)

and using the usual representation of the Dirac matrices
(32), together with the fact that the square of the spin-
polarization operator is diagonal,

where K (x) are the modified Bessel functions of the
third kind, which have a regular asymptotic behavior
(g—+ oo).

Now, we come to the problem of finding the bispinors
gk. Using the DP equation we find

this quantity commutes with the operator in the large
parentheses on the left-hand side of (36) and, therefore,
the wave function is an eigenfunction of the operator (40):

(S' ) =m +2''Bk (p'B) +eBo 3—

+(k2 exB ) —c}— (52)

S~ @=0k+, (41)
where 0=+1 corresponds to the spin polarization rela-
tive to the direction of the magnetic field: 0=+ 1 along
the field and 0= —1 against the field. The substitution of
@ in Eq. (41) gives

y~y d( y~y (—ie ,—'y y') M—„(—g)y„(x)

=OkMI, (g)yI, (x), (42)

x~«)=

C, q&„[&eB (x —k2 leB ) ]

C~y„,[&eB (x k~ leB )]-
C3p„[V'eB (x —k2/eB ) ]

C4y„, [&eB (x k2 leB )]—(53)

k=+2eBn+m +Op'B, ,

and hence that we are led to a second-order differential
equation for each component of the spinor 4, we get the
bispinors

g2
a', +—a,+, 4k', +,y'y' M~(k)Xa«)

=k MI, (g)yI, (x) .

and applying again the spin operator we get

(43)

where y„(p) are connected with the Hermite polynomials
(27), with n =0, 1,2, . . . the principal quantum number.
The spin coefficients C; are interrelated by the normaliza-
tion condition (28); solving the DP equation and (51)
simultaneously, we obtain the coefficients in the form
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C)= 1

2&2

C2= 1

1/2
k —Op'8+m 8

k —Op'B
(1 —i 8),

1/2
k —Op'8 —m 8 .0)

k —Op'B

(ssa)

(55b)

5r~+r in I,
@'n= '

~rrn+rr in II, (62)

negative-energy solutions to construct a wave function in
region B=I U II, and defined

C3 =C(, C4. —C2 (55c)

It only remains to determine the normalization con-
stant N( ' in (39). To this end we use the condition

and the parameter Win Eq. (61) represents the quantum
or continuum numbers associated with the accelerated
observer (e, k, 8, k2), such as w above.

Finally, the Rindler vacuum ~0&~ is defined by

(56)
"a io&, ="b io&, =0. (63)

and finally arrive at the result
I/2

N' '= c soh(ne).2
.2 (57)

%'e can now expand the Minkowski modes, after a
Lorentz boost A=exp( —

—,'y y il) to the instantaneous
inertial frame defined by q =const, in terms of the
Rindler modes; that is,

Aq(+) —y y(~e(p(+) p C)(
—)) (64)

IV. BOGOLIUBOV COEFFICIENTS:
ENERGY, PARTICLE,

AND SPIN DENSITIES

Having solved the relativistic wave equation, both in
Rindler and Minkowski coordinates, one can quantize
these fields in a straightforward way. @ and g are now
regarded as operator fields ((It, Rindler field; g, Min-
kowski field) and the usual quantum field theory can be
obtained if the DP operator is expanded in terms of the
Minkowski solutions

where a and P are the Bogoliubov coefficients, which, in
general, are functions of the quantum numbers
[a=a( W, w ) ]. The integral (6) over the hypersurface
g=const can be used as an internal product, and it fol-
lows that the Bogoliubov coefficients are given by

a(i= f f ™f dx dy dg@(n+)tAQ(+) (65)—oo —oo O

y(+)+ bf y(
—

)] (58)
p = —f f f dx dy dg(I&' ' Ag'+' . (66)

[a„,at.
$
=5 „ (59)

and the Minkowski vacuum ~0&M is defined by the condi-
tion

where P( ' are the positive (+) and negative ( —) energy
solutions. The operators a„,b obey the usual anticom-
mutation relations

By a direct substitution of the Minkowski and Rindler
solutions, together with the transformation equations (33)
and (34), one gets

1+7 e PATE'/2ei Pe

5„„5(k2—k 2 )6()(),
[2mk cosh(me)cosh/]'

(67)

and

a. ~o&M =b. ~0&M =0, (60)
1 t e e

—~e/2 —i Pe
pi= 5„„5(k2—k ~ )5()(),

[2trk cosh(me)cosh(t)]'

the label w in these expressions denotes all the quantum
or continuum numbers (k3, k2, 8,E). Similarly, we can
expand 4 in terms of the Rindler modes while

pii= pi

(68)

(69)
@= 2 X("aw C"wn+ "bw@"wn)

W Q
(61)

taken on both regions I and II (II=I, II).
We have taken into account both positive- and

I

It must be noted here that the number of particles, which
is given directly by ~p, ~ [18],has a Planckian spectrum.

In order to calculate other field variables we first apply
the Lorentz transformation A to Eq. (58) and get

a ie wE/2@(+ ) +a 2e —vrE/2ct( —
) +b 1te m.e/2@( —)1

a e Q, n, —k~ Q, n, k~2& coshi, m'ej

+b 2te —me/2@(+ )
t

The operators a ' and a are related to the Minkowski annihilation operators through
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(72)

oo dk3 1 —ia'= e '&'a (71)
[2vrk cosh/ ]

' ~

1+i,~,a
[2' k cosh/ ]

' ~

with analogous formulas for b ' and b .
The expectation value of any operator E can be evaluated in terms of the Fourier transforms of the two-point Wight-

man functions [19]:

M(014'E@'l0)M =—f dco e'" [G'+'(r, co)+ G' '(i, co)], (73)

where

G +'( r, co)= f do e' 6' '( r+ rc/2, r+o/2)

are the Fourier transform (with respect to the proper time) of the Wightman functions:

G' '(x,y)= —,'M(0l@(y)E4&'(x)l0&M . (75)

In particular, the energy density corresponds for E= —i y VD to its expectation value. By a direct substitution of (70)
one gets

e = d co g co sinh(mco/a ) [V 2enB +m +gp'B ] K i &z+, ~ „&,~
(V 2enB—+m +gp'B )

4B 2

ma o ng
~/2+ ii ~«) (76)

when evaluated along the trajectory of a uniformily accelerated observer (g= 1/a). Similarly, the particle and spin den-
sities can be obtained setting E=y +(p'cr ~V —H. c.) and E=—'y S' +H. c. , respectively, in Eq. (73), from where it
follows that

n =(1—2mp')
2 f g k cosh ~K»2+; &, (k/a)~ dco

n, e a

+p B
2 f g cosll ~Kiy2+&~y&(k/a )~ dco (77)

Bm kO 2S, = g, sinh 1m[K&zz+, „&,(k/a)] dco, (78)

1 +p
2m f g k cosh ~tK, &z+; z, (k/a)~ dco

ne a

+p, 'B
2 g, cosh ~K, &2+; &, (k/a)~ dco

22m kO %CO 2

a
(79)

n2=n —
n& . (80)

n, and nz are the space-integrated time components of the currents J„Jz, and are conserved quantities which corre-
sponds to the expectation values of the operators (1/2m +p')(o "V —H. c. ) and (il2m )Vo —(p'B lm )y o 3, respective-
ly. Notice that in the expression for S, contrary to the case of the Dirac field (p =0) [7] we have a contribution from
every state with n ~ 0 due to the fact that the presence of the anomalous magnetic moment has broken the degeneracy
of the Landau levels, Eq. (54). Equations (77) and (79) for the particle density and magnetic dipole density can be writ-
ten in the somewhat suggestive form

(1—2m p, ')
de
dc'

2' dn, 2B2 2m kO &CO—p,
' B g, cosh ~K, i2+;„z,(k la )~a

(81)

de 2'2(1+m p') = — —co+
dc' e 2~m«+ 1

dn& 22 kO 7TCO+(1+mp, ')p'B g, cosh ~K&&z+, „&,(kla)~
dco k —Op'B a

(82)
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Thus, the relation between the energy and the particle
densities is no longer given by a Fermi-Dirac distribution,
as in the case p'=0, unless the mass m is zero. Further-
more, any simple relation between the last term in (81)
and the energy density does not seem to exist. In con-
clusion, the energy spectrum of the DP sea in the ac-
celerated frame does not exhibit a Fermi-Dirac distribu-
tion.

In the case of a weak field and p'«1, we can ignore
the second term in (81) and write

de =(1+2mp, ') —co+
2ct7 dn

dco +] dc'
(8&)

V. DISCUSSIONS

We have solved the DP equation in Rindler coordi-
nates, including a background constant magnetic field in

the direction of acceleration, and applied the usual
canonical quantization to the DP field in this simple sys-

from which we note an "anomalous" contribution to the
Dirac sea. Indeed, this expression is valid if our particles
are electrons, but for the proton roughly 60% of the ob-
served magnetic moment is "anomalous" and the second
term in (79) may give an important contribution. Notice
also from Eq. (76) for the energy density that the zero
mass limit (p'%0) does not bring any further
simplification, due to the fact that the Op'B term appears
as a mass contribution.

tern. It turned out that the coeScients connecting
Rindler and instantaneous Minkowski spinors, 4 and
Ag, do not mix spin components (67)—(69). Therefore,
there are no eAects on the spin polarization due to ac-
celeration at this level [20]. We also derived an explicit
expression for the energy and particle densities of the
Minkowski vacuum as seen by a Rindler observer.

A formal argument based on the time periodicity of the
Feynman propagator was given by Gibbons and Perry
[21],who show that the Green's function in Rindler coor-
dinates is formally equivalent to a thermal Green's func-
tion [22]. As a consequence, one gets a Planckian spec-
trum for the particle number. This is true even with the
inclusion of an anomalous magnetic moment, as it can be
seen directly from the Bogoliubov coefficient in Eq. (68),
and is due to the fact that the coordinate transformation
from Rindler coordinates to Minkowski coordinates is
periodic in imaginary Rindler time.

However, this does not imply that the energy-
momentum tensor is that of a thermal distribution. This
is hardly a surprise, since even in the massless free case
the energy spectrum has a (co +a s ) term, which is re-
lated to the density of modes, and does not allow the
spectrum to be Planckian [6,23,24]. This term is even
more complicated in the massive case.
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