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Lowest-order graviton interactions with a charged fermion and a photon
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Graviton interactions with a charged fermion and a photon are studied in the context of linearized
gravity coupled to @ED. It is found that, apart from an overall kinematical factor, each graviton
interaction process has essentially the same transition-amplitude structure as the process involving
a photon in place of the graviton. While the angular dependence of cross sections in both cases is
di6'erent due to the overall factor, the polarization effects of the graviton are identical to those of
the corresponding photon, except that the graviton Stokes parameters enter instead of the photon
Stokes parameters. The consequences of the electromagnetic and gravitational low-energy theorems
and some possible extensions of our results are discussed.

PACS number(s): 12.25.+e, 04.60.+n, 13.88.+e

I. INTRODUCTION

Newton's law of gravity is long ranged, and this sug-
gests the existence of a gravity force mediated by a mass-
less particle called a graviton. In view of the fact that
even-spin particle exchanges are fundamentally attrac-
tive, observed universal gravitational attraction selects
the graviton spin to be an even integer. Until now, all ob-
servations have supported a spin-2 graviton picture [1—3].

At present, there does not exist a complete theory of
quantum gravity. The main problem is that Einstein
gravity is nonrenormalizable [4—6] because the gravita-
tional constant G has dimensions of inverse mass square.
In this respect the theory of gravitation is more like
other nonrenormalizable effective theories such as the
Fermi theory of weak interaction. However, Weinberg [7]
showed that it is quite impossible to construct a Lorentz-
invariant quantum theory of particles of mass zero and
helicity k2 without introducing some sort of gauge invari-
ance into the theory. It is well known that the classical
theory of gravitational radiation in the linearized version
of general relativity has gauge invariance, which is re-
lated to the general covariance of the full theory. To gain
further insight concerning the massless spin-2 graviton,
we consider here physical processes in the context of the
linearized gravity coupled to @ED.

Several graviton interaction processes have been stud-
ied previously. The gravitational Compton scattering
(ge —+ ge) and the graviton photoproduction (pe —+ ge)
were considered in the lowest-order Born approximation
in Refs. [8, 9]. The cross sections of two annihilation pro-
cesses ee ~ gp and ee —+ gg were calculated some time
ago in Ref. [10]. Also, recently, first-order cross sections
for the processes such as ge ~ pe, bremsstrahlung, and
ee-pair production by a graviton in the Coulomb field
were calculated by Saif [11]. But all these calculations

do not agree with the results of Voronov [12]. Accord-
ing to the above statement of Weinberg, it is so crucial
to maintain general covariance in the theory that one
should introduce gravitational gauge invariance on deter-
mining the interaction Lagrangian. Following that point
of view, we utilize here the same interaction Lagrangian
as in Ref. [12].

In the present work it is found that the gravitational
gauge invariance forces a graviton interaction with a
charged fermion and a photon to have its transition am-
plitude factorized into an energy-momentum-dependent
part and a spin- or polarization-dependent part. On
the other hand, similar factorizations [13—16] exist in
the transition amplitudes of photon interactions with
charged particles because of the U(1)EM gauge invari-
ance of the theory. With two similar factorization prop-
erties in mind, we compare a graviton process with the
process involving a photon instead of the graviton and
find that, apart from a kinematical factor, the two pro-
cesses have the same transition-amplitude structure and
exhibit identical polarization effects. The similarity be-
tween a graviton interaction process and the correspond-
ing process where the graviton is replaced by a photon
has been considered by Good [17], and Pukaszuk and
Szymanowski [18].

Generally, the theory of gravitation is complicated by
the nonlinearity of Einstein's equations. But the com-
plicated generally covariant and U(1)EM gauge-invariant
Lagrangian L [12, 19] is greatly simplified with the fol-
lowing constraints.

(i) Only terms up to the first order in f(= +8m G) are
considered. Here G is the gravitational constant.

(ii) Gravitation self-interaction is not included; that is,
a graviton takes part in any reaction just as an external
particle.

(iii) The gauge with which the graviton wave function
h" satis6es

i9„6" = 0 = 6"„, h" = 6"",

'Electronic address: sychoikrsnucc1
is taken. This gauge is called the harmonic or de Donder
gauge,
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Here the graviton wave function h& represents a de-
viation of the metric tensor g& from the flat tensor g& .

Eg

g~u = qpv + 2fh'iv) (1.2)

where the flat tensor g„ is the Minkowski tensor with
signature (+1, —1, —1, —1). With the above constraints,
the linearized Lagrangian 2 is given by

~ = ~G + ~F + ~A + ~FA + ~GF + ~GA + ~GFA~

(1.3)

with

(a) (b)

(1.5)

(1.6)

z~A= —eA qA„

&Gs = fh, -(A "~ 0 —~"0& &)4
&a~= 2fhl (I"" I" —4g""I" I" n)

1
&a~A= sf'~"0-A-t-

2

(1.9)

(1.1O)

where p" are Dirac matrices, g is a spin-2 fermion
fiel, A" is the photon field, and F„=O„A„—0 A„.
Given the explicit form of the interaction Lagrangian,
one can construct graviton wave functions, propagators,
and Feynman rules.

The paper is organized as follows. We prove in Sec. II
that, when an external graviton interacts with a charged
fermion and a photon, the process has essentially the
same transition-amplitude structure as the process in-
volving a photon in place of the graviton. Only the over-
all kinematical factor difFers, and this is explicitly deter-
mined. Even the polarization efFects of the graviton with
helicity +2 are identical to those of the corresponding
photon. In Sec. III, we explain this aspect explicitly with
the help of a density matrix formalism. In Sec. IV, we
discuss possible generalizations of our results by employ-
ing electromagnetic and gravitational low-energy theo-
rems. Finally, in Sec V, some discussions and concluding
remarks are presented.

II. FACTORIZATION

The Feynman diagrams for processes under investiga-
tion can be generically represented as in Fig. 1. There
are a contact interaction term and a photon-graviton cou-
pling term in which the graviton can couple with a photon
without mass but with energy. Even without Fig. 1(d),
the transition amplitude is U(1)EM gauge invariant, but
this diagram should be included in order to ensure grav-
itational gauge invariance. However, as we will show
later, one does not have to do any tedious calculation
to get cross sections. One can use only the well-known
@ED results with a photon instead of the graviton. These
@ED processes have no contact terms for fermion-photon

(c)

FIG. 1. Diagrams for graviton interactions with a charged
fermion and a photon.

Z Z Z

) A, =) B, =) C, =O, (2.2)
2=1 2=1 2=1

from charge conservation, energy-momentum conserva-
tion

Z

) p, = —k, (2.3)

and k2 = 0 and k e~ = 0, the massless and transverse
properties of the on-shell photon. Then the transition
amplitude M for Z = 3 can be written in a factorized
form:

interactions and no photon self-interacting terms due to
the Abelian property of the gauge group U(1)EM.

Changing particle momentum directions and taking
complex conjugates of fermion spinors, the photon wave
vector, and the graviton wave tensor, one can investigate
essentially four kinds of two-to-two reactions: ge —+ pe,
gp —+ ee, pe + ge, and ee + gp.

In the standard model, any four-particle lowest-order
transition amplitude, where one particle is an on-shell
photon, has been well known to be always factorizable
[13—16] into one factor which contains the dependence
on the charge or other internal-symmetry indices, and
another which contains the dependence on the spin or
polarization indices.

Let us describe briefly how to get such a factorization
[13]. In general, we can decompose the transition ampli-
tude into three components:

Z

w=) (2.1)
2=1

where charge factors (A, ), polarization-dependent terms
(B,), and propagator denominators (C,) satisfy
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A1B1 A2B2 A3B3

+1+2 ~A1 A2 t B1
+3 4 +1 +2 4 +1

Bg)
Cz) ' (2.4) c""(2A) = e~(A)e"(A), (2.5)

to be a multiplication [20] of two massless spin-1 wave
vectors e"(A) and e (A) as

or in equivalent forms where the indices (1,2,3) are per-
muted. In any case, Eq. (2.4) definitely exhibits the fac-
torization of the transition amplitude into the charge-
dependent part and the polarization-dependent part.

However, one can also get a factorized transition ampli-
tude Mg for graviton interactions with a charged fermion
and a photon. In this case, we do not have any charge
conservation law. But there is one even stronger conser-
vation law that a graviton and any elementary particle in-
teract with the universal coupling constant, f(= /8aG).
Of course, the structure of interaction vertices is diferent
depending on the particle spin.

To derive the factorization, let us at erst write the
explicit form of the transition amplitude Jgg for the pro-
cess in Fig. 1. Here we note that the graviton spin-2 wave
tensor e" (2A) with helicity 2A (A = kl) can be taken

I

with the properties

k eg(A) = 0, cg(A) eg(A') = b), -
and thus the wave tensor ei' (2A) satisfies

(2 6)

k„e" (2A) = c" (2A)k = 0, c~ (2A) = 0, (2.7)

M, = M. +Mi,'+M, +Md, (2.8)

with their explicit forms

where k is the graviton four-momentum. It is assumed
that all particles are incoming to the bulb vertex in Fig. 1,
p(p') are the four-momenta of tw'o fermions, and k' is the
photon four-momentum. The transition amplitude Mg
is composed of four parts:

0

ef —
2
— ur'( p', s') [g' —(g+m)g e .(p+q)]u(p, s),

ef——
2 ui'( —p', s') [(q' —p'). eg g'g(y'+ m) g~] 1D(p, s),

M, = i ef u'( p', s') [/gag —e~) ui(p, 3),

Mg =ief 1g'( p—', s') (——l g'geg e~+ 2k' eg [gg k e~ —eg k' g~+ eg e~ g']) w(p, s),

(2.9)

(2.10)

(2.11)

(2.12)

where the momentum transfers q, q', and l are given in terms of particle momenta p, p', k, and k' as

q = p+ k = -p' —k', q' = p+ k' = -p' —k, l = k+ k' = -p —p', (2.13)

and the spinors ui and tu are replaced by the familiar u, u spinors as the particle is a fermion or an antifermion,
respectively. Note that the contact term M, and the graviton-photon coupling term ~~ have the same momentum-
independent component [greg e~] between two spinors ui and 1u, and their sum vanishes because gravitational gauge
invariance is imposed in the theory. Combining M, and JHd, , we get the following expression:

M', =ief 1g'(p', s')k' eg—[gg k e~ —eg k'
Ir~ + eg e~ g'] w(p, s). (2.14)

It can be directly verified that the transition amplitude Mg is invariant under the gauge transformations

e" ~ e" + Ak" for the graviton,

e" —+ e" + A'k'~ for the photon,
(2.15)

where A and A' are any scalar functions.
Now let us determine what A, , B,, and C, (i = 1, 2, 3) are. The A, terms which denote the strength of graviton

interaction with matter lines are

A1 —f (p + q) eg, A2 = f (p' —q') eg, As = 2fk' cg. (2.16)

It is noted that all couplings have the same gravitational coupling f and their strength is proportional to the sum
of four-momenta of two matter lines. Naturally, these terms will be replaced by charges in a (non-)Abelian gauge
theory. The B, terms are polarization-dependent parts, which are given as

B1 = ——eui'( —p', s') [g~(g+ m) g'g] ur(p, s),
0

B2 = 2eui'( p', s') [pg(9" + m)—g~] ui(p, s),

B3 =ie1g'( —p', s') [k e~ fg —k' eg g'~+ eg e~ g'] u(p, s).

(2.17)
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The C, terms are propagator denominators:

Cp ——q —m, C2 ——q' —m, C3 =l .

One can easily check that the conditions (2.2) are satisfied owing to the energy-momentum conservation

p+ p'+ k+k' = 0,

and two Dirac equations

P'ui'( —p', s') = —mui'( —p', s'),

phd(p, s) = m ut(p, s).

Then we obtain the factorized form of the transition amplitude

(2.18)

(2.19)

(2.20)

k pk p' p"
k. k k p

1

k „, &g~ui'( ps—) &~ &g+ Kg, Kp ~(p, s) (2.21)

This is the final factorized expression. Two factors in Eq.
(2.21),

(2.22)

and

1 1
ui'( —p', s') g~ gg+ gg, g~ ui(p, s), (2.23)

k pk p'

appear quite often in @ED interaction processes. The
latter is nothing but the transition amplitude for three
two-to-two @ED reactions: the Compton scattering [21]
pe —+ pe, the pair creation pp —+ ee, and the pair anni-
hilation ee —+ pp. On the other hand, with two vectors
p and p', we can always construct two vectors [22, 23]

]

They enable us to determine the spin-1 wave vector eg (A):

1e"(A) = (ni + iAn2),
2

(2.27)

Wg ———v F (ni eg) W„
e

(2.28)

where the relation (2.2) is used and the overall kinemat-
ical factor F is

where A = +1 is for the (right-) left-handed polarization,
respectively. What should be noted is that the scalar
product ni eg (A) of this wave vector and the four-vector
nq is in this case independent of the helicity value A.

Certainly one can take another set of (ni, n2) as a basis
satisfying Eq. (2.25), but they are difFerent from the set
(ni, nq) simply by a phase. Therefore, there will be no
change in the cross section.

Finally we come to the result

which satisfy the conditions

k n, =0, n, n = —6, , (2.25)

k. k/

and the transition amplitude JM~ is

(2.29)

with the normalization factor N deGned as

2k k', (1
, -m'] + (2.26)

i,e ur'( p', s') g' —g' + g', g iU(p, s). (2.30)

In the center-of-mass frame, this overall kinematical fac-
tor takes the forms

4(s —4m2) sin 8, 8 = Z(g, e) for gp —& ee and ee —+ gp,
s cot 2 8 = l(g, p) for ge ~ pe and pe ~ ge.

(2.31)

The result leads to a number of comments.
(i) The ratio f/e of the gravitational coupling con-

stant f to the electromagnetic coupling constant e is an
extremely small value —1.3 x 10 Sm&, where m~ is
the proton mass. Therefore, it will be very difficult to
detect or produce any measurable amount of gravitons
in a terrestrial experiment.

(ii) Because ni eg can be made independent of the
helicity value A of the graviton which will be discussed

I

in detail later, the graviton process has essentially the
same transition-amplitude structure as the @ED process
involving a photon in place of the graviton, except the
coupling constant and the kinematical overall factor F.

(iii) Owing to the kinematical factor F in Eq. (2.31),
the gp —+ ee and ee —+ gp cross sections show different an-
gular distributions from those of pp ~ ee and ee —+ pp,
respectively. The former are more transversely peaked
and vanish in the forward and backward directions, while
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the latter are forwardly peaked. Also, the ge —+ pe and
pe ~ ge cross sections are more forwardly peaked than
the cross section of the Compton scattering pe —+ pe and
vanish in the backward direction. On the other hand,
our calculation of difFerential cross sections agrees with
the result of Voronov [12].

(iv) The overall kinematical factor F increases almost
linearly with the square of the center-of-mass energy 8,
while the total cross sections o~ of the photon-replaced
@ED processes decrease as s increases [24]:

7lA 2
(T~ ~

2 in', as s ~ oo.
m2 s

(2.32)

Therefore, the graviton cross sections might violate uni-
tarity at some very high energies. This indicates the lin-
earized graviton Lagrangian l; in Eq. (1.2) is nonrenor-
malizable.

III. POLARIZATION
Now let us show in detail that the polarization effects

of the graviton are identical to those of the corresponding
photon. This aspect can be formally shown by using a
density matrix formalism. Physically measurable quan-
tities are not transition amplitudes but their absolute
squares, e.g. , cross sections. Before obtaining the abso-
lute squares of transition amplitudes, first let us rewrite
the transition amplitudes M~ as

where the graviton polarization dictating tensor operator
Ps" (A, A') is defined as

Ps" (A, A') = ni ~g(A) ni e'(A') e"(A)e* (A'). (3.3)

It is well known that the polarization of a photon (i.e. ,
a massless spin-1 particle) beam is completely described
[21, 22, 25] in terms of the so-called Stokes parameters
(~, (i = 1, 2, 3). In the helicity basis, (2~ is the degree
of circular polarization and the others are degrees of lin-
ear polarization. Because a graviton beam has only two
helicity values, one can introduce its Stokes parameters
(s (i = 1, 2, 3) [26]. As in the case of the photon beam,
(2s is the degree of graviton circular polarization and the
others are degrees of graviton linear polarization. On
the whole, the photon or graviton polarization density
matrix p~ g is given in the helicity basis by

1+g' —g'+i('r")
1 —(2' j

(3.4)

For a photon beam, we should in general replace the
photon projection operator e"(A)e~ (A') with its photon
covariant density matrix p~~:

1
p~" = —[(nini + n2n2) —(nin2+ n2ni)(i2

W~ = es„M~ . (3.1) +i(nznr —ninz)(z + (n2n2 —nini)(s]. (3.5)

2

~W, ~'(AA') = —
~

rP, " (A, A') M,„M;, (3 2)

Formally, the square of the graviton transition amplitude
~~s~2 can be written as

In the graviton case, the covariant density matrix
pg)""' r, which should be substituted for the graviton
projection operator e" (2A)e' P(2A'), is a little compli-
cated, but can be written in terms of the graviton Stokes
parameters (s (i = 1, 2, 3) as

+i (nini + ning)(n2npi —nin~2)+(n~~nr —n~in2)(n, npi + n~np2) (zs

(+2 2 3 2)( 2 2 1+2) (+3 2+ 2 3)( 1+2+ 2 I) 43)' (3.6)

ps'" = p&" ((,' (,') (& = 1 2 3). (3.7)

The conclusion is that, when a graviton interacts with
a charged fermion and a photon, the polarization efFects
of the graviton are identical to those of its photon partner

In the same way, the tensor operator Pg"" is to be re-
placed by the tensor operator ps" obtained by fold-
ing the graviton covariant density matrix pg& '~~ with
nq nq ~. Note that the operator pg~ takes exactly the
same form as the covariant density matrix p~~" in Eq.
(3.5) where the photon Stokes parameters (~ take the
place of the graviton Stokes parameters (s, respectively.
In a concrete way, one obtains

if the graviton Stokes parameters are used instead of the
photon Stokes parameters.

IV. LOW-ENERCY THEQREMS

The fact that the graviton behaves like a photon in
the graviton interaction with a charged fermion and a
photon looks quite general in the sense that only the
gravitational gauge invariance is required in the theory.

Now let us consider the case in which the graviton
four-momentum is near zero in order to get some hints
on how general our results are. What can be employed
are the so-called low-energy theorems electromagnetic
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—1

(p„—k) z —mz 2k p„
outgoing particle n,

(4.1)
1 1

(p„+k)' —m„' 2k p„
incoming particle n.

For the absolute value of k" sufficiently small, these poles
will completely dominate the absorption matrix element.
The singular factors (4.1) will be multiplied by a factor
—i(2vr) associated with the extra internal line, a factor
arising from the interaction vertices

and gravitational [7, 12, 27, 28].
Let M p~ be the transition amplitude for some reaction

a —& P, the states o. and P consisting of various charged
and uncharged particles, possibly including gravitons and
photons. The same reaction can also occur with absorp-
tion (or emission) [29] of a very soft extra photon or gravi-
ton of four-momentum k~.

These absorption (or emission) matrix elements have
poles at k" = 0. The poles arise because the virtual
particle connecting the photon or graviton vertex with
the rest of the diagram gives a vanishing denominator:

order. Requiring them, we get the relations

) Q„=o, ) p~=o. (4.6)

3 . 2n'&g

k p„

3
k'pi pj '&g —k'pj pi '&g ) Q

pn'&g

k pQj —k pjQ, "k p„'
(4.7)

where i g j (i, j = 1, 2, 3). In the low-energy limit, we
get

The former relation corresponds to electric charge con-
servation and the latter is nothing but the energy-
momentum conservation for the k = 0 process. It is
certain that the latter is not valid unless the graviton
coupling is universal. This is the content of the equiva-
lence principle.

Now let us consider the case in which the number of
external matter lines Z is three. Charge conservation,
energy-momentum conservation, and the massless k
0 and transverse k eg = 0 properties of the on-shell
graviton give us an interesting identity:

or

2ieQ„(p„.eg) (2vr) 4

(2~)s/2(2~) &/&

2if(p„eg)z(2vr)4
(2~)s/& (2~) &/~

(4.2)

(4 3)

~g f P'Pj g
— PjP' g ~, (48)kp, Q, —kp, Q,

In particular, when Qq = —Qz and the third particle
is an external photon, the relation (4.8) takes the same
form as Eq. (2.21).

where u is the photon or graviton energy and Q~ is the
electric charge of the particle n, and a factor Sp for the
rest of the diagram. Therefore, the transition amplitude
for soft photon or graviton absorption is written in the
limit u ~ 0 as

Mp~ (27r) s/ (2cu) '/ e ) q„Q„"k p„ Egg, Sp~ )

(4 4)

or

Mpg ~ (2vr) / (2~) '/ f ) rl„" "
eg„eg Sp,

k p„
(4.5)

with the sign g„being +1 or —1 according to whether
particle n is incoming or outgoing. What is noted is that,
for the soft graviton or photon, we have exactly the same
structure Sp . For convenience, let us consider all parti-
cles incoming for which g„= 1. Comparing two asymp-
totic expressions, we note that the energy-momentum
vector p& is to the strength of graviton interaction what
the electric charge Q is to that of photon interaction.
The properties of the polarization-dependent Sp are de-
termined by the participating matter fields.

First of all, let us investigate what constraints [19,
29] gravitational gauge invariance and U(l)EM invariance
impose on the transition amplitude. Naturally, both of
the transition amplitudes should satisfy such invariance
properties not only to all orders in k, but also to leading

V. DISCUSSION AND CONCLUSION

The relation (4.8) derived from the electromagnetic
and gravitational low-energy theorems puts forward the
following question: Is the relation (4.8) true for any lin-
earized gravity coupled to a (non-) Abelian gauge theory?
While the detailed analysis of the aspect will be reported
elsewhere, some speculations are offered below. The cru-
cial point for Eq. (4.8) is that all properties are closely
related with the fact that the gravitational coupling is
universal. In the present work, we have shown our con-
jecture to be correct explicitly for the case when a gravi-
ton interacts with a charged fermion and a photon. On
the other hand, even for a photon with a Rnite energy,
note that the transition amplitude M~& for a photon in-
teraction process involving three external matter lines is
always factorized [13—16] as

Q.
k p,

Qj (5.1)

where M~& is an even simpler matrix element. The fac-
torization property (5.1) and the relation (4.8) derived
from the electromagnetic and gravitational low-energy
theorems strongly suggest that our results can be gen-
eralized.

To conclude, the transition amplitudes for the gravi-
ton interactions with a charged fermion and a photon
have essentially the same transition-amplitude structure
as those involving a photon instead of the graviton, apart
from a simple overall kinematical factor. And the polar-
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ization efFects involving the graviton are identical to those
for the corresponding photon if the graviton Stokes pa-
rameters are used in place of the photon Stokes parame-
ters. Finally, the electromagnetic and gravitational low-
energy theorems strongly suggest that our results can be
generalized to a broad class of graviton interactions with
matter.
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