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This paper is concerned with the question of the existence of composition laws in the sum-over-

histories approach to relativistic quantum mechanics and quantum cosmology, and its connection with

the existence of a canonical formulation. In nonrelativistic quantum mechanics, the propagator is

represented by a sum over histories in which the paths move forward in time. The composition law of
the propagator then follows from the fact that the paths intersect an intermediate surface of constant
time once and only once, and a partition of the paths according to their crossing position may be
aftected. In relativistic quantum mechanics, by contrast, the propagators (or Green functions) may be
represented by sums over histories in which the paths move backward and forward in time. They there-
fore intersect surfaces of constant time more than once, and the relativistic composition law, involving a
normal derivative term, is not readily recovered. The principal technical aim of this paper is to show
that the relativistic composition law may, in fact, be derived directly from a sum over histories by parti-
tioning the paths according to their ftrst crossing position of an intermediate surface. We review the
various Green functions of the Klein-Gordon equation, and derive their composition laws. We obtain
path-integral representations for all Green functions except the causal one. We use the proper time rep-
resentation, in which the path integral has the form of a nonrelativistic sum over histories but is integrat-
ed over time. The question of deriving the composition laws therefore reduces to the question of factor-
ing the propagators of nonrelativistic quantum mechanics across an arbitrary surface in configuration
space. This may be achieved using a known result called the path decomposition expansion (PDX). We
give a proof of the PDX using a spacetime lattice definition of the Euclidean propagator. We use the
PDX to derive the composition laws of relativistic quantum mechanics from the sum over histories. We
also derive canonical representations of all of the Green functions of relativistic quantum mechanics, i,e.,
express them in the form (x"~x'), where the [ ix ) I are a complete set of configuration-space eigenstates.
These representations make it clear why the Hadamard Green function 6"' does not obey a standard
composition law. They also give a hint as to why the causal Green function does not appear to possess a
sum-over-histories representation. We discuss the broader implications of our methods and results for
quantum cosmology, and parametrized theories generally. We show that there is a close parallel be-
tween the existence of a composition law and the existence of a canonical formulation, in that both are
dependent on the presence of a timelike Killing vector. We also show why certain naive composition
laws that have been proposed in the past for quantum cosmology are incorrect. Our results suggest that
the propagation amplitude between three-metrics in quantum cosmology, as constructed from the sum
over histories, does not obey a composition law.

PACS number(sl: 03.65.Ca, 04.60.+n, 11.10.Qr

I. INTRODUCTION

Quantum theory, in both its development and applica-
tions involves two strikingly different sets of mathemati-
cal tools. On the one hand, there is the canonical ap-
proach, involving operators, states, Hilbert spaces and
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Hamiltonians. On the other, there is the path integral,
involving sums over sets of histories. For most purposes,
the distinction between these two methods is largely re-
garded as a matter of mathematical rigor or calculational
convenience. There may, however, be a more fundamen-
tal distinction: one method could be more general than
the other. If this is the case, then it is of particular in-
terest to explore the connections between the two formu-
lations, and discover the conditions under which a route
from one method to the other can or cannot be found.

A particular context in which the possible distinction
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between these two quantization methods will be impor-
tant is quantum cosmology. There, the canonical formu-
lation suffers from a serious obstruction known as the
"problem of time" [1,2]. This is the problem that general
relativity does not obviously supply the preferred time
parameter so central to the formulation and interpreta-
tion of quantum theory. By contrast, in sum-over-
histories formulations of quantum theory, the central no-
tion is that of a quantum-mechanical history. The notion
of time does not obviously enter in an essential way.
Sum-over-histories formulations of quantum cosmology
have therefore been promoted as promising candidates
for a quantum theory of spacetime, because the problem
of time is not as immediate or central, and may even be
sidestepped completely [3]. In particular, as suggested by
Hartle, a sum-over-histories formulation could exist even
though a canonical formulation may not [3]. The broad
aim of this paper is to explore this suggestion.

An object that one would expect to play an important
role in sum-over-histories formulations of quantum
cosmology is the "propagation amplitude" between
three-metrics. Formally, it is given by a functional in-
tegral expression of the form

G(h,",h,', )=f2)g exp(iS[g„]) .

Here, S[g„]is the gravitational action, and the sum is
over a class of four-metrics matching the prescribed
three-metrics h ', h,

' on final and initial surfaces. The
level of the present discussion is rather formal, so we will
not go into the details of how such an expression is con-
structed (see [4] for details), nor shall we address the im-
portant question of its interpretation. It is, however, im-
portant for present purposes to assume that a definition
of the sum over histories exists that is not dependent on
the canonical formalism.

The above expression is closely analogous in its con-
struction to the sum-over-histories representations of the
propagators (or Green functions) of relativistic quantum
mechanics, Q(x" ~x'), where x denotes a spacetime coor-
dinate. We shall make heavy use of this analogy in this
paper.

In relativistic quantum mechanics, there exist both
sum-over-histories and canonical formulations of the
one-particle quantum theory. In the canonical formula-
tion, one may introduce a complete set of configuration
space states, I ~x ) ]. The propagators may then be shown
to possess canonical representations; i.e., they may be ex-
pressed in the form

Q(x" ix') = (x"ix' &,

where the right-hand side denotes a genuine Hilbert
space inner product. By insertion of a resolution of the
identity, it may then be shown that the propagator
satisfies a composition law, typically of the form

&x"ix'& = fdo"&x "ix &B.„&xix'),
where do" denotes a normal surface element. The details
of this type of construction will be given in later sections.
For the moment, the point to stress is that the existence
of a composition law is generally closely tied to the ex-

istence of canonical representations of Q(x" ~x').
Now in a sum-over-histories formulation of quantum

cosmology, the path-integral representation of G(h ', h )

is taken to be the starting point. Relations such as the
composition law, characteristic of canonical formula-
tions, cannot be assumed but hold only if they can be de-
riued directly from the sum over histories alone, without
recourse to a canonical formulation. In particular, since
the existence of a composition law seems to be a general
feature of the canonical formalism, it is very reasonable
to suppose that the existence of a composition law for a
G(h J', h 1 ) generated by the sum over histories is a neces
sary condition for the existence of an equivalent canonical
formulation.

The object of this paper is to determine how a deriva-
tion of the composition law from the sum over histories
may be carried out. We may then ask how this deriva-
tion might fail, i.e., whether the necessary condition for
the recovery of a canonical formulation of quantum
cosmology from a sum-over-histories formulation is
satisfied.

Of course, a full quantum theory of cosmology, even if
it existed, would be exceedingly complicated. Like many
authors declaring interest in quantum cosmology, there-
fore, we will focus on the technically simpler case of the
relativistic particle. As stated above, relativistic quantum
mechanics possesses many of the essential features of
quantum cosmology. Remarks on quantum cosmology of
a more general and speculative nature will be saved until
the end. We shall show how the composition laws of rel-
ativistic propagators may be derived directly from their
sum-over-histories representations. To the best of our
knowledge, this derivation has not been given previously.
It is therefore of interest in the limited context of relativ-
istic quantum mechanics, as well as being a model for the
more difficult problem of quantum cosmology outlined
above.

A. The problem

In nonrelativistic quantum mechanics the propagator
(x",t"~x', t') plays a useful and important role. It is
defined to be the object which satisfies the Schrodinger
equation with respect to each argument,

(1.2)

It determines the solution to the Schrodinger equation at
time t", given initial data at time t':

'I'( ",t")=f d "x'(x",t"
~

tx')4'( tx') . (1.3)

From this follows the composition law (semigroup prop-
erty)

&x",t"
~

', x'&t= f d"x&x",t"~x, t&(x, t~x', t') . (1.4)

In relativistic quantum mechanics, the most closely

(and similarly for the initial point), subject to the initial
condition
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analogous object is at first sight the causal propagator
G(x" lx'). It is defined to be the object satisfying the
Klein-Gordon equation with respect to each argument,

(, +m )G(x"lx')=0

(and similarly for the initial point), and obeying the
boundary conditions

G(x",x lx, x ) o 0 =0,

x", t"

It vanishes outside the light cone. It determines the solu-
tion at a spacetime point x", given initial data on the
spacelike surface X:

P( ")=—f d "G( "l ')&„P( '), (1.6)

x', t'

FIG. 1. Paths for the nonrelativistic propagator in the set
p(x', t'~x„t ~x",t").

where

(1.7)

and do.~ is normal to the surface X in the future timelike
direction. From (1.6) follows the composition law

G(~"lx')= —f do"G(x"l~)~„G(xl~') .

(x",t" lx', t') =
p(x', t'~x", t" )

e px[i S( 'x, t' +x",t")] . —(1.9)

Here, p(x', t'~x", t") denotes the set of paths beginning
at x' at time t' and ending at x" at t", and
S(x', t'~x", t") denotes the action of each individual
such path. The propagator of nonrelativistic quantum

There are of course a number of other Green functions
associated with the Klein-Gordon equation, and many of
them also obey composition laws similar to (1.8), involv-
ing the derivative operator (1.7) characteristic of relativis-
tic field theories. For example, the Feynman Green func-
tion obeys a slightly modified version of (1.8).

Because of the presence of the derivative operator (1.7)
in (1.8), the relativistic and nonrelativistic composition
laws assume a somewhat diferent form. The difference is
readily understood. The wave functions of nonrelativistic
quantum mechanics obey a parabolic equation, and so are
uniquely determined by the value of the wave function on
some initial surface. In contrast, the wave functions in
the relativistic case obey a hyperbolic equation, and so
are uniquely determined by the value of the wave func-
tion and its normal derivative on some initial surface,
hence the derivative term in (1.8).

A convenient way of representing the propagator in
nonrelativistic quantum mechanics is in terms of a sum
over histories. Formally, one writes

mechanics is obtained by restricting to paths x(t) that are
single-valued functions of t, that is, they moue forward in
time. There are many ways of defining a formal object
such as (1.9). A common method worth keeping in mind
is the time-slicing definition, in which the time interval is
divided into X equal parts of size e, ¹=(t"—t'), and
one writes

(x",t" lx', t')
d'xl,= lim Q f »exp[iS(x„+, , t„+,lx„,t„)] .N- k, (277l e)"

Here, xo=x', to=t', x~+)=x", t~+)=t" and
S(xk+„tk+, lxk, t&) is the action of the classical path
connecting (xa tk ) to (xl, + i tk+1) More rigorous
definitions also exist, such as that in which (the Euclidean
version of) (1.9) is defined as the continuum limit of a sum
over paths on a discrete spacetime lattice. Indeed, we
will find it necessary to resort to such a rigorous
definition below.

Given the representation (1.9) of the propagator, it be-
comes pertinent to ask whether the composition law (1.4)
may be derived directly from the sum-over-histories rep-
resentation (1.9). This is indeed possible. The crucial no-
tion permitting such a derivation is that of an exclusive
partition of the histories into mutually exclusive alterna-
tives. Consider the surface labeled by t, where t' ~ t ~ t".
Because the paths move forward in time, each path inter-
sects this surface once and only once, at some point x„
say. The paths may therefore be exhaustively partitioned
into mutually exclusive sets, according to the value of x
at which they intersect the surface labeled by t (see Fig.
1). We write this as

p(x, t ~x ', t )= U p(x', t'~x„t~x", t"),
x

p(x', t'~x„t~x", t")Ap(x', t'~y„t~x", t")=B if x,Ay, .

Each path from (x', t') to (x",t") may then be uniquely expressed as the composition of a path from (x', t') to (x„t)
with a path from (x„t) to (x",t") for some x, . Consider what this implies for the sum over histories. First of all, any
sensible definition of the measure in the sum over histories should satisfy
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X =X X =X X X
p(x, t ~x, t ) x, p(x, t ~x, , t~x, t ) x, p(x, t ~x, , t) p(x, , t~x, t )

This is readily shown to be true of the time-slicing definition, for example. Second, the action should satisfy

S(x', t'~x", t")=S(x', t'~x„t )+S(x„t~x",t") .

Combining (1.10) and (1.11), it is readily seen that one has

(1.10)

exp[iS(x', t' ~x„t )+iS(x„t ~x",t" ) ]
x p(x', I x, f) p(x, f x ', f")

=g &x",t"~x„t)&x„t~x',t') .
x

(1.12)

The composition law therefore follows directly from the
partitioning of the sets of paths in the sum over histories.

Turn now to the relativistic particle. There also cer-
tain Green functions may be represented by sums over
histories. Formally, one writes

Q(x "~x')= g exp[iS(x'~x")]
p(x'~x" )

(1.13)

x'

FICx. 2. Paths for the relativistic propagator.

(we will be precise later about which Green function 9
may be). In fact, a number of such representations are
available, since the classical relativistic particle is a con-
strained system, and there is more than one way of con-
structing the path integral for constrained systems [5].
Here we shall be largely concerned with those construc-
tions for which the set of paths summed over in (1.13) is
all paths in spacetime. In particular, unlike the nonrela-
tivistic case, the paths will generally move forward and
backward in the time coordinate, x (see Fig. 2).

It again becomes pertinent to ask whether a composi-
tion law of the form (1.8) may be derived from the sum-
over-histories representation. However, because the
paths move both backward and forward in time, they
typically intersect an intermediate surface of constant x
many times, and the points at which they intersect the in-
termediate surface therefore do not eftect a partition of
the paths into exclusive sets. The argument for the non-
relativistic case, therefore, cannot be carried over directly
to the relativistic case. Furthermore, even if this parti-

tion did work, it would then not be clear how the deriva-
tive term in the composition law might arise from the
path representation (1.13). We are thus led to the ques-
tion, is there a difterent way of partitioning the paths,
that leads to a composition law of the form (1.8), and ex-
plains the appearance of the derivative term? This ques-
tion is the topic of this paper.

In detail, we will study sum-over-histories expressions
of the form (1.13) for relativistic Green functions. We
will focus on the "proper time" sum over histories, in
which the Green functions are represented by an expres-
sion of the form

Q(x" ~x')= JdTg(x", T~x', 0), (1.14)

We begin in Sec. II by reviewing the various Green
functions associated with the Klein-Gordon equation and
their properties. We determine which Green functions
satisfy a composition law of the form (1.6). We briefiy de-
scribe the sum-over-histories representation, and derive
(1.14). An important question we address is that of
which Green functions are obtained by the sum over
paths (1.14). We also discuss the connection of sum-
over-histories representations with canonical representa-
tions. By this we mean representations in which the
propagators may be expressed in the form &x"~x'),
where the [ ~x ) I with a single time argument x form a
complete set of configuration-space eigenstates.

In the representation (1.14), the time coordinate x is
treated as a "spatial" coordinate, when g is thought of as
an ordinary Schrodinger propagator like that of nonrela-
tivistic quantum mechanics. Comparing (1.14) with the
expression to be derived from it, (1.8), we therefore see
that our problem of factoring the sum over histories
(1.14) across a surface of constant x is very closely relat-
ed to that of factoring the sum over histories (1.9), not
across a surface of constant parameter time t, as in (1.4),

Here g (x",T~x', 0) is a Schrodinger operator satisfying
(1.1), (1.2), and (1.4), with the Hamiltonian taken to be
the Klein-Gordon operator in (1.5). g may therefore be
represented by a sum over paths of the form (1.9). We
will derive (1.14) below, but for the moment note that
(1.14) will be a solution to (1.5) if T is taken to have an
infinite range, and will satisfy (1.5) but with a 5 function
on the right-hand side if T is taken to have a half-infinite
range.

B. Outline
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but across a surface on which one of the spatial coordi-
nates is constant. It turns out that a solution to this
problem exists, and the result goes by the name of the
path decomposition expansion (PDX) I'6]. The crucial
observation that leads to this result is that although the
paths may cross the factoring surface many times, they
may nevertheless be partitioned into exclusive sets ac-
cording to the parameter time and spatial location of
their erst crossing of the surface. We describe this result
in Sec. III, and give a rigorous derivation of it.

In Sec. IV, we give our main result. This is to show
how the composition law (1.8) follows from the sum over
histories (1.14), using the PDX. We also explain why cer-
tain naive composition laws that have been proposed in
the past are problematic.

Our principal result is admittedly simple, and has been
derived largely by straightforward application of the
PDX. However, it has broader significance in the con-
text of the sum-over-histories approach to quantum
theory. In particular, it is closely related to the question
of the conditions under which a sum-over-histories for-
mulation of quantum theory implies the existence of a
Hilbert space formulation. In Sec. V, we therefore dis-
cuss the generalizations and broader implications of our
result.

also discuss these below since they play an important role
in relativistic quantum mechanics.

l. 8'ightman functions: G+(x Iy ) and G (x Iy )

A closed anticlockwise contour around one or other of
the poles yields the Wightman functions +iG —(x y),
which are solutions of the Klein-Gordon equation, and of
its positive and negative square roots respectively:

i +(m' —V'„)'~' 6—(xIy)=0.
aX0

They are given by

6+—(x y)= f d k 9(k )6(k —m )e(2~)'

or

d k6+(
I ) f —ik ix —y)

(2ir) "o=—"k 2eok

and are related by

G+(x ly)=G (ylx) .

The two Wightman functions satisfy relativistic composi-
tion laws

II. THE PROP AGATORS OF REI.ATIVISTIC
QUANTUM MECHANICS

G —
( "I )=+ f d "G—

( "I )B„G—
( ')

X
(2.3)

A. Green functions of the Klein-Gordon equation

(Cl + m )Q(x Iy ) = —6 (x —y ), (2.1)

where x and y are four-vectors, may be shown by Fourier
transformation to be given by the expression

1
—ik.(x —y}

Q(x Iy)= f d k (2.2)

Q(x Iy ) is not uniquely defined in Minkowski space due to
the presence of poles in the integrand. The k0 integra-
tion

iko(x —y }f" dk,
0

has poles on the real axis at ko=+(k +m )', and the
various possible deformations of this contour determine
the possible solutions to (2.1), each with diff'erent support
properties. Below we shall list some possible contours
and their corresponding Green functions. Closed con-
tours yield solutions to the Klein-Gordon equation. We

We begin this section with a review of the various
Green functions of the Klein-Gordon equation in Min-
kowski space relevant to our discussion. The section is
intended to set out the conventions we shall use
throughout this paper, and to list the relevant properties
of the Green functions. A metric of signature
(+, —,—,—) is used throughout. Readers familiar with
the intricacies of this subject may wish to move directly
to Sec. II B.

The kernel Q(x Iy ) of the operator ( +m ), satisfying

(where do" is normal to X and future pointing) and are
orthogonal in the sense that

f do "6—(x"Ix )8„6 (x Ix') =0 .

In field theory they are given by the expressions

6+(x ly ) = «I W(x) &(y) 10 &

and

6 (xIy)=(OIQ(y)P(x)IO) .

6 (
I

) f dT f d4k —i[k (x —y) —T)k —m +i )]E
(2~)4

1
—ik (x —y}

d k
(2') k —m +iE

It may be checked that GF obeys a relativistic composi-
tion law

6 ( "I ')= f d GF( "I )~.6 (xl '), (2.4)

where X is an arbitrary spacelike three-surface, and
8, =n "B„with n" now the normal to 2 in the direction of
propagation. In free scalar field theory, the Feynman
propagator is of course given by

2. Feynman propagator: Gr(x Iy )

A contour going under the left pole and above the
right gives the Feynman propagator. This satisfies Eq.
(2.1), and may be written as

iGF(x ly)=8(x —y )G+(x ly)+9(y —x )G (x ly) .

Alternatively,
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iG, (x ly) = «I T(y(x)y(y))»

3. Causal Green function: G(x Iy)
and

X P

(2.7)

6(xly)= f d k E(k )5(k —m )e(2'�)' (2.5)

or

A closed clockwise contour around both poles gives
what is generally known as the commutator or causal
Green function, which is written simply as G(x Iy ). It is
a solution of the Klein-Gordon equation. G(x Iy ) has the
representations

d~"6")(x"lx)~ 6"'(x IX') .

In field theory, G"' is given by the anticommutator

6"'(x Iy)=(OI [P(x),()((y)J IO) .

It is related to the Wightman functions via

G"'(xly)=G (xly)+6 (xly) .

—1 d kG(x y)= f sin[cok(x —y )]e' '"
(277)

5. Newton Wign-er propagator: GN))), (x,x Iy, y )

a
G(x, x ly y )ax' x'=y'

Since

6(x,x'Iy, y')I o .=0,

= —5 (x —y),

The Newton-Wigner propagator is a solution of the
Klein-Gordon equation, and indeed of its first-order posi-
tive square root. It is not given by the integral (2.2) for
any contour. We nevertheless include it since it plays an
important role in the quantum mechanics of the relativis-
tic particle. GN~ is defined by

and 6 is Lorentz invariant, it has support only within the
light cone of x —y. G also obeys the relativistic composi-
tion law

6(x Ix ) = der"6(x" IX )a 6(x IX'),
X p

(x,x Iyy )= d ke1

(2~) "o= k

The support property

GNw(x, x Iy, y )I o o=5 (x —y)

(2.8)

and, as mentioned in the Introduction, it propagates solu-
tions P(x) of the Klein-Gordon equation via

P(y)= —f do."6(y Ix)B„P(x) .

In field theory, G is given by the commutator

(6(x ly ) = (0I [P(x),P(y) ] I0 &
= [P(x),P(y) ] .

Finally, note that

iG(xly)=G+(xly) —6 (xly) .

4. Hadamard Green function: G'"(x Iy)

A closed figure of eight contour around the two poles
gives the Hadamard or Schwinger Green function
iG' "(x Iy ), which is a solution of the Klein-Gordon equa-
tion. It may be written as

G"'(x Iy ) = d k 5(k —m )e
1

(2m )

f dT f d4k —i[k (x —y) —T(k —m ))

(2'�)
(2.6)

OI

G" (x Iy ) = cos[cok(x —y ) ]e '"'"1 d k
(2~)'

Perhaps the most important property of 6'')(x Iy ) is that
it does not satisfy the standard relativistic composition
law. In fact

X GNw(X, X IX,X ) (2.9)

Finally, note that GN~ is not Lorentz invariant.
An analogous operator, which we shall call the

negative-frequency Newton-Wigner propagator, may also
be defined. It is given by

6 (xx Iyy )= d ke1

(2vr) "o=

and has the same support properties as GNw(x, x Iy, y ).
It solves the negative-frequency square root of the Klein-
Gordon equation and propagates its solutions.

B. Sum-over-histories formulation of relativistic
quantum mechanics

We are interested in Green functions which may be
represented by sums over histories of the form (1.13). We
will take sum-over-histories expressions of the form (1.13)
as our starting point and determine which Green func-
tions they give rise to. The expression (1.13) is rather for-
mal as it stands, and various aspects of it need to be
specified more precisely before it is properly and uniquely
defined. These include the action, class of paths, gauge-
fixing conditions, and the domains of integration of cer-

shows that GN~ is analogous to the quantum-mechanical
propagator (1.2). It propagates solutions of the first-
order Schrodinger equation with Hamiltonian
H=(k —m )'~ . GNw also obeys the usual quantum-
mechanical composition law:

GNw(x, x Ix, x ) = f d x GNw(x, x Ix,x )
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tain variables. The particular Green function obtained
will depend on how these particular features are specified.
We note, however, that there is no guarantee that all
known Green functions may be obtained in this way, and
indeed, we are not able to obtain the causal propagator,
G.

The action for a relativistic particle is usually written

ax~ ax.S= —m d~
7' 07- 07-

1/2

(2.10)

the length of the world line of the particle in Minkowski
space. ~ parametrizes the world line, and S is invariant
under reparametrizations r~f(r). Since (2.10) is highly
nonlinear, its quantization presents certain difhculties
which have hitherto prevented its direct use in a sum
over histories. These difhculties may be bypassed by the
introduction of an auxiliary variable X, which can be
thought of as a metric on the particle world line. The ac-
tion may then be rewritten as

tt ~ 2

S= —f dr +m N
4N

5x =e(r) [x,H], 5p =e(r) [p, H ], 5N =e(r)

for some arbitrary parameter s(r). Since H is quadratic
in momentum, the action is only invariant up to a surface
term [7]

where a dot denotes a derivative with respect to ~. Pass-
ing to a Hamiltonian form, the action becomes

S=f dr[p x "+NH], (2.1 1)

where X is now a Lagrange multiplier which enforces the
constraint H = (p —m ) =0. The Hamiltonian form
(2.11) of the action is still invariant under reparametriza-
tions. Infinitesimally, these are generated by the con-
straint H:

good prescription in the Gribov sense [5]. The canonical
gauge has the feature that it restricts the class of paths in
configuration space to move forwards in the time coordi-
nate x . These two gauge-fixing conditions lead to quite
different results. There is, however, no conAict with the
standard result that the path integral is independent of
the choice of gauge fixing [8]. That result applies only to
families of gauge-fixing conditions which may be smooth-
ly deformed into each other, which is not true of the two
gauges described above.

1. Proper time gauge N =0

The proper time gauge has been extensively discussed
in the literature [5,7,9,10], and we shall therefore only
state some well-known results.

The condition N =0 is implemented by adding a
gauge-fixing term IIX to the Lagrangian. The Batalin-
Fradkin-Vilkovisky (BFV) prescription also requires the
addition of a ghost term (details may be found in [8,10]).
The path integration over the ghosts factorizes, and the
gauge-fixing condition, realized by the integration over
the Lagrange multiplier II, reduces the functional in-
tegration over N to a single integration, leaving

Q(x" ix')= f dN(r" —r')
II

X p x exp i d~ px —XH
7'

(2. 12)

Redefining T=N(r" —r'), this may be rewritten as

Q(x "~x')= fdTg(x", T~x', 0),
where g(x", T x', 0) is an ordinary quantum-mechanical
transition amplitude with Hamiltonian H =p —I . The
amplitude is given explicitly by

Q(x" ix')= dT d p e'(~'1

(2')

5S= E(r) p H-BH
Bp

which constrains the reparametrizations at the end points
to obey

e(r")=O=E(r') .

We shall discuss briefly the use of a sum over histories
to evaluate the amplitude for a transition from x' to x",
which we shall write as Q(x" ~x'). The sum is over paths
beginning at x ' at parameter time ~', and ending at x" at
parameter time ~'. Trajectories may in principle move
forward and backward in the physical time x, although
it is also possible to define an amplitude constructed from
paths that move only forward in x, as we shall discuss
below.

It is necessary to fix the reparametrization invariance,
and this may be done in a number of ways. We shall give
a brief description of the two most commonly used
prescriptions: the so-called proper time gauge X=0, and
the canonical gauge x =~. The proper time gauge is a

A11 that remains is to specify the range of T integration.
If T is integrated over an infinite range, then the Ha-
damard Green function is obtained:

On the other hand, if the range of integration is limited
to T H [0, ~ ), then, introducing a regulator to make the
T integration converge, the Feynman Green function is
obtained:

Q(x" ~x')=iGF(x" ~x') .

From this the sum-over-histories representations of G—
are readily obtained. G+ is obtained by taking T) 0 and
x )x, or T(0 and x &x, with the reverse yielding
G . In all of these cases, the class of paths is taken to be
all paths in spacetime connecting the initial and final

points. Note that the causal propagator G(x"~x') is not
obtained by these means. We will return to this point
later.
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2. Canonical gauge x

It is also of interest to consider a sum over histories in
which the paths are restricted to move forwards in the
physical time x . On this class of paths, x =z may be
shown to be a valid gauge choice, provided that one sets
up the parameter time interval so that w' =x and
z"=x . It may be implemented in the action by the ad-
dition of a gauge-fixing term II(x —r). An evaluation of
the path integral, using an infinite range for X, leads to
the amplitude

Q(x, x lx, x )=GNw(x, x lx, x )

them lp). The states lp) are not complete, since there
remains an ambiguity in the action of

P, lp&=+(p'+m')'"lp) .

For free particles, the positive- and negative-frequency
states decouple. Canonical representations are therefore
possible involving the positive- and negative-frequency
sectors separately, or both together. We consider each in
turn. Our aim is to find canonical representations in
which each of the Green functions may be represented in
the form (x"lx').

+GNw(x, x lx, x ) . (2.13)
1. Positive freque-ncy sector

This includes contributions from both positive- and
negative-frequency sectors of the relativistic particle, in
the sense that trajectories with both positive and negative

po are summed over. If the integrations over N are re-
stricted to positive X [equivalently, a factor 8(X) is in-
cluded on every time slice], then only the positive-
frequency sector is included. In this case the amplitude is
given by the Newton-Wigner propagator

Q(x "lx')=GNw(x "lx') .

The choice of a canonical gauge leads in both cases to
an amplitude which is not Lorentz invariant, a conse-
quence of the preferred status acquired by the coordinate
x . A comprehensive discussion of this gauge may be
found in [11].

C. Canonical formulation of
relativistic quantum mechanics

We have listed the various Green functions, their com-
position laws, and their path-integral representations,
where they exist. In this subsection we discuss the con-
nection of these considerations with the canonical quanti-
zation of the relativistic particle. In particular, we ask
whether the various Green functions have canonical rep-
resentations of the form (x"lx'), where the I lx')

I are
complete sets of configuration-space eigenstates for any
particular value of x, and are constructed by taking suit-
able superpositions of physical states (i.e., ones satisfying
the constraint). We will find that essentially all of the
Green functions may be so represented. Which Green
function is obtained depends on the choice of inner prod-
uct in the space of physical states, and on which states
are included in the superposition (positive frequency, neg-
ative frequency, or both). These considerations will shed
some light on various features of the composition laws.

Dirac quantization of the relativistic particle leads to a
space of states which may be expressed in terms of a com-
plete set of momentum eigenstates,

P„lp &=p„lp &

subject to the additional constraint

(p —m )lp) =0 .

The solutions to the constraints may be labeled by the
eigenstates of the three-momentum p, and we denote

1=f IP&(Pl

follows, where cov=(p +m )'~ . Two choices of
configuration-space representations of this Hilbert space
are possible: the Newton-Wigner representation, and the
relativistic representation.

Newton Wigner repre-sentation From t. he basis lp), we
may change to the Newton-Wigner basis defined by the
states

1 d3
0) P ipxl )(2') po="p (2' )'

They are not Lorentz invariant, but they are orthogonal
at equal times and satisfy the completeness relation

1=f d'xlx, x'&(x, x'l . (2.14)

Any Newton-Wigner wave function 4(x,x )
= ( x,x l

'II ) satisfies the positive square root of the
Klein-Gordon equation:

i ~P=(m —V' )' 'Il
Ox'

which rejects the fact that we are only considering the
positive-frequency excitations. The inner product on
wave functions is the usual one

(@l%')= fd x4 (x,x )V(x,x ),
and the propagator (x",x lx', x ) is precisely the
Newton-Wigner propagator (2.8). Its composition law
(2.9) follows immediately from (2.14).

Relativistic representation. It is possible to define a
Lorentz-invariant configuration-space representation, us-
ing the basis states

1 d3
lx ) = P e'p'"lp),

(2ir) ~ p =~, 2'„

In the positive-frequency sector, p0) 0, the lp) such
that

P, lp) =(p'+m')'"lp)
form a complete basis. The appropriate choice of inner
product is

& PlP' & =2~/(P —P')

and the completeness relation
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where the states lx ) with x fixed form a basis on the
space of physical states. They are not orthogonal, since
at equal times x one has

where i,j =+ [7].
Newton- 8'igner represen tati on.

Wigner states as
We define Newton-

(x lxI ) — P —ip 1x —x')1

(2')' po=", 2top

They satisfy the relativistic completeness relation

l=t' f «"lx &a„&xI,

(2.15)

(2.16)

pf P„,e"'Ip, + &

+ e'~ p, —
ro= p (2top)'

where X is an arbitrary spacelike three-surface. The cor-
responding wave functions it/(x)=(x Ig) solve the posi-
tive square root of the Klein-Gordon equation and their
positive-definite inner product is given by the usual rela-
tivistic expression

&ply) =t f d~~y'(x)a„q(x) . (2.17)

The propagator (x'lx ) given in Eq. (2.15) is equal to
G+(x'lx )

Similarly, by restricting attention to the negative-
frequency sector, it is readily shown that (x' x ) is equal
to G (x' x ). Canonical representations of G —are there-
fore readily obtained. A canonical representation of the
Feynman Green function comes from those for G+ and
G, although it is not immediately apparent how to con-
struct a more direct one than this. These propagators all
obey suitably modified versions of the relativistic compo-
sition law (1.8), as readily follows from the completeness
relation (2.16).

2. Positive and negative -frequency se-ctors

The discussion above provides a canonical description
of both the Feynman and Newton-Wigner propagators
which arose in the path-integral formulation of Sec. II 8,
with N) 0. However, if the range of integration of the
lapse function N is not restricted to a half-infinite range
for the proper time gauge, we saw that the path integral
leads to the propagator g(x" lx')=G"'(x" lx') where
G"' is the Hadamard Green function (2.6). Since re-
stricting N to be positive (or negative) in the sum over
histories appears to correspond to the positive- or
negative-frequency sectors in the canonical representa-
tions, it is very plausible that a canonical representation
of G'" will involve both sectors simultaneously. This is
indeed the case, as we now show.

In momentum space, there are two orthogonal copies
of the space of states lp). We label these two copies
lp, +) where

p I
+) +( 2+ 2)1/2lp +)

The space of states is now a sum of the two copies, on
which we choose the completeness relation

where p = (to, p). This definition is compatible with
(2.18) and (2.19) provided that the usual completeness re-
lation (2.14) is amended. Defining

61 pIx,x', +&=f P e"'Ip, +&,
p =~ (2 )1/2

d p

as the positive- and negative-frequency parts of lx, x ),
(2.14) is replaced by

I= f d'x[ lx, x', + ) & x,x', + I+ lx, x', —
& & x,x', —

I ] .

The propagator for Newton-Wigner states is then given
by

(x,x'lx', x'& =GNw(x, x'lx', x')+GNw(x, x'lx', x') .

This is precisely the amplitude derived in Sec. IIB, Eq.
(2.13).

Note that now the wave function %'(x, x ) = (x,x I%')
solves only the second-order Klein-Gordon equation.
The inner product on wave functions 4(x,xo) is

(4I+) = f d x[N+(x, x )1It+(x,x )

+4 (x,x )1II (x,x )] .

Relativistic representation. Lorentz-invariant states in
this canonical representation involving positive- and
negative-frequency states may be defined by

dp i.x dp i-x'e'pI ,p+& +f e'p'Ip, —
& .

&0 p 2cop p 267&

(2.20)

The usual treatment of the relativistic particle involves
these states along with the usual relativistic completeness
relation (2.16), which is equivalent to the usual relativistic
inner product (2.17) on wave functions [12]. However, it
is well known that (2.17) is not positive definite on the
class of functions with both positive- and negative-
frequency parts. Hence, (2.16) and (2.20) are not compa-
tible with the positive-definite inner product (2.19). In
fact, working backwards, they imply that

p1= p, + p+ + p, — p, — (2.18)
and

& p, + Ip', + & =+2' fi(p —p'), (2.21)

The corresponding inner product is positive definite for
all states:

&i, IJ ',j ) =2,fi'(p —p')&;, ,

P+ P+ —P — p-
2cop

If we are to keep (2.16) and (2.20), therefore, we must use
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the indefinite inner product (2.21) in place of (2.19). In
this way, we do in fact obtain the canonical representa-
tion for the causal Green function, for it is readily shown
that one has,

& xl x'& =iG(xlx') .

Its composition law follows from inserting the resolution
of the identity (2.16).

A di6'erent canonical representation may be obtained
by keeping (2.20) and the positive-definite inner product
(2.19), but modifying the completeness relation (2.16).
Define

d P i xlx, + &
= f P e'"'Ip, + &,

Pp p 2')p

d P s xlx, —&= f Pe'~ "lp, —&,
Pp ~p 2cop

and replace (2.16) by

1= f d ~[l, +&a„&x,+l —lx, —&a,&, —l], (2.22)

which is compatible with (2.18) and (2.19). The appropri-
ate relativistic propagator is

& x lx' &
=G' "(x lx') =G+(x lx')+ G

this giving a canonical representation of the Hadamard-
Green function. The wave functions P(x) =

& x l P & satisfy
the Klein-Gordon equation and obey

q(x )=;f do~[G+(x lx)a„q (x)—G-(x'lx)a„q (x)],
where f+ are the positive- and negative-frequency parts
of g. Since

f do "G+8 itj = f do "G B„P =0,
it fo11ows that

g(x')= —f do."G(x',x)B g(x),
X p

where iG=G+ —G is the causal Green function. This
is precisely the evolution equation we expect for P, a
solution to the Klein-Gordon equation with both
positive- and negative-frequency parts. The unusual form
(2.22) of the completeness relation explains how it is that
the Green function G'", which does not propagate solu-
tions of the Klein-Gordon equation, is nevertheless corn-
patible with causal evolution of a wave function g(x).
The inner product on g(x) is now not (2.17) but rather

&plat&=i f do"[P" (x)B„Q (x)—Pt (x)B„Q (x)],
(2.23)

which is by construction positive definite.
%'e note that a significant and seemingly anomalous

property of G"' is that, unlike all the other Green func-
tions, it does not obey a composition law of the usual
form, but instead obeys (2.7) [13]. Our study of canonical
representations now makes it clear why this is. The corn-
position laws of GF, G —,and G readily follow from their
canonical representations &x lx'& by simply inserting the
resolution of the identity, Eq. (2.16). Recall, however,

that the canonical representation of G"' involves drop-
ping (2.16) in favor of (2.22), from which follows the re-
sult

G "(x"lx')=i f'do "[G (x"lx)B„G (xlx')

—G-(x"lx)a„G-(xlx )],
(2.24)

which is readily shown to be equivalent to (2.7). The im-
portant point, therefore, is that the unusual form of the
composition law for G"' is explained by the nonstandard
resolution of the identity in its canonical representation,
which is in turn necessitated by the assumed positive-
definite inner product on both positive- and negative-
frequency states.

We have therefore derived canonical representations of
all the Green functions. Our results, together with the
composition laws and path-integral representations are
summarized in Table I.

Finally, we make the following comments on the con-
nection between the sum over histories and canonical for-
mulations of relativistic quantum mechanics. A sum-
over-histories representation of a given propagator may
be derived from its canonical representation by a stan-
dard procedure, which involves inserting resolutions of
the identity into the canonical expression &x lx'& (except
for the causal Green function; see below). It is then
reasonable to ask how one might proceed in the opposite
direction, i.e., given a propagator, as supplied by the sum
over histories, how does one derive the Hilbert space
inner product from which the canonical representation is
constructed? The answer to this question lies in the ob-
servation that the inner products given above for the rela-
tivistic representations a11 have the general form

f d d —~'(t'( )a„a(xlx )a„,@(

So, for example, by taking 0 to be G+, one obtains the
inner product (2.17). This observation is a natural start-
ing point for the possible derivation of a canonical formu-
lation from a sum over histories, as we shall discuss fur-
ther in Sec. V.

D. Summary of Sec. II

In words, our results may be summarized as follows.
(a) The Green functions G — and GF obey standard

composition laws [Eqs. (2.3) and (2.4)]. They may be ob-
tained by sums over histories over either positive or nega-
tive proper time. Their canonica1 representations may be
obtained by restriction to the positive- or negative-
frequency sector, with a positive-definite inner product
and with the usual resolution of the identity.

(b) The causal Green function G obeys the standard
composition law. It does not obviously have a sum-over-
histories representation. Its canonical representation in-
volves both the positive- and negative-frequency sectors,
with an indefinite inner product and the usual resolution
of the identity.

(c) The Hadamard Green function G~" does not obey
the standard composition law. It may be obtained by a
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TABLE I. The various Green functions and their roles in nonrelativistic quantum mechanics. 0o 0 and QX 0 denote relativistic
and nonrelativistic composition laws respectively. Unless otherwise stated, sums over histories are over arbitrary paths in spacetime
from x toy.

Green function

G+(x,y)

G (x,y)

Composition law

G+ —G+o G+

I. G+o G =0

G =G oG

Sum over histories

N)0 x )y
N&0 x &y

N)0 x &y
N&0 x )y

Canonical
representation

(x ly)

po) 0

~ (pip')»,
I =usual

po &0.

GF(x,y ) GF —GFo GF N)0 x ~(y See G+ and G

G'"(x,y ) G =G(')o G(')
G(&) —G(l)Q G
G =G+oG —G oG

—oo &N& oo p, (o (p ~p') )o
I=unusual

G(x,y) G=Go G po~&0 (p ~p') indefinite
I =usual

GNw(x &y ) GNW GNW x GNW (i) Paths moving forward
in x, N)0
(ii) All paths not crossing
final surface, N) 0
(see Sec. IVA)

po&o
l =usual,
nonrelativistic

sum over histories over both positive and negative proper
time. Its canonical representation involves both positive-
and negative-frequency sectors, with a positive-definite
inner product and a nonstandard resolution of the identi-
ty. The latter explains the absence of the usual composi-
tion law.

(d) The Newton-Wigner propagator obeys the composi-
tion law of the nonrelativistic type. It may be obtained
by a sum over histories of the form (2.12) in which the
paths move forwards in the physical time x . It has a
canonical representation in the positive-frequency sector
with a positive-definite inner product, with the usual
quantum-mechanical resolution of the identity. We will
find below that an alternative, rather novel representation
in the proper time gauge is also available.

It is striking that unlike all the other Green functions,
the causal Green function is represented canonically with
an indefinite inner product. We conjecture that this is
the reason why it does not have an obvious sum-over-
histories representation in configuration space of the
form (1.13). Briefly, a phase-space path-integral repre-
sentation may be constructed by inserting resolutions of
the identity into the canonical expression (x ~x ), and
the configuration-space path integral is obtained by in-
tegrating out the momenta. For the causal Green func-
tion, however, the indefinite inner product leads to the
appearance of factors of E(po) in the phase-space path in-
tegral [cf. Eq. (2.5)). This prevents the momenta from be-
ing integrated out in the usual way, and a configuration-
space sum over histories of the form (1.13) is not obvious-

ly obtained.
The relativistic particle is frequently studied as a toy

model for quantum gravity, and this is indeed part of the
motivation for the study described in this paper. In such
investigations, it is often stated that the problem with the
Klein-Gordon equation is that the standard inner prod-
uct is indefinite, and thus it is necessary to discard half of
the solutions [lj. We would like to point out, however,
that it is not necessary to view the problem in this way.
As we have seen, there does in fact exist a positive-
definite inner product on the set of all solutions to the
Klein-Gordon equation, namely (2.23). It is therefore not
necessary to discard any of the solutions if one uses this
inner product. Of course, the real problem with the
Klein-Gordon equation is that it is not possible to sort
out the solutions into positive and negative frequency, ex-
cept in the simplest of situations. This problem is present
whatever view one takes.

III. THE PATH DECOMPOSITION EXPANSION

Our ultimate task is to derive the various relativistic
composition laws from the sum over histories (2.12). The
sum over histories for the relativistic particle readily
reduces to the proper time representation (1.14). The
derivation of the desired composition law is therefore in-
timately related to that of factoring a sum over histories
of the nonrelativistic form (1.9) across an arbitrary sur-
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X, T

FIG. 3. The surface X divides the configuration space C' into
two components: C, and C', . A path typically crosses X many
times; the point of first crossing is at x .

x', 0
Xo

face in configuration space. As noted in the Introduc-
tion, the solution to this problem already exists, and goes
by the name of the path decomposition expansion (PDX).
In this section, we will describe this result, and give a
rigorous derivation of it.

A. The PDX as a partitioning of paths

Consider nonrelativistic quantum mechanics in a
configuration space C (here taken to be R'), described by
a propagator g(x", T~x', 0). The propagator may be ex-
pressed as a sum over histories, which we write

rg(x", T~x', 0)=f2)x(t )exp i f dt —Mx —V(x)
0

(3.1)

The sum is taken over all paths in configuration space,
x(t), satisfying the boundary conditions x(0)=x' and
x( T) =x". Denote this set of paths by p(x', O~x", T).

Let X be a surface between x" and x'. It therefore
divides C into two parts, C& and C2, say, with x'HC& and
x"HC2. X may be closed or infinite. We would like to
factor the sum over histories across the surface X.

Consider the set of paths p(x', O~x", T). Every path
crosses X at least once, but will generally cross it many
times (see Fig. 3). Unlike surfaces of constant time in
spacetime, therefore, the position of crossing does not la-

FIG. 4. The path crosses the surface X for the first time at
x=x and t =t and is in the set p(x', O~x, t ~x",T).

bel each path in a unique and unambiguous manner.
However, each path is uniquely labeled by the time and
location of its erst crossing of X. This means that there
exists a partition of the paths according to their time t
and location x of first crossing (see Fig. 4). We write

p(x', O~x", T)= U U p(x', O~x, t ~x",T)
x eX ~CIO, T]

and

p(x', O~x, t ~x",T) Ap(x', O~y, s ~x",T)=0
ifx Wy, tWs.

Each path in each part p(x', O~x, t ~x",T) of the par-
tition may then be split into two pieces: (i) a restricted
path lying entirely in Ci, beginning at x at time 0 and
ending on X at x at its first-crossing time t; (ii) an unre-
stricted path exploring C, and C2, beginning on X at x
at time t and ending at x" at time T.

This suggests that there exists a composition of (3.1)
across X, consisting of a restricted propagator in C, from
(x', 0) to (x, t), composed with a standard unrestricted
propagator in C from (x, t) to (x",T), with summations
over both x and t. There is indeed such a composition
law. It is the path decomposition expansion [6,14]:

g(x", T~x', 0)=f dt f dog(x", T~x, t.) n Vg'"'(x, t~x', 0)
0 X 2M (3.2)

Here, do. is the integration over the surface X. The quantity g'"' is the restricted propagator in Ci, and satisfies the
boundary condition that it vanish on X. Its normal derivative n-V'g'"', however, does not vanish on X. We give a pre-
cise definition of g'"' below. Also note that n is defined to be the normal to X pointing away from the region of restrict-
ed propagation, in this case C&. The reason for the appearance of the normal derivative term will become fully ap-
parent in the rigorous derivation given below. For the moment we comment that it is related to the fact that we are in-
terested in restricted propagation to a final point which actually lies on the boundary.

The path decomposition expansion is central to this paper, and we will be making heavy use of it in what follows.
We now record some useful closely related results. First of all, it is also possible to partition the paths according to

their last-crossing times. This would lead to the composition law
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g(x", Tlx', 0)= —f dt f do n V'g'"'(x", Tlx, t)
o r 2M X=X0

g(x, tlx', 0), (3.3)

where t is the last-crossing time. The overall minus sign arises because the restricted propagator is now in the region
C~, and the normal n (whose definition is unchanged) now points into the region of restricted propagation.

Second, it is of interest to consider the case in which the surface X does not lie between the initial and final points,
x', x"H C i, say. Then it is no longer true that every path crosses X. In this case, one first partitions the paths into paths
that never cross X and paths that always cross. The paths that always cross may then be further partitioned as above.
The sum over paths which never cross simply yields a restricted propagator in the region C, that vanishes on X. One
thus obtains

g(x", Tlx', 0)=g'"'(x", Tlx', 0)+ f dt f dog(x", .Tlx, t) n Vg'"'(x, t x', 0)
0 X X=Xo'

(3.4)

where t is the first-crossing time, and g" is the restricted propagator in C, . n is again the normal pointing away from
C i. Similarly, in the case that the paths are partitioned according to their final-crossing times, one obtains

g(x", Tlx', 0)=g'"'(x", Tlx' 0)+f dt f donV. 'g"(x",Tlx, t) g(x, tlx', 0) .
X=Xa

(3.5)

Here t is the final-crossing time, g'"' is again the restrict-
ed propagator in C „and n is again the normal pointing
away from C&. Note that there is no minus sign in the
second term in Eq. (3.5), in contrast with Eq. (3.3). This
is because in both (3.4) and (3.5), the region of restricted
propagation is C, in each case, whereas in (3.2) and (3.3),
it is C, and C2, respectively. These subtle differences will

turn out to be significant in Sec. IV.

B. A lattice derivation of the PDX

The sum over histories (3.1) must be regarded as no
more than a formal expression. Certain formal properties
can sometimes be deduced from (3.1) as it stands, but
care is generally necessary. In particular, the path
decomposition expansion cannot be derived directly from
the sum over histories without recourse to a more precise
mathematical definition. The purpose of this section,
therefore, is to give a rigorous derivation of the PDX
from a properly defined sum over histories.

Real time path integrals cannot be rigorously defined
[15], so we first rotate to the imaginary time (Euclidean)
version, by writing t = i r (note—that the Euclidean time
~ bears no relation to the parameter time ~ of the previ-
ous section), yielding

p(x", rlx', 0)= g p(history) .
histories

(3.7)

It is in this sense that it corresponds to a sum over his-
tories.

p ( x",r
l

x', 0) satisfies the relations

cle, V(x) =0, and define the sum over histories using one
particularly simple stochastic process, namely the ran-
dom walk.

Consider a spacetime lattice with temporal spacing A~
and spatial spacing Ax. We follow the methods of Itzyk-
son and Drouffe [16]. Let the n-dimensional spatial lat-
tice be generated by n orthonormal vectors e„with
e„e =b,x 5„. Each site is located at x=x"e„, where
the x" are integers.

We propose to regard p(x", rlx', 0). This quantity is
defined to be the probability density that in a random
walk on the spacetime lattice, the system (a particle, say)
will be found at x" at time ~ given that it was at x' initial-
ly. On the lattice it is meaningful to talk about the prob-
ability of an individual history from x at time zero to x"
at time r. The probability density p(x",r x', 0) is there-
fore given by the sum of the probabilities for the indivi-
dual histories connecting the initial and final points. For-
mally we write,

gE(x", rl x', 0)

1= fXl ( 'x)e rp x—f dr' —~x + I (x)
o 2

(«)"p(x",Olx', 0) =6„~„,
(«)"g p(x", rlx', 0)= 1,

X

(3.8)

(3.9)

(3.6)

Euclidean sums over histories may be rigorously defined
as the continuum limit of a discrete sum over histories on
a spacetime lattice. The discrete sum over histories is
then viewed as a sum of probability measures on the
space of paths on the lattice for some suitable stochastic
process. To illustrate the key features of the derivation of
the PDX, we will first consider the case of the free parti-

where 6„~ „denotes a product of Kronecker 5's. The fac-
tors of («)" enter because p is a density. Equation (3.8)
expresses the initial condition, and (3.9) says that the par-
ticle must be somewhere at time ~.

In a random walk, the probabilities of stepping from
any one site to any one of the adjacent sites are all equal,
and equal to 1/2n in n spatial dimensions. The probabili-
ty of an entire history in (3.7) is then just I /2n raised to
the power of the number of steps in that history.
Proceeding in this way, one may evaluate (3.7) and calcu-
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—2p(x, rlx', 0)] . (3.10)

This relation follows from the fact that if the walker is on
site x at time ~+ A~, she must have been on one of the
immediately adjacent sites at time r. Equation (3.10) is a
discrete version of the diffusion equation. It may be
solved by Fourier transform, yielding the result

d'k
( l

i ()) J ik (x"—x')

~/hx (2~)"

late the probability density p. However, we find it instead
to be more convenient to calculate p using the recursion
relation:

p(x, r+Arlx, O) —p(x, rlx, O)

1 g [p(x+e„,rlx', 0)+p(x —e„,rlx', 0)
2n

p(x", rlx', 0)

=(«)" g g p(x",rlx, r, )q(x, r, lx', 0) .
x EX7. =0

(3.12)

Here, q(x, r, lx', 0) is defined to be a lattice sum over
paths which never cross X but end on it at position x at
time ~, . After reaching the surface at the point x at
time ~„ the paths must then actually step across it, by
definition of the partition. The quantity P(x",six, r, ) is
therefore a lattice sum over all paths from the surface to
the final point, but with the restriction that the very first
step moves ofF the surface in the normal direction. It is
therefore given by

X —g cos«k„
n

p(x", rlx. , r, )= p(x", rlx +«n, r, +«),
2n

(3.13)

(«) 1

2nd~ 2M ' (3.11)

one obtains

gz(x", six', 0)=
27T7

n/2 M(x" —x')

Taking the continuum limit, A~, Ax ~0, and holding
fixed the combination

since I/2n is the probability of stepping off the surface,
and p(x", rlx +«n, r, +«) is the probability of going
from the point just ofF the surface to the final point.
Strictly the sum over ~, should not begin at zero, because
on the lattice it takes a finite amount of time for the first
path to reach the surface, but this time interval goes to
zero in the continuum limit.

Because q(x", six', 0) is a sum over paths that never
cross X (but may touch it), it will satisfy the boundary
condition

where we use gE to denote the continuum limit ofp. The
diffusion limit of this stochastic process therefore yields
the Euclidean propagator for the free nonrelativistic par-
ticle of mass m.

Armed with a more precise notion of a discrete sum
over histories, we may now proceed to the derivation of
the PDX. For simplicity, we first restrict attention to the
case in which the intermediate surface X is IIat [17]. We
view p(x", rlx', 0) as a sum of the probabilities for each
path on the lattice from the initial to the final point. As
described in Sec. III A, the paths may be partitioned ac-
cording to their position x and time ~, of first crossing
of an intermediate surface X. We therefore expect a com-
position law on the lattice expressing the statement "the
probability of going from x' at time zero to x" at time ~ is
the sum over x and ~, of the probabilities of going from
the initial point to final point crossing the surface X for
the first time at time ~, at the point x ." The composi-
tion law is

q(x +«n, r, lx', 0)=0 (3.14)

=q(x +«n, r, lx', 0)

q(x +«n, r, lx', 0)—q(x, r, lx', 0)
Ax

(3.15)

The boundary condition (3.14) implies that the first term
vanishes. The part of the second term in square brackets
converges to the normal derivative of q in the continuum
limit. Inserting this in (3.12), one obtains, with some
rearrangement,

where n is the normal to the surface. That is, the proba-
bility of making one step beyond X is zero. Now write

q(x, r, lx', 0)

(gx)& q(x +«n, 1, lx', 0)—q(x, r, lx', 0)
p(x", rlx', 0)= g («)" ' g «p(x", rlx +«n, r, +br)

x EX ~ =0 2n h~ Ax
o C

(3.16)

Now, using the continuum limits

(«)" ' —+ /do, g «~ I dr,
x HX ~, =o

(3.17)
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and using (3.11), we derive

1gz(x", r~x', 0)=f d~, f do gz(x", r~x, r, ) n. V'gz"'(x, z, ~x', 0) (3.18)

This is the Euclidean version of the path decomposition
expansion. The desired result (3.2) is then readily ob-
tained by continuing back to real time. The closely relat-
ed results (3.3)—(3.5) are derived in a similar manner.

It is perhaps worth noting that this result cannot be de-
rived from formal manipulation of the continuum sum
over histories (3.1). Each part of the composition law
(3.12) is well defined and nonzero on the lattice, but not
every part has a continuum analogue. In particular
q(x, r, ~x, O), where x is on X, formally goes to zero in
the continuum limit. The desired result arises because
the various parts of (3.12) fortuitously conspire to give a
result which is well defined in the continuum limit, even
though the separate parts may not be.

Now consider the case of a nonzero potential, V(x)WO.
We will argue that the inclusion of a potential does not
affect the key points of the derivation of the path decom-
position expansion. The random walk process described
above supplies a measure on the set of paths on the lat-
tice. (In fact it is an important result that it also defines a
measure in the continuum limit, but we prefer to work on

I

I

the lattice. ) Using this measure, one can compute the
average value of various functions of the histories of the
system. In particular, it is a standard result that the am-
plitude (3.6) may be defined as the average value of
exp[ —J dr V(x(r))] in this measure [18].

A different way of doing essentially the same calcula-
tion is more convenient for our purposes. The amplitude
(3.6) may be calculated directly by constructing a mea-
sure on the set of paths different to that given above,
which includes the effect of the potential. A weight
w(history) may be defined for each history, and the densi-
ty w(x", ~~x', 0) is again

io(x",r x', 0)= g w(history) .
histories

Loosely speaking, w is defined by weighting the probabili-
ty p of going from one lattice point to the next by
exp[ —h~ V(x)]. w is of course no longer a probability
density, and does not define a stochastic process. It obeys
the recursion relation

n

w(x, ~+6~/x', 0) —w(x, ~ x', 0)= $ [w(x+e„,r[x', 0)+tU(x —e„,rex', 0)—2w(x, r/x', 0)]+br V(x)w(x, rex', 0),2'

(3.19)

which di6'ers from (3.10) in that the "walker" may now
stay at site x with a weight hr V(x). This recursion rela-
tion yields the Euclidean Schrodinger equation with po-
tential V(x) in the continuum limit, as expected.

The issue is now to determine whether the derivation
(3.12)—(3.18) goes through for w as it did for p. It is rel-
atively easy to see that it will. The quantities analogous
to p and q are defined in the obvious way, and all the
steps go through as before. The important point is that
(3.12) and (3.13) are not modified, since the weight for
stepping off the surface is still 1/2n, as may be seen from
the recursion relation (3.19).

An equivalent approach is to rescale the weights w so
that they describe a stochastic process, and can be re-
garded as probability densities [19]. The random walk is
then characterized by a nonzero drift, that is by unequal
probabilities of stepping in different directions due to the
asymmetry of the potential. In the continuum limit, the
rescaled w satisfies a Fokker-Planck equation. A compo-
sition law involving an object analogous to q may then be
derived, which is a rescaled version of the path decompo-
sition expansion. We will not pursue this here [20].

C. An important simplification

The restricted propagator appearing in (3.2)—(3.5) is
somewhat inconvenient and for our purposes it is useful

to reexpress it in terms of the usual propagator [21]. This
is certainly possible if the potential V(x) in (3.1) possesses
a translational symmetry in a direction that we shall refer
to as x, and X is a surface of constant x . To this end,
consider g "(x,t ~x', 0) in (3.2), where both x and x' are in
C i, the region of restricted propagation. By the imposed
symmetry of the random walk, it is possible to rewrite the
restricted propagator as

g'"'(x", r ~x', 0)=g(x", t~x', 0)—g( +(x —x"),t ~x', 0),
(3.20)

where x is the point on X closest to x". This is of course
just the familiar method of images. That this is
equivalent to a restricted sum over paths may be seen as
follows. The full propagator is given by a sum over all
paths from initial to final point. The sum over all paths g
may be written as a sum over paths that never cross the
surface, g'"', plus a sum over paths that do cross the sur-
face at least once, g" [cf. Eq. (3.4)]. The paths that cross
have a last-crossing position. Because of the symmetry,
the segment of the path after the last crossing may be
rejected about the surface without changing the value of
the sum over paths (see Fig. 5). g" is therefore equal to
the sum over all paths from the initial point to the
reAection about the surface of the final point. Hence,
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X

I

(
Xa

x,+ (x,- x")
I"""

I

potential), because the analysis leading to it is essentially
local.

IV. DERIVATION OF RELATIVISTIC
COMPOSITION LAWS

%'e now show how the path decomposition expansion
is used to derive the relativistic composition laws for cer-
tain Green functions.

A. Composition laws for Gz, G+, and 6

X
x

Consider the Feynman Green function. As discussed
earlier, its sum-over-histories representation readily
reduces to

FIG. 5. A path crossing the surface X and ending at x" is

canceled by a path crossing the surface and ending at

x +(x —x"), provided that V(x) is independent of x .

with a little rearrangement, one obtains (3.20).
Given (3.20), the normal derivative of the restricted

propagator on X, which is the quantity that appears in
(3.2), is just

iG~(x "lx') = f dT g(x", Tlx', 0) . (4. 1)
0

Here g(x", Tlx', 0) is a propagator of the nonrelativistic
type, and is given by a sum over histories of the form
(3.1), but with 2M=1, V(x)=m (which means that the
results of Sec. III C apply for any flat surface), and with

replaced by x x g„, where g„ is the Minkowski
metric, with signature (+ ———). It therefore obeys the
Schrodinger equation

i + -+—m g(x", Tlx', 0)=0,

n Vg'"'(x, t lx', 0)l„„=2n V'g(x, t lx', 0)l„ (3.21)
subject to the initial condition

g(x",Olx', 0)=5 '(x"—x') .
We conclude that in the special case of a symmetric po-
tential and a flat surface, (3.2) becomes

g(x", Tlx', 0)= f dt f der g(x", Tlx, t)
0 X

From this, it readily follows that GF(x" lx') satisfies Eq.
(2.1). An explicit expression for g(x", Tlx', 0) is readily
obtained:

X n V'g ( x, t l

x', 0) „lM
(3.22) g(x", Tlx', 0)= exp i—1 . (x"—x')

(2miT) 4T
—sm'T

and likewise for (3.3). We will use this result in all subse-
quent applications of the PDX. The analysis so far is for
flat surfaces X. Equation (3.21) will also follow for
curved surfaces (in flat configuration spaces with constant

I

These basics out of the way, we may now derive the
composition law. Consider first the case in which the ini-
tial and final points are on opposite sides of the surface X.
Apply the path decomposition expansion (3.2) to (4.1).
One obtains

(4.3)

GF(x"lx')= —t f "dTf dt f do. g(x", Tlx, t)2ih„g(x, t x', 0) . (4.2)
0 0 X

Here, B„denotes the normal derivative pointing away from x and operating to the right, and we have used (3.21) to ex-

press the derivative of the restricted propagator in terms of the unrestricted propagator. Also, we use a simple x to
denote the coordinates in the surface X. Now, in the integrals over time, one may perform the change of coordinates
v = T t, and u =t. Equ—ation (4.2) then becomes

GF(x"lx')=2f du f du f do. g(x",Ulx, O)B„g(x,ulx', 0) .
0 0 X

Comparing with (4.1), it is then readily seen that

GF(x" lx') = —2 f do' G (x"lx)a„G,(x lx ) . (44)

ty of independence of the location of the factoring sur-
face. To this end, we repeat the above with (3.3) instead
of (3.2), obtaining,

Although this is a correct property of the Feynman-
Green function, it is not quite the expected result. Fur-
thermore, it does not manifestly exhibit the usual proper-

GF(x"lx')=2.f do G (x"lx)~„G (xlx') . (4.5)
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Finally, averaging (4.4) and (4.5) leads to the desired re-
sult

GF(x"~x') = —f do GF(x"~x)B„GF(x~x') . (4.6)

Define iGF(x" ~x') to be G (x"~x') when x" is in the
future cone of x', and to be G (x"~x') when x" is in the
past cone of x'. Then it readily follows that G+ and G
each satisfy suitably modified versions of (4.4) and (4.5)
and hence their composition laws (2.3).

Now consider the case in which the initial and final
points lie on the same side of the surface X. We therefore
apply the path decomposition expansions (3.4) and (3.5).
Direct application of either of these expressions to Eq.
(4.1) does not lead to an obviously useful result, since it
still involves a restricted propagator. However, equating
(3.4) and (3.5), one obtains

f dt f der g(x", T ~x, t )B„g(x,t ~x', 0)
0 X

= 1 dt f do g( x", T~ x, t)B„g( x, t~ x', 0) .
0 X

(4.7)

Suppose that x" is in the future cone of x', which in turn
lies to the future of the surface X. Then performing the
integration over T in (4.7) leads to the result

f do "G+(x"~x)B„G (x~x')=0, (4.8)

1 Ilg~(x", TF ~x', 0)= exp —
[(x~o )2+x ~]

(2rrTF ) 4'
m T2 (4.9)

for the time-dependent propagator, where x denotes
x"—x' for both its time and space components. The Eu-
clidean path decomposition expansion (3.18) is then clear-
ly well defined for (4.9)—the integral over the surface X
is clearly convergent. A composition law for the Euclide-
an Feynman propagator is therefore obtained across any
surface. But suppose now we try to continue back the
Euclidean PDX (3.18) to the Lorentzian spacetime.
Leave TE as it is, but continue back x . The integrand,
previously exponentially decaying in all directions, be-
comes exponentially growing in the x direction. This is

demonstrating the expected orthogonality of G+ and
G

It might appear that the above derivation of the com-
position law is valid for any choice of factoring surface.
This impression would be false: the derivation holds only
for spacelike surfaces. To see this, note that the integral
representation of the Feynman Green function (4.1) is
properly defined only in the Euclidean regime. The Eu-
clidean version of (4.1) is obtained by rotating both the
parameter time T and the physical time x . Write
TF =iT and xz =ix . The first rotation is just a matter of
distorting the integration contour in (4.1) and does not
change the result of evaluating the integral. Indeed, (4. 1)
may be dined by an integral over real Tz. The second
rotation actually changes the answer, so needs to be ro-
tated back afterwards. Performing the rotations, one ob-
tains

b, (x
~

')=2B„G ( ~

') . (4.10)

This gives a rather intriguing representation of
B„GF(x~x') in terms of a restricted sum over paths in

spacetime.
It is also interesting to note that when x )x, by ex-

plicit calculation,

2iB„G (x~x')=G (x~x'),
where GNw is the Newton-Wigner propagator [22]. Via
(4.10), this therefore gives a novel path-integral represen-
tation of the Newton-Wign. r propagator. It is novel be-
cause G~~ is really a propagator of the Schrodinger type,
and is therefore normally obtained by a sum over paths
moving forward in time, as we saw in Sec. II 8. In con-
trast, in the path-integral representation of h(x ~x'), the
paths move backward and forward in time, although are
restricted to lie on one side of the surface X in which x
lies.

not a problem if the surface X is spacelike, since x is not
integrated over. It is a problem if x is integrated over,
which it would be if X is timelike. It follows that the Eu-
clidean composition law, valid for any surface, may be
continued to a well-defined composition law for the
Lorentzian propagator only if the surface X is spacelike
in the Lorentzian regime.

At this stage it is perhaps useful to summarize how we
have arrived at the results (4.6) and (4.8) from the sum
over histories. First the sum over histories was written in
the proper time representation (4.1). This is essentially a
partition of the set of all paths from x' to x", according
to their total parameter time (which is effectively the
same as their length). Then the paths were further parti-
tioned according to the parameter time and position of
their first (or last) crossing X. The path decomposition
expansion then led to the desired result. In the final re-
sult (4.6), however, no reference is made to the parameter
time involved in this sequence of partitions; only the first-
(or last-)crossing position x is referred to. In the results
(4.6) and (4.8), therefore, there is only one partition of the
paths that is important, namely the partition according
to the position x of first or last crossing. Di6'erently put,
suppose there existed a sum-over-histories representation
of GF referring only to the spacetime coordinates x", and
not requiring the explicit introduction of a parameter t.
Then the composition law (4.6) could be derived by a sin-
gle partitioning of the paths according to their first- or
last-crossing position.

By way of a short digression, let us explore this idea
further. Suppose one simply assumes that a sum-over-
histories representation of GF(x"~x') is available, in
which there is a sum over all paths in spacetime from x'
to x". As described above, one can therefore partition
the paths according to their first-crossing position x of an
intermediate surface X. It is therefore reasonable to pos-
tulate a relation of the form

G~(x" x')= f der GF(x "~x)b(x ~x'),

where b, (x ~x') is defined by a restricted sum over paths
beginning at x' which never cross X, but end on it at x.
Comparing with Eq. (4.4), or by explicit calculation, one
has
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Note that using this representation of the Newton-
Wigner propagator, its composition law (2.9) is easily de-
rived. The sum over paths from x' to x" ending on X
and remaining below it, may be partitioned across an in-
termediate surface X' according to the point x ~ of first
crossing of X'. That is

p(x'~x") = U p(x'~x ~ ~x"),

p(x'~x ~x")Ap(x'~y ~x")=Z if x,Wy

6—obey (2.3) and (4.8). However, there is no natural,
quantum-mechanical derivation of the composition law
for 6 directly from a sum over histories. This is because
we do not have a direct path-integral representation of 6,
only an indirect one in terms of the path-integral repre-
sentations of 6—[which may be read off from (4.1)]. The
question of finding a direct sum-over-histories representa-
tion of the causal propagator is, to the best of our
knowledge, a question for which no entirely satisfactory
answer exists at present. Indeed, as we conjectured in
Sec. II, such a representation may not exist.

The sum over paths factorizes into a sum over paths from
x' to x, ending on X' and remaining below it, and over
paths from x ~ to x", ending on X and remaining below
it. This is precisely a composition of type (1.12), and
leads directly to (2.9).

These observations may merit further investigation.
They are, however, only incidental to the rest of this pa-
per.

B. Other Green functions

By integrating T over an infinite range in (1.14) the
Green function 6' "(x"lx') is obtained. Let us therefore
repeat the steps (4.2) to (4.6) for this case. The integra-
tion over T and t in (4.2) is now

C. Why the naive composition law fails

In the context of quantum gravity, and parametrized
theories generally, composition laws difT'erent in form to
(1.8) have occasionally been proposed. In particular, a
composition law of the form

Q(x "lx')= f d x Q(x "lx )Q(x lx') (4.13)

has often been considered [23]. However, it is readily
seen that there are difficulties associated with (4.13) [24].
The methods of this paper help to understand the reason
why it cannot hold as it stands.

Let us first illustrate the problem with (4.13). Consider
the proper time representation (1.14). It is a property of
g that

f" dT f 'dt = J' "dTf 'dt+ f '
dT f 'dt . (4.11) g(x", T"+ T'lx', O) = f d'x g(x", T"lx, O)g(x, T'lx', O) .

The first term in (4.11) leads to a composition of two
Feynman Green functions, as before. The second term
can be cast in a similar form by letting T~ —T and
t~ —t, which introduces an overall minus sign, and us-
ing the fact that g(x, tlx', 0)=—g*(x, tlx', 0). One thus
obtains

6'"(x"lx') = i f do—[GF(x"lx )B„GF(xlx')

—GF*(x"lx )B„GF*(xlx')]

=i f do "[6+(x"lx )i3„6+(xlx')

—6-(x"lx)a„G-(xlx )],
(4.12)

where do" and d„are defined as in Sec. II. The result
(4.12) may seem somewhat trivial, since it follows from
(4.6) and the use of

6'"(x"lx')=i [GF(x "lx') —GF(x "lx')]
=6+(x"lx')+6 (x "lx') .

However, the key point is that the composition law (2.24)
for 6'" arises directly in the sum over histories. The
splitting into positive- and negative-frequency parts, in
the language of Sec. II, arises naturally from the identity
(4.11).

Finally, consider the causal Green function. In terms
of 6—it is defined by

iG(x"lx')=6 (x"lx') —6 (x"lx') .

Then it straightforwardly follows that G obeys (1.8), since

Integrating both sides over T" and T', one obtains

—
—,
' f du f dU g(x", u lx', 0) = f d x g(x" Ix )g(x lx')

(4.14)

where we have introduced u =T"+ T', v =T"—T'. If T
is taken to have an infinite range, then u and U have an
infinite range, and the left-hand side of (4.14) is equal to
6'' (x"lx') multiplied by an infinite factor. If T is taken
to have a half-infinite range, then things are yet more
problematic. In that case U ranges from —u to +u, and
the left-hand side of (4.14) becomes

—f du u g(x",ulx', 0) .
0

(4.15)

p(x'~x")= U p(x'~x~x") .
X

But this is not a proper partition because it is not ex-
clusive:

This may converge, but it does not converge to the left-
hand side of (4.13).

It should be clear from the discussion given in the in-
troduction that (4.13) should not be expected to hold.
The reason is, quite simply, that it does not correspond to
a proper partitioning of the paths in the sum over his-
tories (1.13). For in proposing an expression of the form
(4.13), one is evidently contemplating a partitioning of
the paths (x ' ~x "

) in which the paths are labeled ac-
cording to an intermediate spacetime point x through
which they pass. That is, the set of all paths is regarded
as the union over all x of paths passing through x:
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p(x'~x ~x")Clp(x'~y —+x")WS for xWy . (4.16)

It is not exclusive because passing through an intermedi-
ate point x does not prohibit the path from also passing
through a different intermediate point y. The intermedi-
ate spacetime point x therefore does not supply the paths
with a unique and unambiguous label.

Of course, the exhaustivity condition (4.16) is still in
some sense true, but the failure of the exclusivity condi-
tion means that there is a vast amount of overcounting.
It is this that leads to the divergent factor appearing in
(4.15) in the case where T takes an infinite range.

The fact that (4.14) is equal to 6"' times an infinite
factor is, however, suggestive. A similar feature was
found in the Dirac quantization of the relativistic particle
by Henneaux and Teitelboim [7]. They found that for
functions P(x)=(x ~g) solving the Klein-Gordon equa-
tion

(p~p) = f d x p (x)f(x) (4.17)

V. DISCUSSION

The principal technical aim of this paper was to show
that the composition laws of relativistic quantum
mechanics may be derived directly from a sum over his-
tories by partitioning the paths according to their first-
crossing position of an intermediate surface. We also de-
rived canonical representations of the propagators.
These representations showed why the Hadamard Green
function 6'", which is the propagator picked out by the
sum over histories, does not obey a standard composition
law. They also indicate why it is not obviously possible
to construct a sum-over-histories representation of the

is a positive-definite inner product independent of x, and
with all the necessary symmetry properties for an inner
product on physical states. The only problem with (4.17)
is that it is formally divergent. In fact, it is equal to the
inner product (2.23) times a factor 5(0), which may be re-
moved in a Lorentz-invariant way [7,25]. This inner
product may therefore be of some value, despite the fact
that it is not associated with a partition of the sum over
histories. It is yet to be seen whether these features con-
tinue to hold in more complicated parametrized systems,
such as quantum gravity.

It is also clear that a composition law in which the d x
in (4.13) is replaced by a d x cannot be correct. This
would at first sight be more in keeping with conventional
quantum mechanics, since one of the four x"'s is time,
and the composition law (1.4) is at a fixed moment of
time. However, it corresponds to contemplating a parti-
tion in which the paths are labeled according to the posi-
tion x ' at which they cross a surface x =const. This
fails because, as discussed in the Introduction, it is not a
proper partition. The paths typically cross such a surface
many times, and the crossing location does not label the
paths in a unique and unambiguous way.

We have seen in this paper that there is a partition that
does work, and does lead to the desired composition law.
It is to partition the paths according to their position of
first crossing of an intermediate surface.

Q(x" ix') = f d o "Q(x"ix )B„Q'"'(x ix'), (5.1)

where 9'"~ is the restricted relativistic propagator [26]. In
the case of Hat backgrounds, with constant potential, it
was possible to express the restricted Green functions in
terms of unrestricted ones, using (3.20) and (3.21). The
important point, however, is that in general backgrounds,
and with arbitrary potentials, the steps (3.20) and (3.21)
are not possible, and a composition law of the desired
type (1.4) is not recovered. Of course, (5.1) is still a com-
position law of sorts, but 0 and 0'"' are quite different
types of object, and (5.1) is not compatible with regarding
Q(x "~x') as a canonical expression of the form (x "~x' ),
since there is no known canonical representation for

What is needed for steps (3.20) and (3.21) to work?
The main issue is understanding how the method of im-
ages can be generalized. First of all, consider the case of

causal Green function.
The notion of a sum over histories is extremely general.

Indeed, as discussed in the Introduction, it has been sug-
gested that sum-over-histories formulations of quantum
theory are more general than canonical formulations.
Central to such generalized formulations of quantum
mechanics is the notion of a partition to paths. This sim-
ple but powerful notion replaces and generalizes the no-
tion of a complete set of states at a fixed moment of time
used in canonical formulations [3].

In this paper we have investigated a particular aspect
of the correspondence between these two different ap-
proaches to quantum theory. Namely, we demonstrated
the emergence of the composition law from the sum-
over-histories approach, in the context of relativistic
quantum mechanics in Minkowski space. Quite general-
ly, such a derivation will be an important step in the
route from a sum-over-histories formulation to a canoni-
cal formulation in a reparametrization invariant theory.
We have admittedly not determined the exact status of
the composition law along this route. In particular, it is
not clear whether the existence of the composition law
alone is a sufficient condition for the recovery of a canon-
ical formulation. This would be an interesting question
to pursue, perhaps taking as a starting point the com-
ments at the end of Sec. IIC, on the recovery of the
canonical inner product given the propagator. However,
as argued in the Introduction, it is at least a necessary
condition. It is therefore of interest to find a situation in
which this necessary condition is not satisfied.

Such a situation is provided by the case of relativistic
quantum mechanics in curved spacetime backgrounds
with a spacetime-dependent mass term (i.e. , a potential).
Let us consider the generalization of our results to this
case.

The path decomposition expansion (3.2) is a purely
kinematical result. As we have shown, it arises solely
from partitioning the paths in the sum over histories, and
does not depend on the detailed dynamics. We would
therefore expect it to hold in a very general class of
configuration spaces, including curved ones. It follows
that for the relativistic particle, one would always expect
a composition law of the form
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one dimension with a potential. The method of images
yields the restricted propagator for any potential which is
symmetric about the factoring surface (actually a point in
one dimension). For example, the restricted propagator
in x & 0 for the harmonic oscillator is readily obtained in
this way. However, we would like to obtain the restricted
propagator on one side of any factoring surface. The
only potential invariant under reflections about any point
is a constant. So in one dimension, (3.21) follows if the
potential is constant. Similarly, it is easy to see that in
flat spaces of arbitrary dimension, with a flat factoring
surface, (3.21) will follow if the potential is constant in
the direction normal to the surface.

Now consider the case of curved spacetimes with a
Lorentzian signature (although our conclusions will not
be restricted to this situation). From the above, we have
seen that the method of images will work if the propaga-
tor is symmetric about each member of a family of factor-
ing surfaces. We will now argue that this will be true if
there is a timelike Killing vector.

Consider first the case of static spacetimes. This means
there is a timelike Killing vector field normal to a family
of spacelike hypersurfaces. It is therefore possible to in-
troduce coordinates such that

g„dx"dx'=goo(x')(dx ) +gk&(x')dx "dx', (5.2)

where i, k, I = 1,2, 3. The action in the sum-over-histories
representation of g(x", T ~x', 0) is

S= dt g„x "x —V x" (&.3)

If the metric is of the form (5.2) and if the potential is in-
dependent of x, then the action (5.3) will be invariant
under reflections about any surface of constant x . It is
reasonable to expect that the path-integral measure will
be similarly invariant, and hence the method of images
may be used to construct the restricted propagator in a
region bounded by x =const. We therefore expect (3.21)
to hold in static spacetimes in which the potential is in-
variant along the flow of the Killing field. We anticipate
that this argument may be generalized to stationary
spacetimes (for which there is a Killing field that is not
hypersurface orthogonal), but we have not proved this.

What we find, therefore, is that the existence of a time-
like Killing vector field, along which the potential is con-
stant, is a sufhcient condition for the existence of a com-
position law for the sum over histories. We cannot con-
clude from the above argument that it is also a necessary
condition„although this is plausibly true for a general
class of configuration spaces, with the possible exception
of a limited number of cases in which special properties
of the space avoid the need for a Killing vector [27].
Modulo these possible exceptions, we have therefore
achieved our desired aim: we have found a situation,
spacetimes with no Killing vectors, . in which the neces-
sary condition for the recovery of a canonical formula-
tion from a sum over histories is generally not satisfied.

This is a desirable conclusion: the existence of a time-
like Killing vector field is the sufficient condition for a
consistent one-particle quantization in the canonical
theory (see Sec. 9 of Ref. [1] and references therein).

Again, it is not obviously a necessary condition because
there could be spacetimes with no Killing vectors but
some special properties permitting quantization in them.
We therefore find close agreement (although not an exact
correspondence) between our approach, in which the
canonical formulation is regarded as derived from a sum
over histories, and standard lore, in which it is construct-
ed directly.

Turn now to quantum cosmology. As noted in the In-
troduction, relativistic quantum mechanics is frequently
used as a model for quantum cosmology. In quantum
cosmology, the wave function for the system, the
Universe, obeys the Wheeler-DeWitt equation. This is a
functional differential equation which has the form of a
Klein-Gordon equation in which the four x 's are re-
placed by the three-metric field h,"(x), the "mass" term is
dependent on the three-metric, and the "background"
(superspace, the space of three-metrics) is curved.

As outlined in the Introduction, one may construct the
propagator between three-metrics. The object obtained is
most closely analogous to either the Feynman or the Ha-
damard propagators, as noted above. One can then ask
whether it obeys a composition law. An important result
due to Kuchar [1] is that there are no Killing vectors as-
sociated with the Wheeler-DeWitt equation. We there-
fore find that there is no composition law for the propa-
gator between three-metrics generated by a sum over his-
tories [28]. It follows that we do not expect to recover a
canonical formulation. Again this is in agreement with
standard lore on the canonical quantization of quantum
cosmology, which holds that there is no consistent "one-
universe" quantization [1].

Our final conclusions on the existence of a canonical
scheme for quantum cosmology are therefore not new.
However, what has not been previously appreciated, as
far as we are aware, is the close connection of this ques-
tion with the question of the existence of a composition
law for the sum over histories.

Finally, we may comment on the suggestion of Hartle
discussed in the Introduction —that the sum over his-
tories is more general than the canonical scheme. Our re-
sults are not inconsistent with this claim: the absence of
Killing vectors associated with the Wheeler-DeWitt
equation probably rules out a canonical quantization, but
does not obviously prevent the construction of sums over
histories. Of course, there still remains the question of
how the sums over histories are to be used to construct
probabilities, i.e., the question of interpretation. This is a
difficult question and will not be addressed here.

%'e emphasize that these arguments are intended to be
suggestive, rather than rigorous. These issues will be
considered in greater detail in future publications.
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