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We introduce a large class of modifications of the standard Lagrangian for two-dimensional dilaton
gravity, whose general solutions are nonsingular black holes. A subclass of these Lagrangians have ex-
tremal solutions which are nonsingular analogues of the extremal Reissner-Nordstrom spacetime. It is
possible that quantum deformations of these extremal solutions are the end point of Hawking evapora-
tion when the models are coupled to matter, and that the resulting evolution may be studied entirely
within the framework of the semiclassical approximation. Numerical work to verify this conjecture is in
progress. We point out however that the nonextremal solutions always contain Cauchy horizons, and

may be sensitive to small perturbations.

PACS number(s): 04.60.+n, 97.60.Lf

I. INTRODUCTION

Recently, there has been significant progress in unrav-
eling the mystery which enshrouds the end point of
Hawking evaporation of black holes [1]. In particular,
we now believe that the simple arguments that appeared
to rule out stable remnants as a plausible end point for
black hole evaporation are wrong. The context in which
these ideas have been developed was that of extremal
magnetically charged black holes in the version of gravity
(dilaton gravity) which appears in the low-energy limit of
string theory [2-5]. It has long been argued that ex-
tremal charge black holes might be the natural final state
for a black hole that manages to retain its charge in the
process of Hawking evaporation. In the case of dilaton
gravity, the geometry of the extremal magnetic black
hole (shown in Fig. 1) is completely static, horizon-free,
and has no singularities at finite points of space. It has
the form of an infinite funnel or horn, attached to an
asymptotically flat space. The only singularity of the
solution is the divergence of the effective coupling an
infinite distance down the horn.

Although an external observer with sufficiently coarse
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FIG. 1. The spatial geometry of an extremal dilatonic mag-
netic black hole. The cross sections of the throat are two-
spheres.
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resolving power will see such a black hole as a pointlike
object, it is not an elementary particle. In a previous
publication [3], we have named such objects horned par-
ticles or cornucopions. The infinite volume of the horn is
a repository for an infinite number of states of quantum
fields propagating on the background geometry. It has
been argued that states which differ only by excitations
localized far down the horn, will be essentially degenerate
in Arnowitt-Deser-Misner (ADM) energy. The extremal
hole is thus a candidate for the kind of infinitely degen-
erate remnant which might resolve the information loss
paradox of Hawking evaporation. Its large size also al-
lows it to evade the apparent phenomenological problems
of infinite production cross sections, and infinite contri-
butions to virtual loops, that usually plague the idea of
black hole relics [6].

It is important to emphasize that the conceptual pic-
ture that has been built up for magnetically charged
black holes is, in general terms, equally applicable to neu-
tral holes. In the charged case, we can find a completely
classical picture of the remnant,! but one can conjecture
that a similar picture (with a bit of quantum fuzz near the
region of the classical singularity) might be applicable to
neutral holes as well. The idea of geometries in which the
Schwarzchild singularity is replaced by an expanding
internal universe [7,8] is an old one. Linde has argued
that black holes with internal universes appear naturally
in the chaotic inflation scenario, and Farhi and Guth pro-
posed creating one in the laboratory [7]. While such a
scenario is not consistent with the classical Einstein field
equations when matter satisfies the dominant energy con-
dition, it could arise due to quantum effects [8,9]. In
many of these discussions, the universe on the other side
of the black hole throat is taken to be a de Sitter space.
Strominger [10] has argued that nonsingular black hole
geometries with an internal de Sitter structure might ap-
pear in the solutions of a particular class of semiclassical

IThis is somewhat illusory. The weak-coupling approximation
breaks down deep in the hole.
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equations describing two-dimensional black hole evapora-
tion.

The spacetimes envisaged in these scenarios differ
quantitatively but not qualitatively from the cornu-
copion. The geometry beyond the mouth of the latter
can be viewed [5] as the limit of an anisotropically and in-
homogeneously expanding four-dimensional universe
with the shape of an expanding cigar cross a two-sphere
of constant radius. In the spacetimes of the previous
paragraph, the internal geometry far from the throat is
isotropic and uniformly expanding. The common ele-
ment in all these scenarios is that black hole formation
results in the production of a new asymptotic region of
space, separated from the old one by a neck of small size.
While such a spacetime can be foliated by spacelike sur-
faces, and the evolution of quantum fields between these
surfaces is unitary, the S matrix of the initial asymptotic
region is not. An observer in this region loses informa-
tion into what are for her the ““internal states” of a point-
like remnant. She can construct a sensible quantum
mechanics of these remnants without examining their
internal structure, as long as she does not study processes
in which they are created or annihilated. The latter re-
quire her to understand the internal structure of the rem-
nant [6].

While the general picture provided by these model
spacetimes is satisfying, a crucial part of the puzzle
remains unsolved. To date, no one has demonstrated the
collapse of a nonextremal black hole to one of the hy-
pothetical remnants into which it is supposed to evolve.
Clearly, such a demonstration will require us to under-
stand physics at a level beyond the classical Einstein
theory of gravity, but it is not clear what extension of
Einstein’s theory is necessary. The essence of the prob-
lem is the black hole singularity, and this is widely
viewed as a problem having to do with short-distance
physics. String theory is the most plausible candidate for
a short-distance extension of Einstein’s theory, and there
have been repeated suggestions that the existence of a
fundamental length in classical string theory might elimi-
nate black hole singularities.? On the other hand, it has
often been argued that the high curvature region near the
singularity of a collapsing black hole will be a region
where quantum fluctuations are very important. One
might hope, for example, that quantum fluctuations in
some scalar field near the singularity create a locally large
value of the cosmological constant, setting off chaotic
inflation inside the black hole, and producing one of the
de Sitter remnants described above. While these ideas are
alluring, they do not lend themselves to systematic
mathematical investigation.

The main advantage of studying extremal dilaton black
holes, rather than neutral ones, is that one can plausibly
argue [12] that the collapse and evaporation of near ex-
tremal dilaton black holes can be entirely described by an

2Witten [11] has argued that his exact classical black hole solu-
tion of two-dimensional string theory shows that this conjecture
is false. We feel that too little is known about the actual proper-
ties of this solution to justify this conclusion.

effective two-dimensional field theory. In this effective
theory, the black hole singularity can (by an appropriate,
and string theoretically natural, choice for the conformal
frame of the metric) be attributed entirely to the blow up
of the coupling constant. One is led to hope that a fully
quantum-mechanical solution of the low-energy effective
field theory may be all that is necessary for an under-
standing of the singularity.> All extant attempts to solve
this problem have relied on the quantum fluctuations of a
set of massless degrees of freedom, and treated the metric
and dilaton as classical mean fields. This approach has
led to the first explicit description of Hawking radiation
with back reaction included, but the semiclassical metric
becomes singular (now at a finite value of the coupling),
and the mean-field expansion breaks down [1].

There are two kinds of corrections to the mean-field
description which might become important in the
strong-coupling regime. The first are quantum fluctua-
tions of the metric and dilaton, and within the Callan-
Giddings-Harvey-Strominger (CGHS) model, these are
the only corrections to mean-field theory. It is obviously
a problem of great conceptual interest to learn how to
treat these fluctuations correctly, but it is also a very
difficult problem. If we view the CGHS model as the
low-energy effective theory of a more complete Lagrang-
ian, then there are other quantum corrections that might
be equally important. These corrections, first discussed
in [3], come from integrating out quantum fluctuations of
the heavy fields in the full Lagrangian. In effective field
theory language, they correspond to relevant and margin-
al operators in the low-energy theory which have
different scaling behavior than the CGHS Lagrangian
when the dilaton is shifted by a constant. An / loop con-
tribution will scale like e2/®. If we treat the graviton and
dilaton fields classically, there are an infinite number of
relevant and marginal operators that can be added to the
Lagrangian, the most general renormalizable Lagrangian
having the form [13]

L=V =g [D($)R+G($)V$)*+H($)],

with

(1.1)

D(¢)_>G—(4‘ﬁ_»11(¢)_»e—2¢ , (1.2)
as ¢— — . In conformal gauge, with conformal factor
e?, this is a nonlinear model with a two-dimensional
Minkowski signature target space. The p direction is
lightlike [14]. The renormalization group equations for
such a model are hyperbolic, and their solutions are
determined by the initial data on a surface of constant p
given by the three functions in (1.1).

It is a formidable task to find the functions D, G, and H
that are obtained by integrating out heavy degrees of
freedom in a realistic model. In this paper, we will sim-

3This is the case in (14 1)-dimensional string theory. Al-
though we still lack a proper nonperturbative definition of this
theory, it is clear that the singularity of the classical solution
with vanishing tachyon condensate is eliminated by quantum
mechanics.
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ply explore the possibilities, with a view to answering the
following question: is it possible for the quantum correc-
tions to the effective action to smooth out the strong-
coupling singularity of the CGHS Lagrangian? If this is
the case, we might be able to solve the black hole eva-
poration problem without dealing with the intricate inter-
pretational problems of the quantum theory of gravity.
The mean-field approach pioneered by CGHS would be
sufficient. Of course, finding a particular Lagrangian
which avoids singularities is not very satisfactory. In
view of our ignorance of the form of the realistic correc-
tions to the effective Lagrangian, it would be well to find
that the presence or absence of singularities was a generic
property of large classes of Lagrangians of the form (1.1).

We will show in Sec. II that a very large subclass of the
Lagrangians of (1.1) have solutions which are asymptotic
to the CGHS black holes for weak coupling, but are com-
pletely nonsingular spacetimes which are geodesically
complete as the coupling goes to infinity. Thus, for these
Lagrangians, the infinite coupling singularity is located at
an infinite geodesic distance for any value of the black
hole mass. The rather generic occurrence of nonsingular
black holes with internal de Sitter asymptotics is interest-
ing, but by itself does not prove that a semiclassical
description of Hawking evaporation is possible. We must
face another important issue. In four-dimensional Ein-
stein gravity and the CGHS model, the nonsingular “‘vac-
uum” solution is the boundary between solutions which
have naked singularities and those whose singularity is
hidden from the asymptotic region by a horizon. The
positive energy theorem holds only for solutions which
do not have naked singularities. For many of our non-
singular Lagrangians, there is no qualitative difference
between solutions with positive and negative ADM mass.
Thus, one might expect that once our models are coupled
to dynamical matter fields, so that black holes can radi-
ate, the radiation will go on forever, down to infinitely
negative energy.* Precisely such a disaster occurs in ex-
actly soluble semiclassical models of black hole evapora-
tion which exploit Strominger’s [10] mechanism for
avoiding singularities [15].

It turns out that one can obtain nonsingular Lagrang-
ians which have a dichotomy between ‘‘positive” mass
and ‘“negative” mass solutions. We put the terms posi-
tive and negative in quotes because we measure the ADM
mass of all of these solutions relative to a certain ex-
tremal solution of the equations, rather than to the linear
dilaton vacuum of the CGHS model. We believe that this
is the correct procedure. The linear dilaton vacuum is
not a solution of any of the modified Lagrangians that we
have studied. The proper reference point for ADM mass
is the stable solution of the equations which we expect to
be the end point of Hawking evaporation. We will ex-
plain the detailed geometries of these solutions in a more
leisurely manner in Sec. III.

In Sec. IV we briefly discuss the semiclassical equations
which arise by coupling the models of III to massless

4The importance of this potential problem was brought to our
attention by A. Strominger.

CGHS f fields in the leading order of a certain large N
expansion. This discussion is preliminary, as we have not
yet solved the equations. We conclude by outlining the
further steps which must be taken to carry out the
analysis which we have begun in this paper.

II. NONSINGULAR LAGRANGIANS
AND NEGATIVE ENERGY

In [13] we wrote down the most general renormalizable
Lagrangian for the two-dimensional metric and a single
scalar field. For a general choice of field variables, it
takes the form (1.1). We will require that the coupling
functions satisfy the CGHS boundary condition (1.2).
The metric in these Lagrangians is, by definition, the
stringy metric, which is distinguished by its simple cou-
pling to propagating strings.> For purposes of solving the
equations of motion, it is convenient to perform a Brans-
Dicke transformation to eliminate the G term in the La-
grangian. This can be done in a nonsingular way when-
ever dD /d¢$+0 over the entire range of ¢. For the
CGHS Lagrangian, this criterion is satisfied for any finite
value of the string coupling e?¢ but fails when the cou-
pling goes to infinity. As we will see in a moment, it is no
accident that this is also the locus of singularities of the
classical solutions of this Lagrangian.

The appropriate Brans-Dicke transformation is

CGHS — ,25(¢)

8uv 8uv > (2.1)
where
dS dD _
4d¢ 7 G(¢) . (2.2)

If W=He?, then the Lagrangian of the transformed
fields is

V' —g (DR+W) . (2.3)

It is amusing to note that the field equation for ¢ which
follows from this Lagrangian involves no derivatives.
Thus, this Lagrangian is equivalent to a higher derivative
Lagrangian involving only the gravitational field

Lyp=V—g #R) . 2.4)

Note, however, that the function & results from inverting
the functional relation between ¢ and R given by the field
equations, so that it might be multivalued.

To find the general solution of the field equations, we
recall our general result [13] that any such solution has a
Killing vector, and that the dilaton is constant along the
Killing flows. If ¢ is a coordinate along the homogeneous
direction, and o a coordinate orthogonal to it, we can
choose o so that the metric is conformally flat, with con-
formal factor e*'?) and the dilaton is a function only of

5There is, in fact, an ambiguity in what we mean by the stringy
metric arising from renormalization scheme ambiguities in
world sheet o models. This problem arises in higher orders in
the string tension expansion and should not effect the low-
energy considerations of this paper.
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o. In this coordinate system, the constraint equations
reduce to a single equation (dots refer to o derivatives),

B=2pD , 2.5)
while the variational equation for the conformal factor is
D=e?w . (2.6)
The first equation is solved by
D=2Be%, 2.7)

where S is a constant. Plugging this back into the second
equation we get

nig)=9L14)=

[dew(s)D'(4) . (2.8)

ZBD’
Here, primes denote derivatives with respect to ¢.
Thus, the solution of ¢ in terms of o is reduced to quad-
ratures. Note, from (2.8), that generically =0 at a num-
ber of values of o equal to the number of zeros of
W(¢$)D'(4), plus one.
The two qualitative features of these solutions that we

—2¢ _ 2Be”

H0,0_p=—4pS =

R CGHS —

This is finite at any finite value of ¢ as long as D and W
are smooth, and D’ does not vanish. In the weak-
coupling region ¢ — — o0, R goes to zero because of our
requirement (1.2) that the Lagrangian approach that of
CGHS. Let us assume that in the strong-coupling region,
D~e™ and W~e™. Then h~e™? and barring ac-
cidental cancellations, Rcgus~e'™ "~ 2%, so that, if
n Zm —2, it remains finite when the coupling goes to
infinity.

We can also examine the geodesic distance to the
infinite coupling region:

fe"da=f\/371_ ebdo

:f[_Dh_'

172
e%d$~exp n—m+2

¢|. @11

This is infinite whenever »n 2 m —2. Note, by the way,

J

h'D"
S-vanll EC S R
D’ D'

would like to discuss at this point are the behavior of the
solutions at the horizon, and the behavior in the strong-
coupling region. In the coordinates in which we are
working, an apparent horizon is a point where (p is the
Liouville field in the CGHS frame) e*=0 and ¢=0. The
fact that these two conditions coincide for finite values of
¢ follows from the equation

D'(¢ )Qe
2B

and our fundamental assumption that the derivative of D
vanishes nowhere. When 4 has a linear zero, the
behavior of the solution is exactly the same as that of the
standard dilaton gravity black hole. The contours of con-
stant dilaton field change from being spacelike to timelike
or vice versa, but the dilaton is monotonic across the hor-
izon. It is also, of course, monotonic in regions where
h+0. Thus, the sort of “bounce” solutions that appeared
in the static quantum equations of [16—18] are not ob-
tained in any of the models we are studying.

To find singularities, we express the curvature of the
CGHS metric in terms of our solutions:

2p__ 2p+2¢ 2.9)

Dluh (Du)2h
D’ (Dr)Z

(2.10)

that the distance to any apparent horizon from a point
where ¢ takes on a general finite value is generically
finite. Only if h(¢) has a double zero will it be infinite.
This observation will be important in the sequel.

We have thus exhibited a large class of models whose
general black hole solution is no more singular than the
linear dilaton vacuum of the CGHS action. Indeed, they
are less singular. Although the “string coupling” e?? be-
comes infinitely strong asymptotically in our solutions,
this no longer signals a region of large quantum fluctua-
tion. Quantum fluctuations in the graviton and dilaton
fields are controlled by the value of 1/D’(¢), which is
bounded even in the “strong-coupling” region.

To conclude this section, we record a simple set of La-
grangians which generate nonsingular black holes with
asymptotically de Sitter interiors. We take D =e 2%—
(v2/n)e*? and W=—2)A2D'(¢)e?*. This gives (with
B=A, obtained by choosing asymptotically linear dilaton
coordinates)

22 1, M o _7/_ An+1)g __7’_ An+D)g
= — + 2.12
hig) 1+y2e2nté 2+2x + an+2°¢ 2.12)
Since this has only a single real zero, the metric has one horizon. The metric and dilaton are given by
_ 1 1_+_,y2e2(n+l)¢ (2 13)
o(¢)=—-[do :

1 M, J’__ 2An+1) y* pHn+1D)
—— = 2 n+1)¢ ¢
2 Zl +4n+2
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Asymptotically, and in the vicinity of the horizon, we
find

_$_ M . -

x 2}\'29 ¢+ ) ¢—> ®,
ﬂ¢F:§%mw—%),¢»%, (2.14)
Sl s g

204 n+1) ’
Inverting to obtain the metric and dilaton,
_ka_%e‘z}na_'_... , ¢__)—w s
$(o)= ¢0_e2(k/a)a+ e, by, (2.15)
1
2(n—|—1)ln(0°° o), ¢—>x ,
1__%_e—2ka+... R ¢_>—oo,
o= le@a@a 4 g (2.16)
const

(0'—0'00)2 ’ ¢——>OO .

They exhibit the advertized asymptotic de Sitter behavior
in the strong-coupling region.

III. MODELS WITH
SEMICLASSICALLY STABLE SOLUTIONS?

Although we have exhibited a general class of effective
Lagrangians with nonsingular black hole solutions, we do
not think that the results of the previous section consti-
tute a demonstration that we can construct sensible semi-
classical models of black hole evaporation. In a sense, we
have done our work too well. The models that we have
constructed have nonsingular solutions for all values of
the ADM mass, including negative ones. One suspects
that when the black holes of these models are coupled to
matter, they will suffer the fate of the models of [15].
Hawking evaporation will proceed forever, leaving
behind nonsingular black holes of ever larger negative
ADM mass.

To see why we anticipate this disaster, consider the
class of models, which are nonsingular according to the
criteria of the previous section, and in which W(¢) has no
zeros. h(¢) then has a single zero, which is a finite geo-
desic distance from points with finite o coordinates. This
is true for all finite positive and negative values of the
ADM mass. The asymptotically timelike Killing vector
of the solution is null at this horizon, and becomes space-
like on the other side of it. It is easily seen in the semi-
classical approximation that matter propagating in any of
these geometries will Hawking radiate. This makes it
seem implausible that the equations with back reaction
included will have solutions which become asymptotical-
ly static. There is no apparent reason for the radiation to
turn off.

While this is not a proof that these models suffer the
fate of those studied in [15], we were sufficiently con-
vinced of this to search for models in which the horizon
moved off to infinity at some finite value of ADM mass.
Such models can be constructed by choosing W(¢) to
change sign once in the physical range of ¢. For the gen-
eric solution, 4 (¢) then has two zeros, and there is a par-
ticular value of the ADM mass for which these zeros
coincide. If we impose restrictions on the strong-
coupling behavior of D and W which guarantee the ab-
sence of singularities, the generic geometry has two half
infinite static regions, connected through a pair of hor-
izons, to a homogeneous expanding universe. This is not
the complete geometry, however, since there are geo-
desics which enter into the expanding region and never
come back. The second horizon is a Cauchy horizon for
the region connected to weak coupling. If we follow the
usual procedure of analytically continuing through this
Cauchy horizon, we obtain the full Penrose diagram
shown in Fig. 2. It has the periodic structure familiar
from the Kerr and Reissner-Nordstrom geometries, but is
everywhere nonsingular. Parts of this spacetime can be
foliated by spacelike surfaces, but it contains Cauchy hor-
izons. This may mean that most of the structure is unsta-
ble to small perturbations.

For the extremal value of the ADM mass, the two hor-
izons coincide, and the extended spacetime now has zero
Hawking temperature. The causal structure is identical
to that of the M?=Q? extremal Reissner-Nordstrom
solution, except that the timelike singularity has been el-
iminated. To see this explicitly, let us investigate the
behavior of the metric near a general zero of A:

h($)=—a*(¢y—¢)" . (3.1)
Integrating to get o(¢), we obtain
(dp— )—(k—l)
0200—% , k¥#1,
a“(k—1)
In(¢y—¢)
=00+# , k=1. 3.2)
a

FIG. 2. Extended Penrose diagram of the classical metric for
the case of two zeros in 4. Regions I and III are static, but re-
gion II, is time dependent. The arrows indicate the direction of
the Killing vector used to obtain these solutions. The line AB
indicates a Cauchy horizon for region I,. The double line indi-
cates the region that is asymptotically linear dilaton vacuum.



48 NONSINGULAR LAGRANGIANS FOR TWO-DIMENSIONAL . .. 703

Using (2.7), we can write, for the metric (k#1),

— hD'e??
2A

02 —k /(=1

z(a'—O'O) o—0, k<1

~g kD g e, k>1 . (3.3)

We can see then that, for k =2, e” cannot be integrated
through ¢ =¢, and so the distance to ¢=¢, is infinite,
while for k <2 ghe distanctza to this point is finite. [For
k=1, h(¢)=e™", e*=~e*?, and ¢—¢, as 0 — — .]
The curvature is given by e ~%32p, and using the above
expressions is easily seen to be infinite for 1 <k <2 and
k <1, finite for k =2, and zero for k =1. Note, in partic-
ular, that k =1 near ¢ =g, corresponds to the behavior at
the horizon of the standard dilaton-gravity black hole.

If our effective action really comes from integrating out
massive fields, then we expect it to be an analytic func-
tion of the dilaton.® Thus, k =1,2 are the only sensible
nonsingular choices. In fact, we expect simple zeros
(k=1) of h to be generic. If & has a single such zero, then
we have the sort of model analyzed in the previous sec-
tion, which has the potentially disastrous problem of
runaway Hawking radiation. If W has one or more sim-
ple zeros, then h has multiple zeros. By tuning the one
parameter at our disposal, the ADM mass, we expect to
find a unique value of ADM mass at which the two zeros
nearest to the weak-coupling region coincide. The ex-
istence of special solutions, for which the horizons coin-
cide (as in the extremal Reissner-Nordstrom black hole)
is thus generic, as long as W(¢) has one or more simple
zeros. We can see, then, that for k =2, e” cannot be in-
tegrated through ¢=¢, and so the distance to ¢=¢, is
infinite, while for k <2 %he distance to this point is finite
[For k=1, h(¢)=e*”, and ¢—¢, as
0 — — ».] The curvature is given by e ~2d2p, and using
the above expressions is easily seen to be infinite for
1<k <2 and k <1, finite for kK =2, and zero for k=1.
The extremal geometry is thus a nonsingular spacetime
with zero Hawking temperature. Quantum fields placed in
such a gravitational field will not give off Hawking radia-
tion.

This observation by itself does not guarantee that the
extremal geometry will furnish a satisfactory semiclassi-
cal end point for Hawking evaporation. Unlike the linear
dilaton solution of the classical CGHS model, the ex-
tremal solution has nonzero curvature and will not be a
solution of the one-loop-corrected mean-field equations

eszea 0’

|

1+y2%%

h( e*)
2¢

-0.1

-0.3

-0.4

-0.5

FIG. 3. A plot of h(e?*) showing the crossover from two to
no zeros. The conjectured extremal zero-temperature solution
lies at the crossover point.

which describe Hawking evaporation. We must enquire
whether there is a static solution to these equations with
properties similar to the extremal geometry, and whether
perturbations of this solution by infalling matter eventu-
ally relax back to it. We will set up the equations which
must be solved in the next section. We have not yet
solved them.

Before concluding this section, we will work out the
details of a particular form of the Lagrangian which has
solutions of the type we have discussed. We take

D=e_2¢—%7/2e4¢ (3.4)
and
W=4A>—pe*? . (3.5)
Then
2A 1 M
h=—=N |24 M 2 B L4
1+y2% 2 2A° g8A2 "
2 2
+ L g6 KV 100 | (3.6)

4 3242

where M is the ADM mass. It is easy to see that the
number of zeros of 4 jumps from O to 2 at a critical value
of M (see Fig. 3 for an illustration for A=y =u=1). This
is the extremal geometry of this model. The explicit
asymptotic formulas for the metric and dilaton at
¢— T oo [when h(¢) has a zero the behavior at the zero
will be typically of type k =1 discussed above, and in the
extremal case, k =2] are

1
0(¢)_ﬁfd¢ B
20 2A 8A2 8

2 2
1y M g B ey I—e“——é%elo‘b

) (3.7)

6Unless some heavy degrees of freedom became massless at a particular value of ¢. The phenomenon would complicate our

analysis, and we assume that it does not occur.
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giving
b _M
J— —_ + P J— s
(¢) * 2ke S (3.8)
()= .
aoo-i-&e_“d’, ¢— o ,
u
and inverting this expression to obtain
o Memey g,
Ho)= ? (3.9)
—4n(c—0,), ¢—>x :
and
1_%e—27\0+,,,’¢_)_00,
e = (3.10
const b—> o0
(0._0.00)5/2 ’

This exhibits the features that as ¢ — oo, the curvature
goes to zero and the distance to ¢ = oo is infinite.

IV. MEAN-FIELD EQUATIONS

At this point it would be natural to study the classical
collapse of matter coupled to our nonsingular versions of
dilaton gravity. However, we have not been able to ex-
actly integrate the equations of motion for even the sim-
plest choice of matter fields, massless f waves. That be-
ing so, we decided to directly tackle the more ambitious
problem of incorporating our nonsingular black hole
solutions into a framework that allows us to follow the
process of Hawking evaporation to its end point. It is
difficult to do this in a way which can be justified as a sys-
tematic approximation to the dynamics of a four-
dimensional dilaton black hole (as we have tried to imag-
ine justifying the modified Lagrangians which we have
studied up to this point). The only available technique
for studying Hawking evaporation is based on the mean-
field equations of CGHS, which may be viewed as the
leading term in an expansion in the inverse number of
massless matter fields in the two-dimensional effective La-
grangian. The massless CGHS f fields will certainly be
present in string theory, and for large magnetic charge,
there will be many of them. However, in the convention-
al large N approximation, the string coupling is of order
e%*~1/N, and the modifications that we have made to
the CGHS Lagrangian are formally of higher order in
1/N. Furthermore, we would expect terms of the form
P($)(VF)? to be just as important as those we have in-
cluded, and we do not know how to evaluate the f func-
tional integral in the presence of such terms. Finally,
there are low-energy quantum corrections coming from
the interaction of the f fields with the two-dimensional
remnant of the electromagnetic field [19], which are also
of the same nominal order in 1/N as our modifications of
CGHS.

To make progress, we abandon a bit more of our
pretense of realism, and view the Lagrangian

L=V —g LZ—(DR+W)+(Vf)2 4.1)

as a ‘“‘two-dimensional model field theory”. We also
abandon the identification of e? with a coupling con-
stant. Indeed, in the context of the effective Lagrangian
it is D'(¢) rather than e?? which controls the magnitude
of quantum fluctuations of the graviton and dilaton. We
can now perform a systematic large N expansion of the
theory presented in Eq. (4.1). We use the CGHS metric
to regularize the f determinant and obtain the mean-field
equations (in the conformal gauge)

0=D"3,¢0_¢+D'3,3_¢+1e PW+kd,3 _p,

4.2)
0=D"3.¢d_¢+2D'3,3_¢—D'd.d_p
_%'eZ(p—¢)+%We2(p—¢) , 4.3)

T.,=0=(D"+2D")3,$3,6+D'3%$—2D'd,¢3d.p
+(0. ) —k(d,1p3,p—p+1,),
9,0_f=0,

(4.4)

4.5)

where p is the CGHS Liouville field (p=p+¢).

The kinetic term in these equations is nonsingular, so
long as 2k+ D’ <O for all real values of ¢. For example,
in the model of Sec. III, this requires « < 3(y /2)?/3. This
restriction ensures that for all real values of ¢, the field
space metric of the leading-order large N effective La-
grangian for graviton and dilaton, is nondegenerate.
Thus, with this restriction, we do not expect to find the
kind of singularities that plague the large N equations of
CGHS [3,20].

In [3,20] a signal of the possibility of singularity for
generic initial conditions was found by fashioning the
static equations into the form

2( §'2e—2p_}\‘2)

—25~
e
P 1—ke??

) (4.6)
which indicates the possibility of a curvature singularity
at ¢=1In(x). It turned out that the static solutions,
quantum kinks of [16,18,17], do not have a singularity at
this value of ¢, they bounce from ¢ just below the critical
value and have a weak-coupling singularity. However,
the value ¢ =1In(k) is the position of the singularity in
solutions representing gravitational collapse. In our sys-
tem, the corresponding equation is

(W'/2+W)e #—D"¢* %

—2p55
e P D' +2x

(4.7)

This expression exhibits no singular value of ¢, provided
that « obeys the restriction 2« + D’ <0, for all ¢.

At the moment, we see no other recourse for under-
standing the solutions of these equations than numerical
work. The equations describing Hawking evaporation
are hyperbolic partial differential equations of a type no-
toriously resistant to accurate numerical analysis. The
literature on numerical analysis of the related CGHS
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equations [16-18,21,22] is full of controversy, rather
than consensus. We will attempt to numerically simulate
the full nonlinear infall problem, but there are several less
ambitious things that can be done as well. We believe
that it is reasonably easy to obtain very accurate semi-
analytical solutions to the static equations. One can then
study small fluctuations around these solutions. What we
hope to find is that the small fluctuation problem around
static solutions with ADM mass larger than the extremal
value will contain negative modes corresponding to the
Hawking decay of these black holes, while small fluctua-
tions around the extremal solution are stable. This would
be evidence that the extremal solution is a basin of attrac-
tion for some region of initial conditions with ADM mass
near the extremal value. It would show that our candi-
date remnants are the end point of Hawking evaporation
for at least some region of black hole parameters. We are
presently engaged in setting up the numerical analysis of
these equations and hope to report on its results at an
early date.

V. CONCLUSIONS

We have shown that a large class of Lagrangians of the
form (1.1) have nonsingular black hole solutions with an
infinite internal spacetime hidden behind the horizon.
The essential criterion for this to occur is that the kinetic
term of the Lagrangian be nonsingular, which requires
that the function D'(¢) is nowhere vanishing. We must
also impose certain restrictions on the behavior of the La-
grangian in the asymptotic regions ¢—+oo. These en-
sure correspondence with the CGHS model in the weak-
coupling regime, boundedness of the curvature in all re-
gions of spacetime, and the infinite extent of the internal
universe.

If the potential term H has no zeros, we find nonsingu-
lar solutions for all values, both positive and negative, of
the ADM mass, with no dramatic change in behavior as
the mass is varied. We suspect that when such models
are coupled to quantum-mechanical matter fields, they
will suffer (at least in the mean-field approximation) from
the problem of unending Hawking radiation encountered
in [15]. If H has some number of simple zeros, this prob-
lem may be avoided. There is then an extremal value of
the ADM mass for which the horizon nearest to the
weak-coupling asymptotic region moves off to infinite dis-
tance, leaving behind a nonsingular spacetime with zero
Hawking temperature. It is plausible that when these
models are coupled to matter, this extremal spacetime (or
a slight quantum deformation of it) will be a natural end
point for Hawking evaporation.

Much work remains to be done to verify this conjec-

ture. We have not yet even solved the classical equations
for infalling matter in these systems, but are instead en-
gaged in a numerical study of the large N equations,
which include both infall and back reaction. Preliminary
analysis suggests that these equations have static solu-
tions corresponding to nonsingular quantum deforma-
tions of the solutions studied in this paper, and that they
do not suffer from the singularities discovered in [3,20].
We are quite concerned, however, about another sort of
potential singularity. As far as we can tell, all of the
spacetimes which arise in models in which H has zeros,
have Cauchy horizons. It is widely believed that Cauchy
horizons become singular when subjected to small pertur-
bations [23]. This suggests that generic dynamical solu-
tions of the mean-field equations might have singularities.
Thus, it is possible that our attempt to find a nonsingular
semiclassical description of black hole evaporation may
fail.

There is a bright side to this dismal conclusion.
Hawking’s information paradox was supposed to provide
a first insight into the conceptual problems of quantum
gravity. Its resolution by the agency of cornucopions, or
other large remnants with small throats, is in some ways
disappointingly semiclassical. It demonstrates once
again’ that a Hilbert space description of quantum gravi-
ty must involve the notion of a changeable number of
states. It may also lead to an argument that wormhole
processes must be included in any sensible theory of
quantum gravity.® However, the remnant scenario does
not seem to require us to understand the mind-boggling
prospects of large quantum fluctuations in the geometry
of spacetime. Nor does it require us to understand the
generalization of geometry provided by string theory.
Perhaps our (possible) failure to find an adequate semi-
classical description of black hole singularities will force
us to come to grips with these deep issues.
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