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New singularity in anisotropie, time-dependent, maximally Gauss-Bonnet extended gravity
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Among the solutions for anisotropic, time-dependent, maximally Gauss-Bonnet extended gravity, we

find a class of curvature singularities for which the metric components remain finite. These new singu-

larities therefore differ in type from the standard Kasner-like divergences expected for this class of
theories. We study perturbative solutions near the singularity and show that there exist solutions with

timelike paths that reach the singularity in finite proper time. Solving the equation of geodesic deviation
in the same approximation, we show that the comoving coordinate system does not break down at the

singularity. A brief classification of the corresponding singularity types in Robertson-Walker cosmolo-

gies is also provided.

PACS number(s): 04.50.+h, 11.10.Kk, 98.80.Hw

I. INTR&DUCTION

Many unification theories, including superstring, su-
pergravity, and Kaluza-Klein theories, suggest space-
times of higher dimensions than four. The maximally
Gauss-Bonnet extended Einstein, or Lovelock, theory is a
viable generalization of general relativity to such higher-
dimensional spacetimes. Specifically, it gives the most
general theory of gravity with fieM equations which con-
tain no more than second derivatives of the metric [1].

The Gauss-Bonnet extended gravity Lagrangian has
the form

maxL= XcaLk
k=0

in d dimensions, where km„ is the integer part of
(d —1)/2 and

ab cd ef g )tt

Lk =R R . . .R e . e Cabcd. . .efg. . .gi (2)

There are k factors of the curvature two-form R', and
(d —2k) factors of the vielbein one-form e'. The con-
stants ck are arbitrary and czbcd efg Q

is the d-
dimensional Levi-Civita tensor. DifI'erential forms are
represented by boldface symbols and are always assumed
to be multiplied using the wedge product. For d even,
the integral of Ld y2 is the Euler character. When
0(k (d/2, L& is called a dimensionally extended Euler
characteristic density.

Besides providing the most general second-order
theory of gravity and the most general gravitational ac-
tion constructible from R'", e', and invariant tensors,
several properties recommend the use of L as the gravita-
tional Lagrangian. The first-order density L, is the usual
Einstein Lagrangian, while the lowest-order density Lo
provides a cosmological constant. L2 arises as the order
a' correction in the low-energy expansion of string mod-
els [2—4]. Any theory using L therefore reduces to Ein-
stein or low-energy string gravity when the curvature is
small. Furthermore, given the quadratic and higher-

order terms in the curvature tensor, the extra dimensions
can spontaneously compactify [6]. Finally, Lk is free of
ghosts [1,5] when the theory is quantized.

Several solutions to this class of theories have been
studied previously. Static, spherically symmetric solu-
tions have been found with [7—11] or without [12—14]
the presence of other fields coupled to gravity. Cosmo-
logical solutions have been studied extensively by various
authors [6,11,15—28]. See Deruelle and Farina-Busto
[30] for a recent review of cosmological studies in extend-
ed gravity.

The generalization of the Kasner geometry was studied

up to k =2 by Lee and Lee [25], and Deruelle [31]pertur-
batively analyzed the Kasner-like singularities to all or-
ders. In [32], we achieved the complete exact integration
of the Kasner-symmetry problem, and distinguished two

types of singularities which occur. The type-I subclass of
singularities may be characterized by the singularity of
the metric (as well as the curvature). These divergent
solutions had been found perturbatively by Deruelle [31],
and are of the sort found in the usual Kasner solution to
general relativity. Type-II solutions, by contrast, retain
finite metrics at the curvature singularity. While the
solution of Ref. [32] clearly displays the possibility of
such solutions, their existence and character was not fully
established. In the present work, we explicitly study
these new type-II singularities demonstrating conclusive-

ly their existence and verifying that they can be reached
in a finite proper time.

Section II begins with a review of the Bianchi type-I
extended gravity solution and the definition of the two
types of singularity, continues with a proof by example of
the existence of type-II singularities and concludes with a
discussion of general properties of such solutions. Then,
in Sec. III, the field equations are linearized and pertur-
bative solutions both emerging from and evolving toward
the type-II singularities are obtained. Based on these
linearized solutions we show, in Sec. IV, that the metric
components stay finite and that the universe undergoes
an inAationary state near a singularity. We also show, by
solving the equation of geodesic deviation perturbatively,
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that, generically, the comoving coordinate system does
not break down at a singularity. Section V gives a brief
discussion of type-II singularities occurring in other ex-
tended gravity solutions, including a classification of the
singularities of the k,„=2 spatially Bat Robertson-
Walker solutions. Section VI includes a summary of the
results.

max

pj = —co —g ga;C;." +(2k —1)C "
2k —1

(9)

When N ' exists, Eq. (7b) can be solved by integrating
daldt =N 'P, or, in components,

d cx~

dr detN
l

(10)

II. FIELD EQUATIONS AND SINGULARITY BEHAVIOR

max

g (d —2k)c„R'. . .R' e. . . "e ,eb,+ g h
=0 . (3)

k=0

We evaluate these equations of motion for a time-
dependent, homogeneous, anisotropic, diagonal metric

gab
=

2

(4)

where A; (i =1,2, . . . , d —1) are functions of time, t.
Next, we define new variables o;, by

a; —= ln(A, ) .
dt

The equations are then simplest when written in terms of
the fundamental symmetric symbols C and the associat-
ed symbols C . „. C is the sum of all possible prod-
ucts of k di6'erent o. s,

C"=pa; a;. . .a;

with the sum over cr= I(i&, i2 . iz)IO&~i «p
&ik k,„],while subscripts, as in C . „, indicate the
absence of the indices I. . .n from the set o..

Now the field equations reduce to

max
C2k ()

k=0

dc'"dt (7b)

where ck ——(2k)!(d —2k)!c&, N is the symmetric matrix

max

N,~= g C, ~j =X~;, i'
k=1

satisfying X,,-=O for each i. a is the vector with com-
ponents a;, and the components of P are given by

Kitaura and Wheeler [32] give the details of how the
solution is obtained. The following is a brief summary of
the results.

We use the Palatini variation. The variation of I. with
respect to the connection vanishes identically when we
assume the vanishing of the torsion two-form,
T'=De'=0, and use the Bianchi identity DR' =0. The
vielbein variation gives the field equations

Here D is the transpose of the cofactor matrix of N.
Note that since N is symmetric, D is also symmetric.

Equation (10) clearly shows the distinction between
type-I and type-II singularities. If the solution of this
equation for n; gives a diverging function for some value
of i, there results a type-I singularity and both the corre-
sponding metric component, A;, and various curvature
invariants will diverge. But, even if all of the com-
ponents, o;;, remain finite it is possible to have detN=O
and XD; P nonzero. , so that daldt diverges. This leads
to the divergence of the curvature invariant

2

dpiR' ' R =4+ +a; +4+aa, (ll)
l lJ

yielding a type of singularity distinct from the usual
Kasner-like singularities and not present in general rela-
tivity. These are the type-II cases.

To prove conclusively that this type of singularity ac-
tually occurs, we consider a specific example. In a five-
dimensional spacetime, if co=c&=1, and cz= —'„ then
a&= —1, az=v'7/2, a3=1, a~=0 satisfy both Eq. (7a)
and detN=O. The expression g D; /3 does not vanish.
Therefore, the time derivatives of a's diverge at this
point. A similar point can be found for co =0. A numeri-
cal study of the five-dimensional case shows that these
same conclusions hold for a large range of parameter
values. We further find that the gradient of the surface
equation, detN =0, with respect to a; does not vanish, so
type-II singularities do not always lie on a kink of this
surface.

Some observations about the new class of singularity
are in order. We note that when k „=1, that is, in the
usual Einstein case, N;. =c& with Nii =0, so detN never
vanishes and this type of singularity never arises.

To generalize our study of the type-II singularities we
let 0 denote the (d —2)-dimensional surfaces in a-space
defined by Eq. (7a), and let the (d —2)-dimensional sur-
faces where detN=O be called Sd. Then we have a solu-
tion at all points on the intersection, QACSd, where C
denotes the complement.

Now, since both Sd and 0 are (d —2)-dimensional hy-
persurfaces in the (d —1)-dimensional a-space, the inter-
section I=QASd is, in general, a (d —3)-dimensional

surface, unless the surfaces intersect tangentially. Since I
is where the determinant vanishes, I divides 0 into two
separate regions, characterized by the sign of detN.

To establish the degree of importance of this type of
breakdown, it is necessary to show that generic type-II
solutions move from the allowed solution space inside 0
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to I. Passing through each point on 0 there exists exact-
ly one solution curve. Given such a solution curve, a, (t),
the detN=O condition becomes a polynomial equation in
t. Suppose this equation has n real roots: t, &t2 (. . .t„.
Then the spacetime can exist only between two consecu-
tive roots. Since, as shown later in this chapter, the
metric components do not diverge in general at a type-II
singularity, we have a picture of a (d —1)-dimensional
hypersurface evolving for, say, t & t2, until t = t3 at
which time the hypersurface ceases to exist. The universe
starting at t =t„can exist forever unless it encounters
other types of singularities such as a Kasner singularity.
Another interesting possibility is that a Kasner singulari-
ty can be placed at t =0 and the constants ck can be
chosen so that one of the roots is positive. Then we have
a universe that emerges from a Kasner singularity and
encounters a type-II singularity later on.

Finally, we observe that detN =0 may be regarded as a
(d —1)-degree polynomial in the constants ck which dis-
tinguish di6'erent gravity theories. It is then easy to see
that there is a large class of theories admitting type-II
solutions. In even dimensions we can always fix the value
of one of the ck in terms of the others in order to satisfy
the vanishing determinant condition. This leaves a k
dimensional class of gravity theories with type-II solu-
tions. In odd dimensions, it may be necessary to fix the
values of more than one of the cz. In either case, a non-
isolated class of Gauss-Bonnet extended theories contain
the new class of singularit.

III. PKRTURBATIVK SOLUTION
NEAR A SINGULARITY

%'e now investigate the perturbative behavior of a solu-
tion near a type-II singular point. Let ao satisfy
detN(ao) =0 and Eq. (7a) and expand

a, (t) =ao;+s;(t),

6;K;=+
'(s/P)y~ G

' I/2

J

(16)

s =+1 is chosen so that the quantity under the square-
root sign in Eq. (16) is always positive, and we have
chosen the initial condition e,.(t =0)=0.

These are the solutions we require. Since e, is parallel
to 6;, and F.;, being the gradient of Sd, is perpendicular
to I, we conclude that whenever G.EAO the solution
curve moves away from I. Since G; and E; are indepen-
dent, this is the generic case. Whenever the solution of
Eq. (15) exists, it represents a universe emerging from or
moving toward a type-II singularity.

Finally, we consider the consistency of the signs to be
chosen in Eqs. (15) and (16). Together with Eq. (13), Eqs.
(15) and (16) imply

gEG; = QE„e„
dE, m

(17)

Then, differentiating Eq. (15), we see that e and de/dt are
either parallel or antiparallel depending on the sign of s.
When they are parallel, QE„s„and gE;de; /dt have the
same sign and Eq. (17) shows that gF.;G; is positive.
This happens when the solution is moving away from ao.
In this case, s = + 1. Similarly, when e and de/dt are an-
tiparallel, gF.;G; (0, and we find s = —1. This gives a
solution that approaches ao as t evolves from a small neg-
ative value to zero, which is consistent with the fact that
s and de/dt point in opposite directions. Finally, the
choice of overall sign in the expression, Eq. (16), for K;
determines whether the system is moving in the region of
0 with detN positive or negative. To summarize, we
have the following results, to lowest order in t, near a
type-II singularity:

ge„E„s;=g(F, ) c. +G;, (13)

where

where no; is the ithe component of no. To linear order in

s;, Eq. (7b) reduces to
26;

a;(t) =a,o+, , &t
(ZyZ, G, )'"

motion away from ao,
(+) if detN)0,
(
—

) if detN (0,
(18a)

E =— [detN]
a

Bcx ~o
(14a)

motion toward ao,
26;a;(t)=a;o+,&2&

—t '
( —) if detN&0,
(+) if detN(0.

G; = gD,;pj
ao

(14b) (18b)

(F; ) —= gD,;P~
J

(14c)

We notice that E are just the components of the gra-
dient of Sd. Solving to lowest nonvanishing order gives

;(t)=X;&st,
where K, is a constant determined in terms of the vari-
ables of Eqs. (14) by

IV. METRIC COMPONENTS NEAR A SINGULARITY
AND GEODESIC DEVIATION

In this section, we look at the metric components near
a singular point, and show that the Universe undergoes
an inflationary state. We then investigate the behavior of
two nearby geodesics near a singularity by solving the
equation of geodesic deviation.
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Consider a solution moving away from the singular
point O.o into the detN & 0 region, where the solution can
be written as

a;(t) =ao;+K;&t (19)

The metric components become
r

A;(t)=exp Ja;(t)dt =exp(ao, t+ ', K, t ~—) (20)

and we note once again that these values remain finite as t
approaches zero. When eo, t+ —', K;t ~ )0, the Universe
undergoes an inAationary expansion whereas, if
ao;t+ —', E; t (0, it undergoes a contraction. The excep-
tion to this is when it so happens that

+ .t +—'K-t3~2=0
Oi 1 3 i 1

for some t, in the range of our approximation,

(21)

3a;OK'

2K~K J
(22)

did;
8'O, o= ' +a; (no sum), (23a)

R'J; =a;a (no sum) . (23b)

Then in comoving coordinates the equations of geodesic
deviation reduce to

d2

dt
=0, (24a)

d + +a, ('=0, 1«i «d —1,
dt2 dt

(24b)

where we use the fact that a geodesic in comoving coordi-
nates is given by x'= const so that dx'/d~=0 and ~=t.
Clearly, the singularity is reached in a finite proper time.
In Eqs. (24), g represents a temporal distance between
two geodesics whereas g' measures the spatial distance.

Let

If a;OK' is sufficiently small compared with K;K' and if
these products have opposite signs, there is a value t„
where the Universe reverses its direction of expansion.

We conclude with a proof that distinct comoving geo-
desics remain distinct as the singularity is approached.
In terms of the o. s, the only nonvanishing components of
the curvature tensor are

g'= a,o+ a, ,st + 2s—a; OK, (st )
~ +. . . ,

where a,o and a;i are arbitrary constants.
Clearly, P and its first derivative are well behaved and

need not vanish as t approaches zero, which means that
at a singular point the comoving coordinate system does
not break down. Only the acceleration diverges at the
singularity. We also observe that since g'= a;0 and
d g'Idt =sa;, at t =0, if we choose a;, to be positive, then

f tends to increase moving away (s )0) from the singu-
larity, while g tends to decrease if a geodesic is approach-
ing (s &0) the singularity. If a;&=0 for all i, then the
geodesics are parallel (up to the next order term) at the
singularity.

There are some situations where the comoving coordi-
nates can break down. When the third term can be
neglected in Eq. (26), g'=0 has a real root if a,.o and a;,
have opposite signs and if the value a, o/a;& is the same
for all i, so the coordinates become degenerate. But
a,o/a, &

is the same for all i only on a set of measure zero.

V. TYPE-II COSMOLOGICAL SINGULARITIES
IN EXTENDED GRAVITY

While our principal intent is the study of Kasner solu-
tions, it should be noted that type-II singularities occur
in other cosmological solutions to extended gravity. In
this section we examine two such solutions: the geome-
trically free solutions [7] and extended Robertson-Walker
spacetimes.

Geometrically free solutions, first described by
Wheeler [7] and further characterized by Miiller-Hoissen
[29], leave parts of the metric arbitrarily specifiable.
Such solutions clearly allow arbitrary pathologies to be
introduced. If one or more of the free metric components
is taken to vary as exp[(t —to) ], with 0 (a & 2, then the
curvature wi11, in general, develop singular parts at time
to even though the metric component will stil1 be well-
defined. However, since there is no dynamical principle
determining this case of type-II behavior, it is of minor
interest.

Of considerably more interest is the specific occurrence
of type-II singularities in extended Robertson-Walker
spacetimes [11,30]. As an example, we now give the full
classification of the spatially Bat Robertson-Walker solu-
tions to k,„=2extended gravity, including the singular-
ity type.

We follow the notation of [30]. Starting from the line
element

a, =a„+K,&st (25)
ds = dt +a (t)do—

as before and choose g =0= const. Then Eq. (24a) is
satisfied and Eq. (24b) reduces to

with der describing a fiat (d —1)-dimensional space, we
let

a;o+2a, +;&st + —g'=0 (no sum)
A,a

X =
a

(29)

neglecting the second-order term in &t. Solving this by
a power expansion, we get

where a is the time derivative of a and A, is a positive con-
stant. One of the two field equations is solved by replac-
ing the suitably normalized matter density by a power of
the scale factor. In terms of x, the remaining field equa-
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tion may be written as

aux(P, +2P2x )+Po+P,x +P2x =0, (30)

Theorem 2. Type-II curvature singularities occur if
and only if x remains finite while x —+ ao. In a neighbor-
hood of the singular points

where po, pi, and p2 are normalized versions of the cou-
pling constants in the original Lagrangian [Eq. (I)) and
e) 0 characterizes the equation of state. Our results fol-
low from Eq. (30). For convenience we also define

5 3
a =a 1+—(r r—)+

4 A,

1

2

2

To

' 1/2

(31)

Notice that, at the type-II singularity, the matter den-
sity and scale factor remain regular. The vanishing rate
of density change p —+0 provides a necessary and
sufhcient condition for the existence of this type-II diver-
gence; x~+5 also provides a necessary and sufhcient
condition. In fact, if we expand Eq. (30) in a neighbor-
hood of x =+6, it reduces to

4ai,6ci =6

We assume throughout that none of these variables van-
ish.

We will require three theorems. For the first two, we
note that the curvature components depend only on x
and x, and, in particular, that the scalar curvature is a
linear combination of x and x. Examining possible
divergences of x and x proves the results. A study of the
remaining critical points of Eq. (30) yields the third
theorem.

Theorem 1. Type-I curvature singularities occur if and
only if x —+ ~. In a neighborhood of the singular points
the matter density p diverges and

a =a (ro—ro)

which is of a form similar to Eq. (13) for the extended
Kasner solution. Therefore, the singularities are not only
both type II, but actually have the same (t to) —' rate
of divergence [see Eq. (15)]. The extended Kasner case,
of course, is complicated by the anisotropy.

Finally, we have the following.
Theorem 3. The following conditions are equivalent:
(1) x —+a+, where a+ are the roots for x of

go+ p )x +x =0.

(3) p~0.
Any one of the conditions (1)—(3) implies a scale factor

dependence of a -exp[++a+(t to)/A, j and fin—ite cur-
vature as ++a+(r —ro ) tends to infinity.

Based on these theorems, and choosing p2 so that p is
positive, we find that the qualitative history of any solu-
tion may be determined once we know (1) the range of x

TABLE I. Classification of spatially fIat, k „=2,extended Robertson-%'alker cosmologies.

IIa a+~x ~ o;+

IIb ga+~x~~

IIIa

IIIb

IIIc

IVa
IVb
IVc
IVd
Va

—Qa &x ~&a
Qa ~x ~6
fi~x ~pa+
pa~ ~x ~ co
—6~x ~5

Region Range of x

—oo &x&oo

ro

+ +
Description

Expands from type I to maximum radius then
recontracts to type I singularity
Contracts from infinite radius at t = —~,
bounces and expands indefinitely
Expands from type I indefinitely to
x =+a~
Expands from type II then recontracts to
another type II
Expands from type II indefinitely to
x =&a
Expands from type I indefinitely to
x =+a~
Nonsingular with bounce
Expands from type II indefinitely to x =+a
Expands from type II indefinitely to x =+a+
Expands from type I indefinitely to x =+a+
Contracts from type II, bounces and
expands to type II
Contracts from type I to type II
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and (2) the signs of yi, y2, b, , and x. We tabulate the
possibilities in Table I. Regions I—V correspond to the
regions depicted in Fig. 1 of [30]. Deruelle [33] has
pointed out an error in Ref. [30] occurring in the discus-
sion of region-V solutions, and our results confirm this
observation. The initial and final states of all type-V
cosmologies are curvature singularities. We also note
from Eqs. (29) and (30) that the time reverse of any solu-
tion in Table I is also a solution.

VI. SUMMARY

remain finite (type II). The singularity behavior of these
type-II solutions therefore differs from the classical Kas-
ner solution. We find both solutions emerging from and
solutions evolving toward a type-II singularity and show
that the Universe undergoes an inflationary expansion or
a deAationary contraction near such singularities. From
the equation of geodesic deviation it is shown generically
that the comoving coordinate system does not break
down at a singularity. A brief classification of the corre-
sponding singularity types in Robertson-Walker cosmolo-
gies is also provided.

In an arbitrary number of dimensions greater than
four, we demonstrate the existence of a new class of cur-
vature singularity in anisotropic, time-dependent solu-
tions to maximally Gauss-Bonnet extended gravity. It is
shown that, in addition to the usual Kasner-like (type-I)
singularities, there are solutions for which certain curva-
ture invariants diverge while the metric components
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