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We discuss the possibility of obtaining constraints on Z-Z mixing from studies of the process
e+e —+8'+8' at planned high energy e e colliders, and derive the corresponding limits on the Z
mass for di6'erent extended models. Our results indicate that the limits on the mixing angle are quite
stringent, and can typically reach the level of 10 '-10 . We also present a detailed comparison with

the potential of the reaction e+e +ff, w—hich shows that significantly better sensitivity to Z-Z mixing

should be expected from 8'+ 8' production.

PACS number(s): 14.80.Er, 12.15.Cc, 12.15.Ji, 13.10.+q

I. INTRODUCTION

Numerous extended theories have been proposed and
deeply studied, either as viable extensions of the standard
model incorporating it, or as alternatives to the model it-
self in the description of electroweak interactions. A
common feature of most extended schemes is the predic-
tion of the existence of one (or more) neutral heavy gauge
bosons Z', whose mass and possible mixing with the stan-
dard Z reAect the Higgs structure of the theory [1].
From the phenomenological point of view there has been
intense activity to formulate strategies for determining
the Z' parameters from experimental data, and thus to
test these theories. One approach is based on the search
for direct Z' production at hadronic co11iders and super-
colliders [Fermilab Tevatron, Superconducting Super
Collider (SSC), and CERN Large Hadron Collider
(LHC)], with a discovery limit of Mz ~ 3—6 TeV (for E6
models). The other approach is based on the study of the
possible indirect effects of Z' bosons in e+e annihila-
tion at KEK TRISTAN, the CERN e+e collider LEP,
and at the planned Next Linear Collider (NLC), Japan
Linear Collider (JLC), etc. , which might be sensitive to
Z' boson masses up to about 4 TeV [2—4].

In this regard, most attention has been given to the an-
nihilation

e++e ~f+f
at LEP 1, leading to restrictions on the Z-Z' mixing an-
gle, from which lower limits on Mz could be derived,
competitive with those obtained from the direct search at
the Tevatron collider [5—8].

With the increased e+e energy available at planned
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machines, stronger restrictions on the mixing angle will
be allowed in principle by the measurement of the reac-
tion [9]

e++e ~8'++ S' (2)

The advantage of this process is that, in this case, devia-
tions of cross sections from the standard model strongly
increase with the total e+e energy, as compared to
transition (1), so that enhanced sensitivity to indirect Z'
effects can be obtained even for fixed luminosity.

Thus, a possible scenario concerning this kind of
search is represented in Fig. 1. Starting with reaction (1),
at TRISTAN (with +s (Mz) one can, in general, only
obtain limits on Mz. , because here the leading Z' effect is
related to the y-Z' interference instead of the small mix-
ing angle [10,11], while from the line shape near the Z
peak (v's =Mz+I z/2) we can study Z-Z' interference
[12]. At the Z peak (LEP 1), where the Z-exchange dia-
gram dominates, limits of the Z-Z mixing angle are de-
rived from high precision measurements and can be
turned into lower limits on the Z' mass in the different
models [5,6,8]. At higher energies the situation of
TRISTAN repeats, until possibly (and hopefully) reach-
ing the Z' peak, where mass and couplings of the Z'
could be measured and, depending on the precision, the
mixing could be either established or limited through
models [13].

Turning to reaction (2), at the energies typical of the
NLC (500 GeV or greater), even off the Z' resonance
peak one can place stringent bounds on Z-Z' mixing,
stronger than those derived at the Z, due to the men-
tioned enhancement mechanism of the mixing effect in
the interferences mediated by the Z exchange diagram
[9]. Eventually reaching the Z' boson peak, the cross
section for process (2) (proportional to the square of the
mixing angle) is certainly smaller than for process (1), and
the corresponding statistics are poorer. Nevertheless, as
we will see in the sequel, in this case the enhancement
mechanism also helps in improving the sensitivity to the
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FIG. 1. Total cross sections of e+ e
—+hadrons (solid line) and e+e ~W+W
(dashed line) vs energy. Z' from E6 (y model)
with Mz = 1 TeV and a Z-Z' mixing angle of
3 X 10 rad.
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mixing angle by a large factor. Moreover, near-resonance
observables for (2) have the potential of additional im-
provements, compared to on-resonance ones, essentially
because y-Z', v-Z', and Z-Z' interference terms in the
cross section are, in this case, linear in the mixing angle.

In the present paper we wish to discuss the above
points, systematically analyzing the various possibilities
offered by reaction (2), with reference to future experi-
ments at energies reached at the NLC (or higher), and
also comparing them with the potential of reaction (1).
The plan of the paper is the following. In Sec. II we re-
view in some detail the physical origin of the enhance-
ment mechanism of indirect Z' effects in process (2). In
Sec. III we discuss off-resonance strategies to obtain
bounds on the mixing angle and the Z' mass from this re-
action, and present the corresponding implications for
extended models, specifically the left-right models
(LRM's) [14], the alternative left-right models (ALRM)
[15],and the E6 models [1]. In Sec. IV we emphasize the
significance of cross-section measurements on- and near-
Z' resonance, and compare the results for the various ex-
tended models, obtained in this case, to those found in
Sec. III. In Sec. V we discuss the potential of process (1)
in establishing limits on the mixing angle, and compare it
with process (2). Finally, some concluding remarks are
given in Sec. VI.

leaving the other ones unchanged. As we will see below,
ez will be proportional to the Z-Z' mixing angle ~P ((1.

ew+

W+

a, W A,

W+ e+ W

Z $
Z2

W

mediated by photon, neutrino, and Z exchanges, which
we denote respectively by A&, 3, and Az. Let us as-
sume that some new physics induces a small departure of
these amplitudes from the SM prediction and, for the mo-
ment, consider the case where only Az is changed by an
energy-independent amount ez -.

Az (1+E'z)Az

II. CROSS SECTIONS
AND ENHANCEMENT MECHANISM

e- W- e- W

As is well known [16—18], process (2) is described in
the standard model (SM) by the diagrams of Fig. 2(a),

FIG. 2. Feynman diagrams for e+e ~8'+W in the SM
(a) and in extended models (b).
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%e can introduce the quantity

( )
SM

SM0
(4)

as an observable of the effect from new physics. In Eq.
(4), by o we may denote either the differential cross sec-
tion do/d cos8 or the integrated one, J,'do/d cosO,

1

with t9 the c.m. angle between the outgoing 8' and the
e beam directions. Cross sections will be proportional
to

o(ez)-i A + 3,+(I+ez)Azi2,
~' —

~ W, + W, + Wz~'

Accordingly, the right-hand side of (4) can be written to
first order in ez as [9)

0

—0 (I

I60

I I I l~ ~

7i —— V

&7»7/

V g

+s (c'el')
&60 280 .5 (I 0

~z =~iz+~2z
where

i1lz=~z(Rrz+R z+2Rzz) &

~zz=e zR z+e zR z+2~zzRzz .

(6)

(7)

FIG. 3. SM total cross section of e e ~$'+8 and
separate contributions vs energy.

The explicit expressions of o.;. and of o. are reported in
Appendix A for both the differential and the integrated
cross sections. In Fig. 3 we separately represent the ener-

gy behaviors of o;. and of o. in the case of total cross sec-
tions. Differential cross sections have qualitatively the
same behavior.

Referring to Fig. 3, the important feature of the partial
contributions to the SM cross section, determined by o.;z
(and, in general, by o;~), is their fast increase with the
c.m. energy, essentially proportional to s/Mll„so that
each term by itself would violate unitarity [16—19]. As is
well known, the source of such divergences is the ampli-
tude for producing a pair of longitudinally polarized 8'—.
In contrast, the cross section rr (total or differential), re-
sulting from the sum of those contributions, decreases
with the c.m. energy due to a delicate gauge cancellation
among the different diverging terms. Consequently, the
absolute values of R,z (and in general of R; ), defined in

Eq. (8) as ratios of increasing cr; and decre. asing cr, have
a significant rise with energy. For example, for the total
integrated cross sections we have the asymptotic
behavior [16—18] of

o ~ 1n(s/Mll, )/(s/Mll, )

for s &&4M~. In this case

(s /Mll, )

ln(s/Mll 3

(9)

In Eqs. (6) and (7) we take into account that, in general,
ez might consist of a part E'z independent of the helicity
structure of Az and of a part, made of e;z, which has
such a dependence. Moreover, the notation is such that

R;~ = cr;~ /0, .

(8)

From Eqs. (6) and (7), b,z is a linear combination of the
functions R;z with coefficients ez and e;z, so that it also
steeply increases with s. Indeed, although the R; have
different signs, there is not complete compensation in the
combinations of Eq. (7), so that the energy behavior of
4z remains that of the R; . . As anticipated in the previ-
ous section, this mechanism determines quite a significant
enhancement of the sensitivity of process (2) to small
effects from new physics (ez) when the energy becomes
very large, much larger than the 8'-pair production
threshold. In fact, comparing the deviation from the SM
cross section Az to the relative statistical uncertainty on
the cross section 6o /o —I/Qo L;„„asa consequence of
the behaviors mentioned above, the sensitivity
b,z/(6o/o ) increases with energy even at fixed time in-

tegrated luminosity L;„,.
Qualitatively, the same enhancement mechanism dis-

cussed above for the unpolarized total cross section
works also in the cases of the differential cross section
and for any kind of initial e+e polarizations. A con-
venient set of formulas, and a more detailed discussion,
can be found, e.g., in Ref. [9].

The range of &s values for which we should expect the
most significant manifestations of the above enhancement
mechanism is the "intermediate" region between 2M~
and Mz. , where deviations from the SM and their in-
crease with energy are directly related to the small shifts
in the Z couplings induced by Z-Z mixing. This is the
o6'-resonance case presented in the next section. In fact,
enhanced sensitivity to Z-Z mixing is also found for Vs
around Mz. , related to the interference and resonance
patterns of the cross section, as discussed in Sec. IV. Fi-
nally, if the extended model is a renormalizable gauge
theory, for &s ))Mz. (asymptotic region), with all
sources of new physics switched on, the gauge cancella-
tion should lead to a decreasing lns/s behavior of the
cross section. Thus, in general, the enhancement should
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occur in the energy region where gauge cancellations are
not complete, and for the cases considered here this re-
gion extends from 2M~ up to about Mz. or even to larger
values, provided these are below the asymptotic region.

We should remark that, in principle, we can envisage a
more general situation where, in addition to Az, the oth-
er amplitudes of Fig. 2(a) also have small departures from
the SM, so that in Eq. (3) Z would be replaced by either y
and/or v. By repeating the same procedure, we would
easily obtain relations quite similar to Eqs. (6) and (7),
only the structure would be more complex since in this
case all R; are involved. The additional deviations from
the SM, 5, and b, , similarly increase with energy by the
mechanism described above. En this case, the relative
weights of the different effects can be assessed within
specific classes of extended models.

Turning to process (1), one can derive expressions iden-
tical to Eqs. (5)—(8) (of course, dropping A, ), except that
in this case of fermion-antifermion final states the func-
tions R ' asymptotically tend to a constant with energy.
Correspondingly, the statistical uncertainty on cross sec-
tions increases with energy at fixed L;„„while b,P'
remains constant, so that the sensitivity decreases, in con-
trast to process (2).

III. OFF-RESONANCE SEARCHES

We start this discussion by assuming for definiteness
that at the 95% C.L. level, no signal of Z' is seen for
e+e energy up to, e.g., &s =1 TeV. We choose this
value because it covers current lower limits on the Z'
mass. Concerning luminosity, we shall make reference to
that anticipated for the Cornell TeV Energy Supercon-
ducting Linear Accelerator (TESLA) or NLC, of about
10 cm s '. Also, we assume that the 8'+8' final
state is identified via decays into leptons and hadronic
jets {lv+jj).

The direct contribution of the new heavy neutral gauge
boson to the amplitude of process (2) is represented by
the third diagram in Fig. 2(b). In addition, there are in-
direct contributions to the Z, -mediated diagram,
represented by modifications of the electronic and three-
boson vertices induced by Z-Z' mixing. We define

much larger than M&, in specific "minimal-Higgs" mod-
els [1,7],

(12)

where &4&;) are the Higgs vacuum expectation values
spontaneously breaking the symmetry, and Q are their
charges with respect to the additional U(l )'. Thus C is a
model-dependent constant. For example, in the case of
E6 superstring-inspired models C can be expressed as
( Sw

= S1118 w )

C=4s 2 — Bo —1

+1 (13)

where o. is a ratio of vacuum expectation values squared
[7], and the constants A and B are reported in Appendix
B for the cases of interest here.

The right- and left-handed fermion couplings to Z&
and Zz can be written in general as

A, , =A, cosP+A, 'sing,

A,2= —
A, sing+ A,

' cosP,
(14)

where

gwwz, = cosAwwz» gwwz, = sInkgwwz . (16)

We write the generalization of Eq. (4) for the observable
deviation of cross sections from the SM as

(z„z ) —o.(z„z )
hz(zI z2)=

)SM
(17)

where

(15)

Explicit expressions for A, and I, in the various models
are easily derived from the formulas listed in Appendix
B. The (W+ JY Z12) couplings can be expressed in
terms of the SM coupling g~~z =e / tanO~ as

Z, =Z cosP+ Z' sing,

Zz = —Z sing+ Z' cosP,
(10) 2 doo.(z„z2)= dz,

dz

where Z& and Z2 are the physical mass eigenstates, Z and
Z' are, respectively, the weak gauge boson eigenstates of
SU(2) XU(1) and of the extra U(1)', and P is the mixing
angle:

tan 6=
M —M

with Mz the Z mass in the SM

(Mz=Mw leos Ow) .

We shall consider in this section the configuration
M, (&&s (&Mz. To a good approximation, for Mz

and z = cos8. The general formulas to calculate o (z„z2)
and o(z„zz) for any initial-state polarizations, as well
as for unpolarized beams, are reported in Appendix A.

To make the connection with Eq. (3) and the ones
which follow, we can consider the full amplitude in Fig. 2
in the approximation of retaining only terms linear in the
small mixing angle P and in the mass difierence
EM=Mz —M&. This is, in general, a good approxima-
tion in the off-resonance energy regime of relevance to
this section. Current limits on P and b.M are, respective-
ly, ~ P ~

& 0.02 and 0 & b,M (340 Me V [5—8]. With respect
to Eqs. (6) and (7) we also have to account for the direct,
Z2-mediated contribution to the relevant interference
terms in the cross sections, so that the complete structure
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of b,z in (17) is actually (with z i and z2 implicit in the no-
tation} (a}

~z =~iz+ ~2z+ ~3"z'" (19)

where b, &z and b, 2z are the same as defined in Eqs. (6)
and (7) and 63z" represents the additional direct Zz dia-
gram interfering with y, v, and Z& exchanges.

One can easily derive

2MZ~M

s —Mz
E0
z = —1.8 X10, (20)

,
GeV

for both the polarized (LR or RL e e+ initial states) and
the unpolarized cases, while [in the notation of Eq. (15)]

eI

&yz &vz &zz
RL

(21)
—0. 0 —0. 6 —0. 4 —0.2 0 0.2 0. 4 0. 6 0. 0 1

c~s(P)

~RL —~RL
gz ZZ

~RL 0vL (22)
Ib

Ve v,'+ a,'
unyoi e

y &Ugnol

v, v, +a,
V, V,'+a, a,'&unyol-

v +ae e

Reg2ginterf
3z Re~ 2z

eXZ

(23)

(24)

10

(b)

In these equations we introduced the vector and axial-
vector couplings U&, a& = (gg+g}i )/2 and y's are propaga-
tors, i.e.,

yz(s)=sl(s —Mz+iMzI z)

The numerical analysis can be easily performed by in-
troducing these expressions into Eqs. (6), (7), and (19),
and using the formulas for the SM cross sections, which
can be derived from those given in Appendix A. Our re-
sults below correspond to an integrated luminosity
L,;„,=100 fb ' at 1 TeV. Similar to the findings of Ref.
[9], the optimal angular regions where the deviation (19)
from the SM is the largest, turn out to be the range—1 ~z~0. 25 for hz(z„zz) and Az(z„zi)"""", and
the full angular range for b,z(z&, z2) . In those ranges,
SM integrated cross sections for process (2) are, respec-
tively, crLR ——310 fb, o.

RL
——20 fb, and o„„pp] 40LR Us-

ing the channel of leptons plus two hadronic jets to iden-
tify the final 8'+ 8' state, one obtains the 2o. statistical
uncertainties of about 2%, 8%%uo, and 4%%uo, respectively. To
obtain bounds on the mixing angle P we demand that, for
a positive signal, hz in Eq. (17) should be greater than
the 2o. uncertainty on cross sections, which means that
our limits will be at 95% C.L. Using (19) and (11) for
fixed AM and at a given level of statistical accuracy, one
can easily assess the typical upper bounds on P which can
be reached by this kind of analysis for the various mod-
els. These bounds turn out to be of the order of 10

In Figs. 4(a) and 4(b) we depict the best upper limits on
P, respectively for efFective E6 models [classified by the
values of P, which specifies the orientation of the addi-

—15
0. 'I 0. 8 0.9 1.2 1.3 1.5

FIG. 4. (a) 95% C.L. limits on P for E6 effective models vs

cosP from e+e ~W+W at +s =1 TeV, 5M=50 MeV; a
from the RI. polarization and b from the L,R polarization, as ex-
plained in the text (Sec. III). (b) Same as in (a), for LRM (solid
line) and ALRM (dotted).

tional U(1)' generator in the E6 group space], and for
both the LRM (specified by aLz defined in Appendix 8)
and the ALRM. For each curve in Figs. 4(a) and 4(b) the
labels a and b specify which case (initial RL or LR beams
polarizations) gives the best limits for the corresponding
part of the curve. The curves in these figures (as well as
in all figures in the sequel), are obtained by using the pre-
cise formulas for the cross sections presented in Appen-
dix A. In the case of the LRM we have assumed that
mixing in the charged sector is negligible with respect to
mixing in the neutral sector [7]. The results in Figs. 4(a)
and 4(b) weakly depend on the chosen value of b,M
(within the assumed present limits), because b,zz is found
to numerically dominate in Eq. (19) for any choice. In
contrast, the corresponding lower bounds on the heavy
boson mass M2, as obtained through Eq. (11),
significantly depend on the chosen value of hM. We
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FIG. 6. 95% C.L. limits on the Z& mass from
e+ e —+ W 8' in E6 superstring-motivated models for
different values of the parameter 0. introduced in Eq. (13):0.=0
(solid line), o.=1 (long-dashed line), o =5 (short-dashed line),
and a= ~ (dotted line).

IV. ON- AND NEAR-RESONANCE SEARCHES

0.8 1.3 1.4 1.5

FIG. 5. (a) 95% C.L. limits on the Z& mass corresponding to
Fig. 4(a) for P) 0 (solid line) and P &0 (dashed line); a and b as
in Fig. 4(a). (b) Same as in (a), for LRM and ALRM.

IThis value corresponds to the 90%%uo C.L. lower bound at
m, =mH = 100 GeV and a, =0. 12, as found in Ref. [5].

represent in Figs. 5(a) and 5(b) the bounds on M2 for the
models mentioned above, for EM=50 MeV. ' For the
upper limit b,M =340 MeV, the bounds in Figs. 5(a) and
5(b) are improved by a factor of the order of 2.5.

It might be interesting to restrict the E6 models to a
class of models where the Higgs structure is specified, so
that the constant C in Eq. (13) is fixed and relates the
mixing angle P to the heavy boson mass Z2 through Eq.
(12) [7]. Using the relevant formulas for the coupling
constants given in Appendix 8 we obtain the results
represented in Fig. 6.

To discuss this case, we assume that the Z2 resonance
is observed through process (1) at, for example,
&s =M2=1 or 2 TeV, so that from precision measure-
ments at the Z2 peak the fermionic couplings and the Z2
mass could be extracted with some accuracy. We also as-
sume in this section and in the next Sec. V that the ener-

gy spread of initial beams is smaller than the total Z2
width.

The accuracy on the peak ff cross section could be
such as to allow, within definite models, to also derive in-
dications or bounds on the value of the mixing angle P, as
it was traditionally done at the standard Z. Of course,
with a given precision, this possibility depends on the ac-
tual value of P and might not exist for P smaller than al-
lowed by the accuracy. As we are going to show below,
in this situation it should be convenient to study process
(2) at the resonance Z2. In fact, for these values of P one
could still have an effect of mixing in process (2) larger
than (or comparable to) the accuracy available for this
channel, or at least some constraints could be derived.

In this on-resonance case, Eq. (19) must be modified to

goff+ presz z 3Z (25)

in order to take into account the leading P contribution
from Z2 exchange, with b,z as defined in (17) but evalu-
ated at &s =M2. Specifically,

2 2

~lz = Rzz
X2 2 (26)
Xz

with A, , k' defined in Eq. (15) and Rzz in Eq. (8). The
propagators y2 and gz have been previously introduced
with regard to Eq. (24).

The strong energy behavior of Rzz (and of the ratio
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y2/yz ) in (26) leads to the enhancement of the sensitivity
to P of the cross sections at the resonance peak. Indeed,
Eq. (25) contains both linear terms in P (from b, z ) and
quadratic ones [from b,3z as well as from b,z expanded to
a higher order than in Eqs. (21)—(24)]. One can easily see
that in (19) b, 3z~" =0 at &s =M&. At the energy con-
sidered here, 63z is found to numerically compete with
the linear terms for P of the order of magnitude corre-
sponding to the assumed accuracy, while the quadratic
terms contributed by hz are negligible both compared to
the linear ones and to 63z, so that to a very good approx-
imation they can be disregarded in the analysis.

Regarding the ratio of propagators in (26), at the Z2
peak,

2
X2

Xz

so that there is a significant dependence on the Z2 total
width I 2, which should also be measured together with
Mz in process (1), but for the moment we assume to be
unknown. For our purposes we identify

20

10

10

-15

15

I I I i i I i i

—O. H -0. 6 -0. 4 —0. 2 0 0. 2 0. 4 0. 6 0. 8 1

c(&s(p)

—y I ff+ I wB'

f
(28) 10

Further contributions of decays involving Higgs and/or
gauge bosons and the supersymmetric partners (including
sfermions), which are not accounted in (28), could in-
crease I z by a model-dependent amount typically as large
as 50% [1].

gf I 2 depends on the number ng of generations of
heavy exotic fermions which can contribute to Z2 decay
without phase space suppression (we can assume that the
three known generations do contribute). This number is
model dependent too, and brings a phenomenological un-
certainty. For E6 models, the extreme cases are ng =0
and n =3 [20]. From the point of view of constraining
the mixing angle P [see Eqs. (26) and (27)], the most con-
servative choice would be ng =3, leading to larger I z, of
the order of nfl 2 =0.025M2 [20], independent of both
cosp and (in the linear approximation) of p. More
stringent limits would be obtained for n =0, leading to
smaller +f12, by a factor 2—5. For the range of M2
values assumed here, of the order of 1 or 2 TeV, the
dependence of I 2 on P (and on cosP) induced by gf I f2f

and by I 2 is unimportant in Eq. (26), which refers to
&+8' production at the Z2 peak and therefore is al-
ready of order P . Using Eqs. (25) and (11) for fixed M2
(and given accuracy) one can easily derive a qualitative
estimate of the limitations on P, which turn out to be of
the order of 10 —10

We present the bounds on P for both cases ng =0 and
ng =3 in Fig 7(a) for M. 2=1 TeV, while the dependence
of such bounds on the different values of M2 is shown in
Fig. 8 (limiting to n =3). The comparison of Figs. 4(a)

2In contrast, this dependence can have an important role in ff
production, as it will be discussed in Sec. V.

—15

-20

—25
0. j 0.8 0.9 1.3 1.4 1.5

FIG. 7. (a) 95% C.L. limits on P for effective E6 models vs
cosp from e+e ~8'+8' at v's =M&= 1 TeV, for ng=0
(solid line) and ng =3 (dashed line); a and b as in Fig. 4(a). (b)
Same as (a) for LRM (solid line) and ALRM: n~=3 (dashed
line), ng 0 (dotted line).

and 7(a) shows that the on-resonance analysis can lead to
a gain of a factor as large as 5, compared to the off-
resonance one.

Concerning the other models (LRM or ALRM), the
discussion of I z is not as systematic: basically, in the
LRM we can still assume to a good approximation the
value of nfl 2 corresponding to the case ns =3 for E6
models (regardless of whether the right-handed neutrino
is light or heavy), while for the ALRM the extreme
values of nfl P are (0.02—0.04)M2 for n =0 and n =3,
respectively [15,21]. The constraints for P in these mod-
els are shown in Fig. 7(b), which again, analogously to
Fig. 7(a), shows the better sensitivity of the on-resonance
analysis.

%'e now turn to the near-resonance searches,
specifically to the cross-section measurements at

(29)
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range in the vicinity of the resonance peak. As it can be
seen from Eq. (25), the corresponding improvement on
the limitations on P can be expressed by the factor

10 gaf
near

Reg2

Reyz

M~ =20-100,
2I 2

(30)

I

CD

where the smaller value corresponds to n =3 and the
larger one to n =0. Figure 10(a) shows the limits on the
mixing angle obtained at the energy (29) for n =0 and
n =3. For the other models the limits are displayed in
Fig. 10(b).

—10 V. COMPARISON WITH e+e ~ff
—15

i I I I i I I I

—] —0. 8 —0. 6 —0. 4 —0. 2 0 0.2 0.4 0.6 0.8 1

cns(p)

FIG. 8. Same as in Fig. 7(a), but for M2 =1 TeV (dotted line)
and M2 =2 TeV (solid line): ng =3.

In this case there are numerous available channels to
look at (leptonic and hadronic, either inclusive or ex-
clusive, final states) as well as many observables to mea-
sure, such as the total unpolarized and polarized cross
sections, their ratios, forward-backward leptonic asym-
metries and left-right asymmetries for both leptonic and

At this value of the energy the cross section of process (2)
has contributions of order P from the Z2-interference
terms, and of order P from the Zz-exchange diagram
squared. For small enough P the former terms can be-
come numerically comparable (or even larger) than the
latter one. We present this situation for the different
values of P in Fig. 9, which shows that the resonance
peak, for decreasing P, turns into a typical interference
pattern, and eventually disappears with respect to the
near-resonance cross section. Thus, for such small values
of P, one could hope to obtain a further increased sensi-
tivity to the mixing angle from the near-resonance cross
section (as compared to the on-resonance one) and ac-
cordingly it would be quite interesting to scan the energy

I

CD
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FIG. 9. Near-Zz resonance total cross section for the 1( mod-
el, M2=1 TeV for RL polarization. SM (solid line), /=10
(long-dashed line), /=5 X 10 (short-dashed line), /=10
(dotted line) and $= 5 X 10 ' (dash-dotted line).

0. '/ 0. 8 0. 9 1.3 1.4 1.5

FIG. 10. (a) Same as in Fig. 7(a) but &s =M&+I 2/2. (b)
Same as in Fig. 7(b), but &s =M2+I 2/2.
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hadronic Snal states, etc. Because of the large peak cross
sections, the common expectation is that it should be pos-
sible to derive from this process great accuracies on the
fermionic couplings of the Zz and possibly stringent
bounds on the mixing angle. This kind of analysis is be-
ing carried out at the standard Z peak, and should be re-
peated equally well at the Zz, with the same physical out-
comes. However, as anticipated in the previous section,
concerning the determination of the Z' properties and, in
particular, of Z-Z' mixing, the process e e ~8'+8'
could be sensitive to values of (t out of reach for
e+e ~ff, due to the enhancement mechanism dis-
cussed in Secs. II and III, and extended to the on- and
near-resonance cases in Sec. IV.

Since in ihe ofF-resonance energy regime the cross sec-
tion of process (1) is too small for the accuracy needed to
improve current limits on Z-Z' mixing, we compare the
two processes for just the case of on-resonance searches.
Specifically, at &s =Mz, the most relevant observables
for process (1) are

a =cr(e e ~pP) = 12~ I ~2"

PP
2 . 2

a(e+e ~u, d, s, c,b)

A gzi
=3( A „)

Ag~ = —2A„,
where, in terms of the Z2 fermionic couplings,

(31)

U2f a2fAf=, ' ', (32)
U2f+a2f

and, referring to Eq. (14), vz, =(gzL +gzz )/2 and

az, =(gzI —gzzt)/2. Clearly, in Eq. (31) cr„has an ng

dependence through the total width I z, similarly to (27),
whereas the observables R', Aging, and Ag~" do not have
such a dependence. However, in all cases the expected
statistical accuracy will depend on I 2 via the dependence
of the Zz-peak cross sections of process (1) on n, so thatg7

also in this case bounds on P will have this model depen-
dence. Denoting by I' any of the observables (31), in the
presence of Z-Z' mixing one generally has

l i I

—0. 0 —().6 —0. 4 —0.2 0 0. 2 0. 4 0. 6 0. 8 .1

C..OS(P}

HF of Eq. (33) vs cosp. H for n =3 (solid line),
H for n~ =0, (long-dashed line) ~IR (short-dashed line), H~~
(dotted line) and H& (dash-dotted line).

and the curves in Fig. 11 one can conclude that the most
stringent bounds on the mixing angle P come from the
observables o„„and AL~ (statistics are larger for the in-

clusive hadronic channel), in complementary ranges of
cosP. These bounds are shown in Fig. 12, for the (most
favorable) case ns=0, and for Mz=l TeV. For larger
values of M2 the expected limits are found to become
weaker for all observables, because statistics will decrease
due to the fall-down of the peak cross sections in the vari-
ous models, except for cr„„. In Fig. 12 we represent also
the expected bounds on P for Mz=2 TeV and Mz=3
TeV. %'hile at Mz=1 TeV the bounds for the diferent
values of cosP are determined by the combined set of ob-
servables (31), as explicitly indicated in Fig. 12, for larger

F=F(0)(1+HFDF), (33)

where E(0)=F(/=0) is the value of the observable in
the absence of mixing, and HF is a specific coefticient for
each observable, explicitly given in Appendix C in terms
of the relevant Z2 fermionic coupling constants. Com-
paring with Eq. (17), the quantity bg =H~P is the analo-
gous of Az for process {2), and as such it has to be com-
pared to the relative experimental accuracy on the cross
sections of process (1) in order to obtain limits on P. As
an example, the values Hz for E6 models are reported in
Fig. 11. One finds that, by explicitly computing cross
sections in the framework of these models, the expected
statistical accuracies for all observables [13]can be of the
order of 0.5% for n =3 and even less for n =0, much
better than those expected for process (2). From Eq. (33)

1 -0. 8 . 0. 6 -0. 4 -0. 2 0 0. 2 0. 4 0. 6 0. 8 1

«os()3}

FICs. 12. Limits on the mixing angle (() in E6 effective models
from e+e ~ff, for the on-Zz resonance case (ng=O), at
M2=1 TeV (solid line), M2=2 TeV (long-dashed line) and
M& =3 TeV (short-dashed line). (a) from 2«, (b) from R', and
(c) from o».
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M2 they are determined by O.„„solely. This rejects the
fact that for large M2 the contribution of I z to the to-
tal width I 2 in Eq. (Clg), although of order P, becomes
competitive with the linear term in (33) and overwhelms
it, due to the M2 behavior of Eq. (C17) relative to (C4).
This contribution of Z-Z' mixing to ~„„at the peak
&s =M2 increases faster than the decrease in the statisti-
cal accuracy caused by the 1/Mz falloff of the cross sec-
tion of process (1), and compensates it.

Comparing to process (2), where also the cross sections
and the corresponding statistics fall down, but deviations
from the SM [Eq. (25)] grow faster due to the increasing
behavior of Azz Figs. 8 and 12 indicate that the
behavior of the constraints on P as a function of M~ from
this process is qualitatively similar to the ff case, al-
though having a different origin.

Concerning the sensitivities of the two processes to the
mixing angle P, it should be worth emphasizing the essen-
tial conceptual difference between the two kinds of ap-
proaches to the problem. Indeed, while the bounds on P
from e+e ~ff come from the supposed observation of
the Z2 resonance peak, those from e+e —+ W+W are
derived by assuming the nonobservation of deviations
from the SM cross section larger than the expected sta-
tistical accuracy. From the numerical point of view, the
values of bounds from the two processes can be compared
by looking at Fig. 12 and Figs. 7(a) and 10(a). These
figures show that the sensitivity of process (2) to the mix-
ing angle is much higher, by roughly one order of magni-
tude. This can be qualitatively understood by consider-
ing that the sensitivity of process (1) to P is basically

jf/ ff
~ff (34)

in the linear approximation (33). In turn, in the near-
resonance case the sensitivity to P of process (2), follow-
ing from the solution of Eq. (25), can be represented as

& ww/o ww
0 ww

w

where, for the example, for the LR case,

gL, Re+2HV, (Rrz+R z+2Rzz)
gL Reyz

(35)

(36)

and a similar structure is simply obtained for the RL and
the unpolarized cases. The point now is that numerically
H~ turns out to be -3X(10 —10 )H~, and to largely
compensate the difference in statistical accuracies be-
tween the two processes due to the different cross sec-
tions.

VI. CONCLUDING REMARKS

In this section we summarize the most important
features of the method to study Z-Z' mixing described
above, and make some general statements on the corre-
sponding results presented in Figs. 4—10. In the ap-
proach proposed here, information on Z-Z' mixing and
corresponding limits on the Z' mass in various kinds of

extended models are obtained through studies of the pro-
cess e+e ~8'+W in the energy range available at
planned e+e supercolliders. Also, we have made corn-
parisons with the sensitivity to mixing obtainable from
the reaction e+e ~ff, for different hypothetical values
of the Z' mass, larger or equal to 1 TeV as compatible
with the present limits. The results for this case are illus-
trated in Fig. 12.

Starting from process (1), this turns out to be most use-
ful just at the Z2-resonance peak (if this is discovered),
and the information on mixing mould be derived from
precise measurements of Z2ff couplings via Eq. (14),
similar to present analyses at the SM Z peak, and possi-
bly improving them. For the lower values of Zz masses
in the considered range (1—3 TeV), the most stringent
limits on P are determined by combining the various ob-
servables (31). For the larger values of M2 the limits can
become more stringent, but are determined by o.„„only.
As pointed out in the previous section, this feature is con-
nected to the increasing contribution of the partial width
I 2 to the total width I 2. Numerically, the typical
bounds on the mixing angle P are a few X 10 rad. Out
of the resonance peak the limits evidently become much
worse, due to the sharp decrease of the statistical accura-
cy.

Concerning e+e ~W W' [process (2)], Z-Z' mix-
ing is studied in this case by looking at deviations of mea-
sured cross sections from SM predictions as defined in
Eq. (17), relative to the experimental uncertainty on cross
sections. We recall that in process (2) Z' effects only
occur via mixing, and therefore are of order P or P de-
pending on the explored mass and energy regions,
whereas in process (1) the Z' can manifest itself mostly
via the direct Z2 propagator and Z-Z' mixing would only
appear as a (small) deviation at the Z2 peak. Therefore,
the two kinds of approach to search for manifestations of
Z-Z mixing at e+e colliders are intrinsically different.
As another difference, the available statistical accuracy
for e+e —+O'+W is identified to that expected from
the SM, and would clearly be much smaller than for
e+e ~ff at the Zz peak, because for small values of P
the Z2 might not manifest as a peak in W+ W while
there would certainly be a peak in ff independent of the
smallness of P.

Nevertheless, our results indicate that the expected
limits on the mixing an~le P from process (2), even off the
Zz resonance peak (&s ((Mz), are comparable with the
on-resonance ones from process (1), due to the enhance-
ment mechanism presented in Sec. II, and therefore mea-
surements of the cross sections of process (2) would be
quite significant in the case where the Z2 cou1d not be
directly observed. Moreover, if the energy of e e
beams allows to reach the Z2 peak, on-resonance mea-
surements of the cross section of process (2) would lead to
much more stringent constraints on P, typically of the or-
der of a few X 10 —a few X 10 depending on models
(ng =0 or 3). These limits would be a factor 5 —10 better
than those from reaction (1) for the same values of n~
Further improvements could be derived from near-
resonance measurements at &s =M2+I 2/2. For exam-
ple, the near-resonance limits on P might be stronger
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I "I'
~ 8'TV™2)

M2 I 2

(37)

From Eqs. (C2), (C17), and (11), the leading Mz behaviors

than the off-resonance ones by a factor of 20—100, also
depending on n, and as small as 10 —10 . In general,
these constraints improve for increasing values of M2.

Turning to lower bounds on the Z2 mass, obtained
from the off-resonance analysis of process (2) in Sec. III,
for E6 effective models they are in the range 3 —6 TeV for
the choice b,M=50 MeV. The other choice, correspond-
ing to the presently allowed upper value EM=340 MeV,
leads to mass bounds higher by a factor of about 2.5. Re-
garding other models (ALRM or LRM) slightly stronger
limits can be obtained, while for superstring-motivated E6
models the bounds are as large as 3.5 TeV.

Another important aspect to be emphasized is the role,
in establishing limits on Z-Z' mixing from 8'+8'
played by polarized cross sections: typically, limits from
the I.A cross section are by a factor of 2 more stringent
than those from the unpolarized one [9], assuming that
e e polarization near 100% is feasible. In contrast, in
the case of ff production the best limits mostly come
from the unpolarized cross section (o„„),especially for
the larger values of M2.

Clearly, the numerical results presented in the previous
sections are based on purely statistical arguments. How-
ever, it is natural to assume that systematic experimental
uncertainties at future colliders should be comparable to
the statistical ones, determined by the luminosities, so
that we may be confident that the scenario presented in
Secs. III—V should be sufFiciently close to reality, particu-
larly for what concerns the comparison of the relative
features of processes (1) and (2). Moreover, we used
throughout the Born approximation for the relevant
cross sections of both processes. Thus, admittedly it
should be desirable to account also for radiative correc-
tions, which could shift the values of cross sections by
some amount and somehow perturb the numerical pre-
dictions. However, our findings from process (2) are
essentially based on the enhancement mechanism intro-
duced in Sec. II, determined by the energy behaviors of
the different contributions to the cross section, which
should not be drastically changed by the mentioned
higher-order corrections. Therefore, the general ideas
underlying the approach presented here should be
preserved.

As a final remark, we remind that in the above discus-
sion of process (2) we essentially considered the (extreme)
case w'here no deviation from the SM due to Z' mixing is
seen in this process within the experimental accuracy.
We accordingly derived maximal values of the Z-Z' mix-
ing angle

~ P ~, which are well below the value allowed by
the general mass constraint (11) at fixed hM. We could
now take the opposite attitude and consider the other (ex-
treme) situation, where ~P~ assumes the maximum value
allowed by (11) for a fixed value of b,M. Of most interest
in this case is the behavior of the total Z2- peak cross sec-
tion for increasing M2, which can be simply expressed by
the Breit-Wigner formula

10

0. 1

1000
M, (G~&)

FIG. 13. cu of Eq. (38) as a function of M2, for n~=3,
EM=50 MeV (solid line) and for n~=0, b,M=300 MeV in the
y model (long-dashed line), and in the P model (short-dashed
line).

relevant to Eq. (37) are, respectively, I'~&~ ~ Mz,
I z ~MzP, and $~1/Mz at fixed b,M. Referring to
Eqs. (28) and (C18), and defining

I WW
2

Iff (38)

Actually, for specific models where the mixing angle de-
creases like 1/M2, such as in Eq. (12), the behavior of a. ~~(M2 )

would be ~ 1/Mz. However, we are considering here the most
general case, where the dependence of P on Mz is defined via
(11).

for the values of M2 such that co «1 one easily finds that
a'~ii (Mz) is a constant, independent of Mz, as opposed
to the lns/s decrease of the SM cross section. For larger
values of M2 the ratio co is no longer negligible, and actu-
ally becomes of order 1, due to its behavior ~M&, and
must be included in I 2. Correspondingly, in this range of
Mz the behavior implied by (37) is the strongly decreas-
ing asymptotic dependence o ii ii (Mz ) ~ 1/Mz. The tran-
sition from the Aat behavior to the asymptotic decrease
occurs in an energy range which depends both on the
particular model and on n . These features are represent-
ed in Fig. 13, where we show the behavior of co vs M2 for
n =3 and 0, and for two values of AM. Finally, in Fig.
14 we depict the cross sections for the different values of
Mz (and for b,M=50 MeV), as well as the SM back-
ground. For illustrative purposes in Figs. 13 and 14 we
have considered the broad range of M2 from 0.5 TeV up
to 15 TeV.
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where we use the notation cr

=der�

/dz, z =cos8. We have
from the diagrams in Fig. 2(b) for initial eL ez (I.R ):

—LR —LR 4 LR0 ++ 4F1 ~ o rr 2$wF2& g SwF3
e e—LR ' 2 —LR gi

o'rz, .
= 4 Sw Rey;F2, o ~z,. =4 Rey;F3,

1 g1
I

1000
~s (GeV)

10000 2

LR giozz =2 Ix; I'F, ,

(A2)

FIG. 14. Total e+e ~8'+ 8' cross section vs &s for the g
model with different Z2 masses, AM =50 MeV, n~ =3. The
solid line represents the SM behavior.

It is interesting to observe from Fig. 14 that in the re-
gion of Oat behavior the height of the peaks relative to
the SM background increases, and for larger M2 might be
larger than the SM cross section by a factor 10 —10,
which promises enhanced chances of direct observation
of the Z2 if one works at fixed luminosity. On the other
hand, this situation does not persist indefinitely, and the
decreasing behavior at the higher values of M2 clearly
reduces this discovery potential.

Turning to ff production [process (1)], analogous con-
siderations indicate for the Z2-peak cross sections

Off(M2)~ 1/Mz(]+co)

the same as the SM background behavior ~1/$ for
co &(1. This decrease would become steeper for the
larger M2, where co is of order 1.

These features of e+e ~W+ W production would
remain the same also for qq —+ W+ W and, given the
large values of M2 considered in Fig. 14, could be
relevant to direct Z2 searches at future hadron colliders.
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G, (z „z2 ) =2yP, +—Pw P3+ P23 4 2

Gz(zi, z2) =Pw[16yP, +(y' —4y+12)P, ],
G, (z„z2)=16(P,+P, )+8yPwP,

(A5)

one has a similar structure as in (A2), except that F, , F2,
F3 are replaced by

APPENDIX A
+ —[(y —2y )P2 4P4 ]pw, —

For the process e+e ~W+ W the differential cross
section can be decomposed as follows: with
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Pl(z, z2)=z2 —z„P2(Z1,Z2)=Pl—Zp Z]3 3 TABLE I. E6 models.

P3(zl, z2)=b 2aLl +(a —1 )
1

a+zz
1

a+z&
32 +B

0
—2+B

A —B

P4(z„z2) =b (1—a )L, +aP, —Z2 Z]
2 2

(A6)
cosP 3/10
2v'6 ' 12

(B4)

2L)
P5(zl,z2)=, Li =ln

3'~w

I+&w 2b=
2i(3'w

'
13w

a +zz
a+zi

1
JER aLR J3R

LR

with P specifying the orientation of the U(l)' generator in
the E6 group space.

(2) For the left-right models (LRM), the neutral
current coupled to the ZLR can be written as

(B5)

In this Appendix we give the explicit expressions for
the couplings of the Z' to left- and right-handed fermions
for the models considered in this paper.

In the presence of extra U(1)'s, the neutral current in-
teractions are (in the mass eigenstate basis)

—X=J", A„+J",Z,„+Ji2Z2„, (B1)

where the relevant coupling constants are included in the
definition of neutral currents. With c~=cosO~, these
constants are e =+4lra, , gl =e/swcw, g2=g, sw (for

E6 and LRM) and g2=g, /Ql —2sw (for ALRM). In
terms of the left- and right-handed projectors
PL R =(1+y5)/2, the neutral current can be written as

~P g0f3 (giL L+giR R W ff
(B2)

f
Denoting by Z, Z' the weak eigenstates as in Eq. (10), the
SM Zff couplings are the familiar ones:

gj =(I3L Q Sw2)gl& gR = g Sw2gl (B3)

(1) For the Z'ff couplings in effective models from E6
one has the expressions listed in Table I, where we define

For the case of initial eR eL (RL ) the contributions in-
volving the r-channel diagram (neutrino exchange) obvi-
ously vanish, while for the remaining contributions the
corresponding o. and cr (z„z2) are simply obtained
by replacing the g;L's by g;R's. The cross sections for ini-
tially LL and RR polarized e+e beams identically van-
ish, and therefore the cross section for initially unpo1ar-
ized beams is finally given by —,'(o +0. ). Finally, one
can easily see that for /=0 one reproduces the SM ex-
pressions of cross sections originally derived in Refs.
[16—18).

APPENDIX B

where J~3R is the third component of the SU(2)R isospin
and 8 and L are the baryon and lepton numbers, respec-
tively [right- and left-handed fermions are doublets and
singlets of SU(2)R respectively, and vice versa for SU(2)L ].
The model parameter aLR is defined as

. 1/2.
CR gR —1 (B6)
sw

with gL=e/sw and gR the SU(2)R gauge coupling. In
general, aLR is taken in the range I /V'2 & aLR & 1.52 for
s~=0.23, which corresponds to —,'gL ~gR &gL. Howev-

er, the case most commonly considered is the left-right
symmetric model (LRSM) gR =gI, corresponding to the
maximum value of o.LR. The fermion couplings to the
ZLR are reported in Table II. One can remark that for
the particular value aLR =3/2/3=0. 83 these couplings
coincide with those of the g model version of E6
(cosP= 1).

(3) The alternative left-right model (ALRM) is a partic-
ular version of LRSM generated from E6, with unconven-
tional quantum number assignments for fermions, leading
to the specific fermion couplings to the Z' listed in Table
III.

APPENDIX C

We start by giving explicit expressions for the linear
expansion in the mixing angle P of the e e ~ff ob-
servables at the Z2 resonance peak [see Eq. (33)]. For
o „„in (31), we can easily derive, in the same notation of
(33),

H =2(H„Hr) . — (C 1)

Referring to Eq. (28), Eq. (Cl) holds in the approximation
I 2 «gfI f2f (recall that I 2 ~p ) and uses the p ex-
pansion of the partial Z2 widths into fermion species:

TABLE II. Left-right models.

gf /g2

6 /g2

1

2LR

1

2cxl.R
1

2(xI,R 2

1

6ALR
1 +JR

6agR 2
1

6&1.R

1

6LR

2
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TABLE III. Alternative left-right model the P expansions as

ALR ALR( )+0 LR (C 10)

gt.'&g2 1 2+sw2

0

1 2—+sw2
1—+ —sw2 2

j 2—
—,sw

r —6sw
1 7 2

1 2—
—,sw

1 2sw
for both leptonic and hadronic final states, with

HL~ = —2531

and

(Cl 1)

I P= (UzI+Qz&)=rI2~(0)(1+ttiHJ) .
M

12~
(C2) Uiai(utvt+Qtat )aa, =2

(U &2+a &2)2

UI'a/+ UI aI'

U&'2+ aI'2
(C12)

Also, Eq. (14) has been taken into account, i.e.,
U2y — QUl +Up, Q2J — QQI+Qy, so

Uf'vf+ af af
H = —2

U' +a'f f
with the Z' fermionic couplings vf and af defined in Ap-
pendix B. Moreover, neglecting phase-space effects,

Moreover,

UI aI
ALR(0) = —2

UI +a)

Finally, limiting to the leptonic channel,

AP~ —APR(0)+ PHFR,

(C13)

(C14)

I 2 (0)= (U& +QI ) . (C4) where [referring to Eq. (31)]

r, =r,(0)(1+yH„),
where (N, is the color factor)

yiH, r,"(o)+x,y, H, rp(0)
H~=

y, r,"(0)+x,y, rp(0)

For the expansion of R' defined in (31),

R'=R'(0)(1+BOHR ),
one Ands, by the same procedure,

(C5)

(C6)

(C7)

In the same approximation of identifying the total width
I 2 to the sum over fermionic channels, we have analo-
gously

and

HFR =6Ai(0)b, Ai (C15)

A]"R(0)=3[Ai(0) ] (C16)

4
M2 M2

I 88
12m M~

e

tan8~

M2 3/2

X 1 —4

2

s1n

M M
1+20 + 12

M4
2 2

For large values of M2, of the order of 1 TeV or larger,
it turns out that one should use for I 2 the full Eq. (28),
accounting also for the contribution of I 2 . The latter
1S

H~. =Hh —H„,
with

(C8)

Then Eq. (C5) changes to

(C17)

gqHqI P(0)
Hg=

y, rp(0)
(C9)

For asymmetries, which are relative quantities, we write

I 8'8'

r, =yrP(0) I+(tH, +2 2 I ~ rff(0) (C18)
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