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Interacting Einstein-conformal scalar waves
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A large class of solutions of the Einstein-conformal scalar equations is identified. They describe the
interacting asymptotic conformal scalar waves and are generated from Einstein minimally coupled
scalar spacetimes via the Bekenstein transformation. Particular emphasis is given to the study of
the global properties and the singularity structure of the obtained solutions. It is shown that, in
the case of the absence of pure gravitational radiation in the initial data, the formation of the final
singularity is not only generic, but is even inevitable.

PACS number(s): 04.20.Jb, 04.30.+x

I. INTRODUCTION

Colliding gravitational waves have attracted a lot of
interest in the last two decades [1-10]. Apart from the
character of the nonlinearities of the gravitational inter-
action, the interest was probably caused by characteristic
curvature singularities occurring as the result of the col-
lision of two waves. Much work has been done on the
structure of the singularities [6-9] in the case of colli-
sion of either sourceless or various source waves, with
the result that the final singularity formation is, in fact,
generic.

A relevant contribution concerning the singularity for-
mation was made by Hayward [11], who formulated the
criterion of “incoming” regularity. In other words, he
proposed to make a clear distinction whether the sin-
gularity formation occurs for the interaction of waves
which are initially regular or singular. Then the prob-
lem reads: Under what conditions may the initially reg-
ular waves avoid the singularity formation? For the case
of the purely gravitational (sourceless) waves, Hayward
himself found that the regular waves generically produce
the curvature singularities. However, there were also ex-
ceptional cases where the singularities were avoided.

In D = 241 dimensions the present authors found that
in the interactions of regular asymptotic scalar waves the
singularity is always formed [12]. We considered the min-
imally coupled scalar field. A similar conclusion was then
obtained in D = 3 + 1 by Hayward [13], who has shown
that if the pure gravitational radiation is absent in the
initial data then the interactions of the minimally cou-
pled scalar waves always end up in a singularity.

In this paper, we wish to study a source field of a differ-
ent type and find whether similar conclusions about the
inevitability of the singularity formation can be reached.
We shall work with the conformal scalar field with the
field equation (in the D-dimensional spacetime) [15,16]
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Unlike the other massless field equations (i.e., Maxwell,
Dirac, or Weyl), the minimally coupled massless scalar
equation is not conformally invariant. The coupling ac-
cording to (1.1) cures this “deficiency” and, in any case,
it is a reasonable alternative for gravitational coupling
of the scalar field. The stress tensor for the conformal
scalar field is quite different from the ordinary one, and
we may therefore test the singularity formation problem
in a different setting to previously.

From a technical point of view, it is not difficult to gen-
erate solutions of the Einstein-conformal scalar equations
from the minimally coupled Einstein-scalar solutions via
the generalized Bekenstein transformation [14-16]. How-
ever, the structure of singularities requires independent
analysis, since the Bekenstein transformation multiplies
the original metric by a nontrivial conformal factor. This
operation, in general, may change the asymptotic behav-
ior of the Riemann tensor components. Indeed, consider,
for instance, the dilaton gravity in D = 2 4+ 1 with the
action

S = /dsm\/—ged’R.
There is the following (black hole) solution of the corre-

sponding field equations [17]

I dr? + r2dv?,
2m

ds? = —C‘T—Qm dt® +

¢ =1In|rsind|. (1.2)
On the other hand, under the transformation

’g’aﬁ = 62¢gaﬁa ¢ = ¢a
the action S changes into the action of the minimally
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coupled scalar field
S = /d%\/—'g(ﬁ — 24,87).

The metric corresponding to (1.2) becomes

— 2
T2y T g2y r2d192) .
r —2m

ds? = r?sin® 9 <—

It is not difficult to demonstrate that the singularity
structures of both metrics differ considerably from each
other.

In Sec. II we study the singularity structure of the
Einstein-conformal scalar spacetimes. We arrive again at
the same conclusions as for the minimally coupled scalar
field, namely, for initially regular waves (without source-
less part) the singularity formation is inevitable.

II. CONFORMAL SCALAR WAVES

We recall first some known facts we shall use later. The

is of the form [11]

ds? = —2e~Mdy duv + e~ P+Q cosh Wdz?

+e~P=Q cosh Wdy? — sinh WePdz dy,

with all functions M , P, Q, and w depending on u and v
only. So-called asymptotic waves introduced by Hayward
as a generalization of the colliding waves case satisfy [11]

P: Q1 W)(“! v— —OO) = (Ma ﬁ’ éy W)(u))
(2.1)

(M, ﬁ, Q, W)(u—» —00, v — —o0) =0,
M,

GF

(M, P, Q, W)(u— —oo, v) = (M, P, Q,W)(v).

Taking the minimally coupled scalar field 5 as the source,
i.e., putting on the right-hand side (RHS) of Einstein
equations the stress tensor

metric of the general interacting plane waves spacetimes ﬁw = 5#5,, — %@,,&,@gﬂ ()

J

[where j fulfills the same asymptotic conditions as (2.1)] Hayward has found [13] the solutions for the collinear waves!
(with W = 0). They can be expressed in the form?

P=—In[l — f(u) — g(v)],

@—_— kln(l—f—g)+pcosh—1 [if___g 1_f+g]

1-f—g 1-f-g
+ /O [A@w)Jo(w(1~ F—g)) + B(w)No(w(1— f —g))] sin (w(f — g))dw

] + gcosh™?! [

+f “1C(@) 0w (1~ f~g)) + D(w)No(w(1— f—g))] cos ((f —g))duw,

¢ = Aln(l — f — g) + mcosh™? [1i—;:—§-] + x cosh™? [%—Z-}

+ [ “TAW) Jo(@(1— f~g)) + B(@)No(w(1~ f—g))] sin (w(f —g))dw

+ /Ooo[c(w)Jo (w(1=f=9g)) + D(w)No(w(1—f—g))] cos (w(f —g))dw,
subject to the constraints

/ “[C(@)J0(w) + D(w) No(w))dw = 0,

/ “C()Jo(w) + D(w) No(w)ldw = 0,

lUnfortunately, the exact solutions with scalar sources and noncollinear waves are not known, though it can be shown that
the nondiagonality of the metric is always due to the presence of the noncollinear purely gravitational waves in the initial data
[18].

2These solutions are locally equivalent to some Gowdy cosmological models (see [19)]).
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where f(u) and g(v) are functions, k, p, g, A, 7, and x
are real numbers, A(w), B(w), C(w), D(w), A(w), B(w),
C(w), and D(w) may be integrable functions or distribu-
tions and Jy and Ny are zero-order Bessel and Neum,g/nn
functions. The last—unexpressed—metric function M is
given by direct integration of the relevant Einstein equa-
tions

2P,, — P2 + 2P, M, = Q2 + 2k¢2,

2P,, — P? + 2P, M, = Q2 + 2x42, (2.2)

2Myy = éu@v - ﬁuﬁv + 2f€$u$u-
The asymptotic conditions (2.1), requiring certain

asymptotic behavior of the functions f(u) and g(v), are
met by the choice

Fu) = [—a(u — ug)|Y @7 =257 for p2 4 95r? > 2,

f(u) = expla(u — u,)] for p? + 2km? = 2,
and

g(v) = [-b(v — vs)]z/(z_qz‘%xz) for g% + 2kx? > 2,

g(v) = exp[b(v — vs)] for g% + 2kx?% = 2.

This choice obviously describes strictly asymptotic
waves, where the flat part of the spacetime “before the
collision” exists only asymptotically and the waves are
interacting all the time. The true colliding waves® can
be obtained by taking

f(u) = e(u) (a,u)z/(z_Pz—ler2)’
g(v) = 8(v) (bv) %/ @="=2sx%)

If, moreover,

S <p?+2m? <2,
(2.3)

g <q2-|-2/'$x2 <2,
the junction conditions on v = 0 and v = 0 are au-
tomatically fulfilled. The requirement (2.3) means that
only continuous waves (on © = 0 and v = 0) are con-
sidered [18]. All the results obtained below are valid for
both strictly asymptotic waves and continuous colliding
waves.

Now, the solutions for the self-gravitating confor-
mal scalar field can be easily obtained from the self-
gravitating minimal scalar spacetimes via a general-
ized Bekenstein transformation [14-16], linking the D-
dimensional scalar field ¢ and metric gog to the D-
dimensional conformal scalar field ¢ and metric g,5 as
follows

3Colliding waves with minimally coupled scalar source have
been considered by Wu [20] and Halilsoy [21].

o= (o) | (i) 9

(2.4)

D_o \-2_ 4/(D-2)
gap = (cosh [(K‘l(D—_l)) ¢]) JapB-

In terms of metric functions P, M , C~2 and analogously de-
fined P, M, and Q we have the following transformation
rules

o= \/gtanh [\/ga] ,
P=P —2Incosh [\/?}5] ,

M =M — 2Incosh [@5] ,

Q=Q.

We see that (2.1) imply fulfillment of the same asymp-
totic conditions for the new metric functions and the new
(conformal scalar) field. It means that the metric gng
also describes the interacting asymptotic waves space-
times and we can study the conditions for the regularity
of initial data as well as the consequent creation of sin-
gularities in this interaction.*

We turn to the study of the singularity structure of
the new spacetimes (2.5). Our first question is about the
regularity of initial data. For this purpose Hayward [11]
has postulated the criterion for initial regularity. It says
that at the asymptotic caustics (i.e., f =0, g = 1 or
f =1, g = 0) there are no curvature singularities in the
sense of Ellis-Schmidt classification [22].

Near the asymptotic caustic, e.g. (g = 0, f = 1), where
the metric is v independent, it is convenient to take a new
null coordinate u’ instead of u such that

du’ = e Mdy.

Then the following vierbein is orthonormal and parallelly
propagated along the incomplete geodesics respecting «
and y symmetry and hitting the asymptotic caustic:

1 1
ea = —7_7070 )
© (\/5 V2 )
N 11
e(l)z(ﬁ,—\/ﬁ,0,0),

1 ’
ey = (0,0,e2F=D®) 0),

(2.5)

1 ’
ety = (0,0,0,e(PHOW))

4 Actually, there is one more branch of the generalized Beken-
stein transformation (see [16]) which, however, does not pre-
serve the asymptotic conditions, so we shall not deal with it
anymore.
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It is straightforward to compute the only two (mutually
independent) nonzero vierbein components of the Rie-
mann curvature tensor as

R2020 = “%[2Qu’u’ - 2Pu’u’ + (Qu’ - Pu’)z]a
R3o30 = %[2Qu’u' + 2Py — (Qu’ + Pu’)z]'

Going back to the original coordinates we have

J

619

Rao20 = —3€*™[ 2Quy + 2QuM,, — 2P,, — 2P, M,
+(Qu - Pu)z]y
R3030 = %62M[ 2Quu + 2QuMu + 2Puu + 2PuMu
_(Qu + Pu)z]'

The incoming regularity now requires the boundedness
of both components. Using (2.5), we can write

“R™ = Raoz0 — Raoso = —3Ch™* 6217[@% +QuM, - Q.P.),

1 . 4 oif| o= ~ 2 ~
“RY* = Rago0 + Ragzo = ZCh 4 e2M [ 2P, — 4\/§¢uuTh - -3-n¢30h

+ (ﬁu - 2\/§$uTh> (21\1 - P, - 2\/§$uTh) - ég] ,

with Ch and Th standing instead of cosh($+/%/6) and

tanh(¢+/x/6), respectively.

We have to identify the behavior of “R* for f ~
1. Taking into account the asymptotic behavior of the
Bessel and Neumann functions

2

Sy~ 1=

S e
w?
No(w) ~ 1—T Inw+---,
, 1 w
No(w)wa—glnw+---,

we obtain (for f ~ 1)

éuNfu[ ﬁ-!—dln(l—f)-{-e

+h(1~f)1n(1—f)+--],

~ c* " *
¢’u"’fu[1Tf+d In1—f)+e

+h*(1 = f)In(1 - f) +}
where

c=p—k-— /O(XEB(w) sin(w) + D(w) cos(w)]dw,

d= /ccin(w) cos(w) — wD(w) sin(w)]dw,
0

V)RS
+

/Ooow[A(w) + B(w) Inw] cos(w)dw

- oow[C(w) + D(w) Inw] sin(w)dw,
0

h = %/ooow2[B(w) sin(w) + D(w) cos(w)]dw,

CF=r—-X- /OOO[B(w) sin(w) + D(w) cos(w)]dw,
(2.6)

d* = /0 [wB(w) cos(w) — wD(w) sin(w)]dw,

™

p
_ /0 "wlC(w) + D(w) Inw] sin(w)dw,

ef==+ /ooow[A(w) + B(w) Inw] cos(w)dw

h* = %/ww2[8(w) sin(w) + D(w) cos(w)]dw.
0
From (2.2) we have

A +2kc*2-1 1
2 1—7

M’u = fu {
+(cd + 26c*d*) In(1 — f) +---|,

hence

c? + 2kc*? —

M= 5 ! In(1 — f) + bounded.
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Therefore, the leading singular terms in *R~ and “R*
read

2 *2
-1 . -
_gf2 ¢+ 2'920 c(l— f)41/n/6|c |- (e 2mer2-1)-2

u

413 |c*] [%|0*| - 2\/%(62 + 2kc*? + 1)]
X(]. _ f)4,/n/ﬁlc‘l—(c2+2fcc"‘2—1)-—2.
Both coefficients of proportionality vanish if

c=0, |c*| = (2+1)/V6r,

3
—1 —
el =3 el = y/5m
c=c"=0,
=0, |c|=1

In the first two cases there are subleading singular terms,
which cannot be eliminated, but in the remaining cases
we can exclude them by fitting some other coefficients in
the expansions of ¢ and Q. Hence, the initial data are
free of curvature singularities if ¢ = ¢* = d = 0 or if
2 =1, c* =d=d* = h=0. The analogous conditions
have to be satisfied at the other asymptotic caustic.
Now, we wish to study the components of the curvature
tensor at the caustic 1 — f —g =0, |f —g| # 0. Itis
sufficient [13] to consider the scalar curvature R given by

R = —6M(P-U,Pvu + 2Muv - QuQ’U)’

and the component ¥, of the Weyl spinor in the null spin
frame [13]

¥, = %GM(QU,QU — Py Py + Myy).

If one of them is unbounded, then there is a (final) cur-
vature singularity at the caustic. We take the suitable

|

combinations of ¥5 and R:

M
Vi =e" My,

Vo= eM (QuQv —
Using (2.5) we have

P,P,).
Vi = Ch=2eM [M - 2\/§$wTh - §~$u$u0h-2] :

Vs = Ch=2eM [éuév~ (ﬁu - 2\/§$uTh)

X (f’v - 2\/§$vTh)] .

In the neighborhood of the caustic it is convenient to
introduce other functions ¢ and z instead of f and g,
given by

t=1-f-g, z=f-g.
Then the caustic is formed by the points ¢t =0, |z| # 1.
The asymptotic behavior of ¢ and Q near t =0 is

¢~ E(2)Int + F(2)t?,
Q ~ E(z)Int + F(2)?,
where

E)=A—-m—x
+ /OTB(w) sin(wz) + D(w) cos(wz)]dw,
E(z)=k-p—gq
+ /OTB(w) sin(wz) + D(w) cos(wz)]dw,
0

and the forms of F'(z) and F(z) are not important. Then
the leading singular terms of V;, V5, are proportional to

[E2(z) + 2/952(2) —1- 4\/%'8(,2)'] t2\/rc/6|£(z)|+%[1—E2(z)—-2n£2(z)]—-2,

[Ez(z) _ §n52(z) 14 4\/§|5(2)|] t2\/n/6|£(z)|+%[1—E2(z)—‘2m€2(z)]——2’

respectively. Both coefficients of proportionality vanish
if
E=0, |E|=1,

3
E=0,|& =1/—.
0,181 = /5
In the second case, V; is unbounded due to the sublead-
ing term. Hence the only way to keep both V; and V;
bounded is to set £(2) =0 and |E(2)| = 1.
Therefore both the criterion for the incoming regular-

ity and the necessary condition for the avoiding of the
final singularity are in the case of conformal scalar waves
the same as in the case of minimal scalar waves [13].
Hence the conclusions have to be the same, too. In par-
ticular, the formation of final singularities in the inter-
action of regular asymptotical conformal scalar waves is
generic. Moreover, if the pure gravitational radiation is
absent in the initial data, i.e.,

(“Quu + PuQu — MuQu) =0, v— —o0,

(_vi + P,Qy — Mva) =0, u— —o0,
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the final singularities are even inevitable®.

5We have obtained a similar result also in D = 2+ 1: in the
interaction of regular asymptotic conformal scalar waves the
scalar curvature singularity is always produced.
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