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Effects of nongauge potentials on the spin- —' Aharonov-Bohm problem
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Some recent work has attempted to show that the singular solutions which are known to occur in the
Dirac description of spin-2 Aharonov-Bohm scattering can be eliminated by the inclusion of strongly

repulsive potentials inside the Aux tube. It is shown here that these calculations are generally unreliable
since they necessarily require potentials which lead to the occurrence of Klein's paradox. To avoid that
diSculty the problem is solved within the framework of the Galilean spin- —wave equation which is free

of that particular complication. It is then found that the singular solutions can be eliminated provided
that the nongauge potential is made energy dependent. The effect of the inclusion of a Coulomb poten-
tial is also considered with the result being that the range of Aux parameter for which singular solutions
are allowed is only one-half as great as in the pure Aharonov-Bohm limit. Expressions are also obtained
for the binding energies which can occur in the combined Aharonov-Bohm-Coulomb system.

PACS number(s): 03.65.8z, 03.65.Cxe, 11.10.gr

I. INTRODUCTION

2

—V' —e A P=EP .
1 1

E

(2)

Upon writing

P(r, P)= g e' ~f (r)

Eq. (2) reduces to the Bessel equation

1 d dr + k —(m +a)2/r f (r) =0 .2 2

r dr dr
(4)

Since (4) has both a regular and irregular solution, it is
necessary to give a boundary condition which allows a
unique result to be obtained. One could, of course, sim-
ply require that f (r) be finite at r=0 and thereby elimi-
nate ab initio the irregular solution. This, in fact, gives

In classical physics it is a trivial fact that the absence
of a force necessarily implies zero scattering. On the oth-
er hand, the very remarkable Aharonov-Bohm (AB) effect
[1] shows that this does not apply in the realm of quan-
tum mechanics and that potentials (as opposed to fields
themselves) can indeed have observable consequences.
Thus charged particles are found to be scattered by a thin
magnetized filament even though it is possible, by shield-
ing the Aux tube or filament, to establish that penetration
into the region of nonvanishing magnetic field cannot
occur.

For the scattering of a nonrelativistic particle of mass
M by the potential

eA; =ac;~r& /r

where r, is the radius vector in two dimensions and a is
the Aux parameter one needs to solve the Schrodinger
equation

the well-known AB solution. Since, however, a resolu-
tion of this issue by fiat is totally unsuccessful when spin
is included, a more physical approach would clearly be
preferable. This is accomplished [2] by replacing (1) with

r &R,
(5)

and taking the limit R ~0 after matching boundary con-
ditions at r =R. Clearly, the vector potential (5)
mathematically effects the replacement of an idealized
zero thickness filament by one of finite radius R which
has a surface distribution of magnetic field given by

eH = ——5(r —R) .
a
R

Actually, the specific details of the model (5) can be
shown to be irrelevant [3) provided only that the flux dis-
tribution is independent of angle and has no 6-function
contribution at the origin. It is thus straightforward to
establish [2] that the irregular solution is absent and that
the usual AB solution obtains in the R =0 limit.

When spin is included, the situation becomes quite
different. Here one is concerned with the (two-
component) Dirac equation

(6)

where II, = id, —eA, with —A, as in (1). A convenient
choice for the matrices in (6) is

P=o~, Py; =(o „so2),
where the o's are the usual Pauli matrices and s =+1 for
spin "up" and spin "down, " respectively. Upon reduc-
tion to a second-order form one obtains from (6) the re-
sult

(E M)g= II +aso—.3 5(r)—1
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which, upon using a partial-wave decomposition of the
form (3), becomes

1 d—r—+k —(m +a) Ir aso—3 o(r—) f =0,2 2 1

r dr dr r

where

k =E —m

It is significant that the idealization to a zero radius Aux
tube has given rise to the complication that the delta
function occurs at a singular point of the difFerential
equation.

DifFerent approaches have been attempted in dealing
with this difficulty. Alford and co-workers [4] simply re-
quired the upper component to be regular at the origin
for the case of a repulsive 6 function. Clearly, one cannot
do this for the attractive case since that would make the
spin term trivial and imply an amplitude which coincides
with the spinless AB result. This would contradict the
helicity conservation which is known to be valid [5] for
the system described by (6). On the other hand, Gerbert
[6] has taken an approach which essentially states that an
arbitrary linear combination of the two solutions
J + ~(kr) and J

~
+ (kr) in the region r )R can be

taken so long as it is normalizable for R ~0. Thus when
~
m +a

~

& 1 an arbitrary parameter 0 appears which de-
scribes the relative contribution of these two functions.
This somewhat mathematical approach consequently
sufFers from the appearance of a parameter with no clear
physical origin.

In Ref. [3] an approach was taken which was based on
the physically reasonable modification (5) of the vector
potential. Upon matching boundary conditions at r =R
and letting R —+0 it was found that the correct solution
was always the regular one except when as (0 and

~

m +a~ & 1. In that case there would always be one and
only one allowed irregular solution. This occurred for

(after the fact) a physical motivation by which to deter-
mine Gerbert's 0 parameter.

It is clear simply from the as(0 condition that the
solution of Ref. [3] is not anyonic. This has led to some
serious concerns by those who consider the anyonic prop-
erties of the spinless AB system to be of fundamental
significance. Thus, for example, Ref. [7] has taken the in-
troduction of a boundary at r =R one step further by in-
cluding a nonvanishing nongauge potential for r (R and
examining its efFects when it diverges in certain ways. In
the following section this work is examined and it is
shown that Klein's paradox makes that approach unreli-
able. If, on the other hand, a Galilean spin- —,

' wave equa-
tion is used in place of the Dirac equation which it close-
ly resembles, then the appearance of Klein's paradox can
be avoided. This leads to the determination of an "in-
side" potential which allows one to force both regular
and irregular solutions to occur. However, it implies an
energy-dependent potential, a fact which is easily seen to
follow from dimensional considerations. Section III con-
siders the case in which a fir potential is also included.
Remarkably, it is found that for arbitrarily small g the
domain of a for which singular solutions can be obtained
now shrinks to ~m +a~ & —,'. This contrasts sharply with
the claims of Ref. [ 7], illustrating again the pitfalls of
dealing with equations in which Klein's paradox is
known to occur.

II. KLEIG'S PARADOX
AND HO%' TO AVOID IT

It was proposed in Ref. [7] that one modify the spin- —,
'

AB problem as treated in Ref. [3] by including for r &8 a
constant potential uz. Since there is no Aux for r (R,
one has to consider in that domain the equation

1
r +[(E—u~ ) —M ]—m /r f (r)=0,r dr dr

m= —N, N~O

when s = —1 and

(7) which has the allowed solution j (kor) where

ko =(E —u~ )
—M

m = —N —1, N+1&0
for s=+1 with the integer N defined by

where

0&P&l .

It is interesting to note that in the cases (7) and (8) for
which irregular solutions are allowed there is no contri-
bution from the regular solution J~ + ~(kr) Thus the.
solution obtained in Ref. [3] does correspond to a solu-
tion of the type obtained by Gerbert without, however,
the introduction of his mixing parameter. Consequently,
the solution is unique and can be shown [5] to be con-
sistent with helicity conservation. A point worth rnen-
tioning is that this approach was motivated by a desire to
formulate the problem from the outset in a physically
meaningful way and not (as recently stated [7]) to provide

Since all the results of Ref. [7] depend upon the limit of
uz ~~, it is of interest to note the behavior of ko as a
function of uz. As uz increases from zero, ko is a real
number (E)M) which eventually vanishes at
u~ =E —M Ai this point ko becomes imaginary and the
function J (kor) goes from sinusoidal oscillation to a real
exponential [i.e. , exp(~ko~r)]. As uz continues to in-
crease, ko vanishes again at uz =E +M and the function
J (kor) is again oscillatory and remains so as u~ in-
creases without limit. All of these features are reminis-
cent of the phenomenon of Klein's paradox [8] and one
concludes that the Dirac equation is not an adequate
framework for this problem in the limit of arbitrarily
large uz.

On the other hand, the type of questions raised in Ref.
[7] are amenable to treatment provided that one substi-
tutes for the Dirac equation its Galilean limit. This has
the advantage of preserving the magnetic moment in-
teraction while at the same time eliminating the trouble-



48 EFFECTS OF NONGAUGE POTENTIALS ON THE SPIN- —' . . . 5937

some kinematic relationships which characterize the
Dirac equation in the presence of unbounded potentials.
It is the former which is of interest to this study, whereas
the latter can only be completely resolved (in principle, if
not in practice) by a full field-theoretical approach. Thus
one takes as an appropriate model the Galilean equation

( kDIR)= AJ~ + ~(kR)+BJ
~

+ ~(kR),

[AJ) + )(kr)+BJ
) + )(kr) —I (lk0lr)]„

a
Br

=asI ( IkQ IR)

[6—,
' (1+P)+M (1 P)—Py—II]/=0

where D=E —M is the "nonrelativistic" energy. The
above was derived in Ref. [2] from the Dirac equation
and is simply the 2+1 space version of results obtained
by Levy-Leblond [9]. It is easily seen to imply for gi (the
upper component of P) the result

II — —5(r —R) P, =01 2 es 1

2M 2M 8

can be solved to yield for A /B the result
—Im I+g ( Iko IR)

(kR) ' +
I

21m +al+ lml —g(lk, I»
where

g(x)=x inI (x)

and use has been made of the relation

(10)

provided that one takes a vector potential of the form (5).
Again, carrying out a partial-wave expansion, one obtains
the radial equation

r +k —[m +a0(r —R)] Ir1 d d 2 2

r dr dr

—as—6(r —R ) f (r) =0,1
(9)

where k =2Mb and the step function

9(x)—:—' 1+

has been introduced for conciseness.
One can now include the effect of a repulsive potential

as considered in Ref. [7]. Upon letting 6~8—uz one
sees that the solution for r & R is J (k0r) with

k0=2M(6 —u~) .

y (r &R)=J (k,r),
f (r )R)= AJ + ~(kr)+BJ ~~ ~+( )k,r

where I is the usual Bessel function of imaginary argu-
ment and it has been assumed that u~ )D. The bound-
ary conditions

At ui, =0 this implies an oscillatory J (k0r) which be-
comes a real exponential for all uti ) O'. In other words,
the wave function is exponentially damped in the expect-
ed quantum-mechanical fashion as r decreases from R.
The crucial point is that there is no subsequent transition
back to oscillatory behavior as u~ increases without limit
and consequently Klein's paradox has been eliminated.
Thus Eq. (9) is seen to be an appropriate vehicle for car-
rying out the program of Ref. [7] which seeks to deter-
mine whether a suitably repulsive uz can allow the simul-
taneous occurrence of both J~ + ~(kr) and J

~
+ ~(kr)

for r )R.
To carry out this study one writes

Iml+ fm+al= —as

since, as shown in Ref. [3], only in this partial wave is a
singular solution possible.

One can now answer the question posed in Ref. [7]
whether a finite nonzero 3 /B is possible. It is, however,
clear that since uR~~ must yield B/2=0 just as
uz =0 gives 3/B=O, there must exist a value for u~
which implies a finite 3 /B. The real issue it would seem
is whether a u~ can be found which is independent of the
energy 6. It is not difficult to show (most trivially, by di-
mensional considerations) that no such energy indepen-
dent solutions exist. This is in marked contrast to the re-
sults claimed in Ref. [7]. In that work the scale for the
potential u& is determined by the mass M, or, in other
words, by a factor which unavoidably requires special re-
lativity. Since Klein's paradox has been seen to make
that approach unreliable, the scale for u~ is determined
necessarily by the nonrelativistic energy D.

The (energy-dependent) solution of (10) given by

fk, lR =k(kR)'m+~'

where A, is arbitrary, implies for R —+0 that

1 A, 12/8 =—
4 lm+af Iml+1

Thus any (positive) value of this ratio can be obtained by
appropriate choice of A.. Somewhat curiously, negative
values of 2 /B can also be generated provided that uz is
attractive but diverges according to the same power law
as in (11). Thus an affirmative answer has been found for
the issue of fine-tuning raised in Ref. [7]. The fact that
this tuning requires an intricate dependence of the interi-
or potential on the energy seems to imply, however, that
it can have little, if any, utility.

III. COULOMB MODIFICATIONS

It is known that partial wave functions for the AB
problem can be obtained exactly even when a 1/r poten-
tial is included. In particular, such solutions have been
obtained by Law et al. [10] for the spinless case. This
generalization has also been included in Ref. [7] in the
context of their interior repulsive potential uz. Since it
has been remarked already that Klein's paradox adverse-
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ly aA'ects such calculations, it is of interest to describe the
results obtained when the Galilean spin- —,

' equation is em-

ployed for such an analysis.
Upon taking the potential to be

1 d d 2 @PE
2

r +ko — f (r)=0r dr dr r2

for r &R, and

r——+k' 2M/—/r — f (r) =0(m +a)
r dr dr 2

one finds that the appropriate wave equations for the in-
dividual partial waves in the expansion of the upper com-
ponent of g are

for r )R. It is straightforward to obtain the solution

f (r) =J (kor)

for r & R, while, for r )R,

f (r)= 2 e'""( —2ikr)I + IF(lm +al+ —,'+iMg/k1'21m +al+ ll —2ikr)

+8 e'""( 2ikr)— + F( —lm +al+ —,'+iMg/k I
1 —2lm +al I

2ikr)—,
where F(alclz) is the usual confiuent hypergeometric function. Note that A and B are the coefficients of the regular
and irregular solutions, respectively. It is worth remarking that because of possible modifications which could be in-
duced by the Coulomb term no assumptions have been made as to which partial waves can have irregular solutions.

Upon applying the boundary conditions at r =R there obtains

J I(koR)R e' ( ikR) + F( —Im+al+ —,'+ 'Mig/kll —2lm+all —2ikr)

a—e'" ( —2ikR) I
+ F( —lm +al+ —,'+iMQ/kl 1 —2lm +al I

—2ikR) as+R JI I(koR)

X e'" (
—2ikR)I + IF(lm +al+ —,'+iMQ/k I2lm +al+ 1 I

—2ikR) as+R J (koR)

ikZ—JI (koR)R e'"
(
—2ikR) + F(lm +al+ —,'+iMg/k I2lm +a '+ 1

I 2ikR )—

gR 1 —2 m+aI (14)

for small R. Thus singular solutions are possible for /&0
only when

I
m +a

I
& —,

' rather than the full range
Im +a

I
( 1 assumed in Ref. I7]. For the case /=0 the re-

sult (14) is replaced by

R 2 —2~m+a~
m m (15)

One now takes the R ~0 limit and finds (as in the /=0
case) that 8 must vanish unless as(0, and

Iml+ Im +al = as .

However, Eq. (13) is necessary but has not been shown to
be sufhcient. Nor can one merely assume on the basis of
the analysis of Refs. I3, 6] that Im +al & 1. As stressed
in the former work a second condition emerges when one
considers the next-to-leading term in powers of R. In the
/=0 case things are considerably simpler since the solu-
tions for both r &R and r )R are Bessel functions whose
expansions are characterized by the fact that only alter-
nate powers of the argument occur. This is not true for
the conAuent hypergeometric function and one finds from
(12) that the expansion in powers of R yields

because of the noted property of the Bessel function for
small argument. Clearly, the condition Im +al (1 fol-
lows from (15) whereas the considerably stronger condi-
tion Im +al ( —,

' is required when a Coulomb term is
present. It should be remarked that when this condition
is satisfied, the result (11) again obtains to determine the
dependence of u~ on k and R in the case that both regu-
lar and irregular solutions are required to occur.

The energies D„of the bound states which occur for
/ &0 are readily determined from the series expansions of
the relevant conAuent hypergeometric functions. These
yield for u~ =0 the results

1 Mg n=1, 2, . . .2 (n —
—,'+Im +al)

where the upper and lower signs refer, respectively, to the
case of regular and irregular solutions. Of particular in-
terest is the fact that the binding energies of the irregular
solutions become arbitrarily large as Im +al approaches

This illustrates the crucial role played by the condi-
tion Im +al & —,

' and lends added credence to the deriva-
tion presented above.
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IV. CONCLUSION

This paper has explored the possibility that more gen-
eral solutions to the spin- —,

' AB problem can be found. As
in the earlier work of Ref. [7] this has been done by intro-
ducing a very short range, but singular, repulsive force.
Not surprisingly, it has been found (at least in the unam-
biguous Galilean case) that such solutions can, in fact, ex-
ist. This is physically reasonable since the effect of such a
potential is to reduce significantly the interaction of the
magnetic moment with the singular magnetic field at the
origin. On the other hand, such a potential must be re-
quired to be energy dependent, and it also has the disad-
vantage of violating helicity conservation, a property
which would otherwise be satisfied. Since the solution [3]
of this problem without the additional nongauge poten-
tial is known to be at variance with anyon features, it is
clear that those properties can be restored only with con-
siderable difficulty. If one elects to do this, the effect is to
negate the full dynamical participation of the spin in the
interaction.

One of the most interesting results obtained here has to
do with the modifications associated with the inclusion of
a Coulomb term. It was found that the condition

~
m +a

~

( 1 which is generally thought to follow from a

condition of normalizability of the solution is not
sufficient. A more careful analysis shows that only half
that range is, in fact, allowed for singular solutions. This
has as an immediate consequence that if one considers a
gas of such particles then the discontinuities known to
characterize the second virial coefficient [11]B~(a, T) are
shifted from integer values of e to half-integer values.
This is particularly noteworthy because of the fact that
the transition point has no dependence on the strength of
the Coulomb potential. Thus one can imagine this pa-
rameter to be continuously decreased to zero and find

that the discontinuities in Bz(ct, T) generally occur at half
integers but at integral values when the Coulomb term
exactly vanishes. This provides a most remarkable exam-

ple of a system in which a point of discontinuity of a vari-
able which has a macroscopic discontinuity has itself a
discontinuous dependence on a microscopic parameter.
This is a subject which clearly merits additional study.
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