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Temperature dependence of the induced Chem-Simons term in 2+1 dimensions
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We study the temperature dependence of the radiatively generated parity-breaking (Chern-
Simons) term for massive fermions coupled to an external Abelian gauge field in 2+1 dimensions,
using the imaginary time formalism. We allow the gauge Geld to be rapidly varying in space
(as in a vortex, for example), and we also consider arbitrary discrete frequency components of
the Geld. We thus go beyond the usual "low momentum" and "adiabatic" approximations. We
give a simple analytical expression that is exact at both large and small momenta and provides a
good interpolation at intermediate values. We also show under which conditions the usual adiabatic
approximation is accurate, providing a simple physical picture for its prediction. Finally, we consider
the same problem for massless fermions coupled to a non-Abelian gauge field.

PACS number(s): 11.15.Ex, 03.70.+k, 11.10.Ef, 11.10.Lm

I. INTRODUCTION

The calculation of the induced Chem-Simons term at
Bnite temperature has become a subject of increasing in-
terest [1—6], because of its relevance for anyon models of
superconductivity [7], and also because of the intrinsic
theoretical interest of learning how the passage to finite
temperature afFects nonperturbative aspects of quantum
field theory which are understood at zero temperature [8].
In this respect the Chem-Simons term is in a somewhat
similar position to the chiral anomaly (in even dimen-
sional spacetimes), which was studied by many authors
[9—14]. Their common result is that whichever calcula-
tional scheme is used, the chiral anomaly is temperature
independent. Further, this temperature independence
can be demonstrated without any of the usual partic-
ular techniques (chiral Jacobians, anomalous diagrams,
etc.), but just by studying the corresponding index the-
orem for the relevant Dirac operator in the appropriate
(time periodic) spacetime [14]. The usual physical expla-
nation of this fact is that the chiral anomaly is a large mo-
mentum phenomenon (the existence of the anomaly is a
consequence of the necessity of introducing some form of
ultraviolet cutofF), and so the result is insensitive to the
difFerence between an infinite or finite time dimension.
That is plausible, but of course subject to the condition
that the fermions should be massless. Otherwise, the ex-
plicit chiral symmetry breaking produced by a mass term
will induce a temperature-dependent contribution to the
divergence of the axial-vector current, because the mass
sets up a finite scale which will be important when the
temperature is of the order of the mass or bigger.

In the case of massive fermions in 2+1 dimensions we
are in the odd dimensional analogue of the latter situ-
ation, because the explicit parity violation is due to a
finite mass (we will consider also the case of massless
non-Abelian fermions). So it is reasonable on physi-

cal grounds to expect a temperature-dependent Chern-
Simons term. For masses going to infinity one should re-
cover the zero-temperature limit, because the scale intro-
duced by the mass is never seen by the finite (imaginary)
time interval, and so it will produce the same answer as
in the zero-temperature case.

In the present paper we study the radiatively generated
parity-violating term at finite temperature, for the case
of massive fermions coupled to an external Abelian gauge
field in 2+1 dimensions. An important aim is to obtain
useful results when the gauge Beld is allowed to be rapidly
varying in space (as in a vortex, for example), and when
arbitrary n g 0 (Matsubara) frequency components are
important. This means that we go beyond the usual "low
momentum" and "adiabatic" approximations.

Indeed, there are many calculations of the induced
Chem-Simons term at finite temperature [1—4] which
contain the result that the efFective Chem-Simons ac-
tion at T f 0 is just the T = 0 action multiplied by a
temperature-dependent factor [15]:

~Tgo —tanh
~ ~

~T=O
t'PiMi l

2

where M is the fermion mass and P = &&. Equation (1)
is frequently derived by making use of low momentum
and adiabatic approximations, which essentially amount
to retaining the lowest-order term in an expansion of the
Lagrangian in powers of derivatives. While this certainly
gives correctly the coefIicient of what might be called
"the" Chem-Simons term (i.e. , the one of the form A dA),
it will not in general provide an adequate description of
the full induced parity-violating effect which is of second
order in A. The latter will be a nonlocal quantity, which
we shall call the "full" Chem-Simons term.

An indication of the inadequacy of Eq. (1) can be seen
from the following consideration. In the imaginary time
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formalism [16], the gauge field has Euclidean-space mo-
mentum components ( &,p), so that the condition for
the validity of such a combined low momentum and adi-
abatic expansion is expected to be

as we shall explicitly confirm in what follows. Equation
(2) is of course equivalent to the simultaneous conditions

&& iMi./p/ 27m

The first is just the statement that the associated bosonic
field should be spatially smooth on the scale M, irre-
spective of the value of the temperature, and is clearly a
low momentum condition; but the second requires

PiMi » 2irn,

which is essentially a condition for adiabaticity. Now,
only if n = 0 (the static case) will (4), which is essen-
tially a condition for a kind of adiabaticity (in periodic
imaginary time), be automatically satisfied, and in this
case Eq. (1) will provide the leading finite temperature
behavior, for spatially smooth fields. But it must be
emphasized that in considering the equilibrium thermo-
dynamics of our system all the discrete frequencies n will
have to be considered, not just the n = 0 one. Now
for n g 0, Eq. (4) requires P~M~ to be large, so that
(1) would then be expected to be relevant at sufficiently
low temperatures. The trouble, as we shall see below,
is that the higher time derivatives, which arise in the
presence of n g 0 components [ignored in obtaining (1)]
lead to power law terms in (P~M~) which are certainly
important in comparison with the exponentially small
temperature correction (at low temperatures) in Eq. (1).
Hence, even for spatially smooth configurations, Eq. (1)
is not reliable for predicting the finite temperature be-
havior (as was pointed out in a related context by Niemi
and Semenoff [17]). Certainly, improved expansions can
be found for n g 0; but what is really required is an ex-
pression which may be used when conditions (3) and (4)
do not hold, so that arbitrary spatial configurations and
temperatures can be handled.

It is of course straightforward to calculate the full in-
duced Chem-Simons action at T g 0 without making
the above approximations (see Sec. III below). But this
leaves us with a somewhat awkward nonlocal expression,
which is inconvenient for applications. However, the form
factor embodying the nonlocality is in fact very simple,
being given by (the parity-violating part of) the fermion
loop contribution to the vacuum polarization. Just such
nonlocal expressions arise in a number of contexts and re-
cently a useful "pole approximation" has been developed
to simplify them [18]. This approximation has the virtue
that it is a very simple algebraic function, yet it gives the
exact loop integral result for external momenta tending
to zero or to infinity, while in the intermediate region it

provides a good approximation to the exact result. Thus
it goes well beyond the low momentum approximation,
providing a useful interpolation formula across the whole
range of momenta. It is this idea which we shall use and
adapt here to give a practical approximate expression for
the general induced Chem-Simons term at finite temper-
ature.

In Sec. II we consider the zero-temperature case as
a warm-up excercise. We briefly calculate the well-
known [19]parity-violating-induced term, and give a sim-
pler algebraic expression that agrees with the exact so-
lution when the momentum tends to zero or infinity. In
the intermediate region it is an excellent approximation
to the exact result.

In Sec. III we present a calculation of the induced
Chem-Simons term at finite temperature, keeping the
full momentum dependence until reaching the final ex-
pression as a Feynman parameter integral with a smooth
integrand, which is suitable for analyzing the behavior
of the integral in diferent regimes. We also generalize
the algebraic approximation which we introduced at zero
temperature to the case of nonzero temperature, obtain-
ing a formula that describes the behavior of the exact
result in a much simpler but still quite accurate way.

In Sec. IV we discuss the conditions under which the
approximations used to derive (1) are acceptable, and
provide a justification of the result previously obtained
[1—4] within a much simpler framework. We also compare
our approximate formula, evaluated for low values of the
momenta, with the standard low momentum expansion
of the exact result.

In Sec. V we consider the case of massless fermions
coupled to a non-Abelian gauge field. This case is qual-
itatively different from the Abelian one in that (for ap-
propriate groups) there is an induced Chem-Simons term
even when the ferinions are massless [20], the parity-
violating term appearing when one wants to define the
theory in a gauge invariant way. We shall show, however,
that in this case the induced Chem-Simons term is inde-
pendent of temperature. Finally, in Sec. VI we present
our conclusions.

II. THE INDUCED CHERN-SIMONS TERM AT
T=0

A. Exact calculation

We will calculate here the induced Chem-Simons term
for massive fermions in 2+1 dimensions, coupled to an
external Abelian gauge field, at zero temperature. We
will not dwell on the dynamics of the vector field itself,
so we do not include a bare Lagrangian for it. The theory
is defined by the generating functional

Z = exp(iW[A]) = 17/17@ exp
~

i d xZ ~, (5)

where

8 = g(i P —eg —M)Q, p = o.s, p = io.i, p = io.2,
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where o.~, j = 1, 2, 3 are the familiar Pauli matrices.
W[A] is the full effective action for A~, generated by
integrating out the fermions. So, except for a Geld-
independent constant, the effective action will be given
by

W[A] = i ln d—et(P+ ieg+ iM)
iTr ln—(P+ ieg+ iM), (7)

where the determinant and the trace must be understood
both in spin indices and in the functional sense.

As we are looking for the Chem-Simons-like term, we
can expand the logarithm in Eq. (7) up to order 2 in e,
so as to get in W[A] a term with two A' s. Then, the
efFective action of Eq. (7) will contain up to this order
the three terms

l" (p) = —2E(p) " "p), , (15)

where

F(p) = i M— d A: 1

(2'�) [(p + k)
' —M'] (k' —M') (i6)

is the loop integral in dimensionless form. As indicated
in the Introduction, it is E which controls the nonlocal-
ity in (12). To calculate the integral, we first perform
a Wick rotation of the momenta: A:o ~ iA:~, po ~ ip~.
We exponentiate the denominators in Eq. (16), using the
familiar introduction of the corresponding Schwinger pa-
rameters; next we complete the square in the exponent,
shift the momentum A: by a constant, and perform the
momentum integration to obtain

where

w = wi'l + wi'l+ wi'l + o("), (8) dpp-'~'

x exp( —p[n(1 —n)~p
~
+ M ]), (17)

W = —iln det(P+ iM),
W~'l =.T [(P+'M) 'g],
W~'l = —'.T [(p+iM) 'A(p+iM) 'A].

(9)

(io)

+(p) = M . t' 4M2&
(i8)

where p = —(p& + p ). The two remaining integrations
are elementary, and so one finally obtains [21]

W~ ~ is just the free energy of uncoupled fermions, and
TV~ ~ gives zero when we evaluate the trace, as can be
easily seen in the momentum representation. So we are
left with TV& ~ only. We can give an expression for R'~ ~

in the momentum representation as

where ~p~
= (~p ~) . This result, introduced into1/2

Eqs. (15) and (12), therefore gives the efFective parity-
violating term for any external momentum.

2

2
B. Algebraic approximation of E(p)

where the Fourier transforms are deGned as

A~(&) = d'x e*"*A„(x),

and I ~~ ls given by

f~ (&) = dsk ( 1 1

P+ P —M jc —My

(14)

where tr means over the Dirac indices only. Evaluating
the trace in Eq. (14), we observe that there appear both
parity-conserving and parity-violating terms. In what
follows we keep only the latter, but we still use the same
symbol I' to denote the parity-violating contribution (as
we will not consider hereafter the parity-conserving part,
there is no risk of confusion). So, with this remark in
mind, after a straightforward calculation we obtain

Now we construct an expression that provides a very
simple algebraic approximate formula for the exact value
of the loop integral P(p) [Eq. (18)], and so also of the ef-
fective parity-violating term. Of course we do not really
need any such approximate formula in this case, since
we have the exact analytic form (18). However, the in-
troduction of the approximation at this stage will serve
to motivate its much more necessary use in the T g 0
case which follows. The technique has been applied to
(3+1)-dimensional loop integrals [18] in another context,
and in that case the approach is called the "pole approx-
imation. " The essential idea is to find a simple algebraic
expression which gives the exact loop integral result for
momenta tending to zero or inGnity, and which provides
a reasonably good approximation to the exact result for

intermediate momenta. We note that, as ~, —+ 0, the
exact loop integral E(p) of Eq. (18) behaves as

M t'
ip2/

In the non-Abelian case, one should consider also the terms
with three A' s, but in fact knowing only the term with two
A's and using gauge invariance one can predict the form of
the term with three A' s.

while, when M, m oo,Ip'
I

E(p) -+
i

-+ oo
i

M f ip'i
8p gM' (20)
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We see that a simple algebraic formula that has the same
limits as (18), and is smooth in the intermediate region
[as F(p) is], is given by

W( )[A] =
+oo

ze )~

(23)
F(p) = f(p) =

8(~p2~ + ~2M2)'~2
(21)

where

In Fig. 1 we show the exact [F(p)] and the approximate
[f(p) functions in a given range of the dimensionless vari-

able +~. Note that the agreement between them is very
good for small or large momenta, and the most appre-
ciable departure (still only about 10'Fo at most) occurs at
ip~ M. The approximation of F by f will emerge as
the zero-temperature limit of the corresponding approx-
imation in the finite temperature case, discussed in the
next section.

III. THE INDUCED CHERN-SIMONS TERM AT
T&O

and where

2Knp"„=(p-, p), p- =

1 1

+

(24)

(25)

A. Exact calculation with

We will use the imaginary time formalism [16] in what
follows; this amounts to doing the following replacements
in the respective T = 0 expressions:

(2m+ 1)~
(26)

d3X O'T d x

d2k

(2m)

: diag( —1, —1, —1) (22)

[note that p should have an even Matsubara &equency,
so that p + k has an odd &equency in Eq. (25), as it
should].

Evaluating the trace in Eq. (25), and keeping only
the parity-violating part, as in the zero-temperature case
(but now in Euclidean space throughout), we obtain

[so, by the last rule every scalar product of two three-
vectors a~, b„means a . b = —(aobo + a . b)]. We see
that the effective action to order A, in the momentum
representation, takes the form

2" (p„) = 2i F(p„) e" "p"„

(e = +1), where again the nonlocality is contained in
the loop integral

0.04-

0.03-

0.02-

FIG. 1. The exact (F, solid curve) and ap-
proximate (f, dashed curve) integral E(p) at
T = 0 as functions of ~"~

0.01"

10 15 20 25
I M

30
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d k 1
F(p„) =MP ) (2~)' [(p„+k ) —M'](k ' —M') (28)

The efFective action to order A is then

+oo
W('&[A] = ——' ) A„( p„)—F(p„)e" "p„„Ap(p„) .

(2vr)
'

All that remains to do now is to calculate F(p ) in order to obtain the parity-violating term in the efffective action.
We introduce a Feynman parametric integral in Eq. (28) in order to obtain a more manageable expression

F(p„) = —) dn
o

d k

(2vr) (n[(p„+ k ) —M ] + (1 —n)(k —M2))
d2k 1

(2~) [(k+ np)'+ (~ + np„)'+ n(l —n)(p„'+ p') + M']
(30)

After a shift in k, the k integration can be done easily, yielding

M
4p ).

m= —oo

1

(cu + np„)'+ n(1 —n)(p2 + p') + M'

Now, remembering the definitions of the corresponding Matsubara frequencies,

F(p-) = M
4~(2~)'

1

(m+ -'+ nn) + n(1 —n)[n2+ (
~

) p2]+ (~ )
(32)

The series in Eq. (32) is a particular case of the more
general formula

+oo
s= ) m-zl m-z2 ' (33)

[cotg(uzi) —coty (vrz2)],
Z2 Zl

(34)

and introducing the explicit form of the roots zl and z2
derived from Eq. (32), we find

sinh[2~r(n)]
r(n) cosh[2mr(n)] + cos[2vrnn]

'

where r(n) is deffned as

r(n) = —[n(1 —n)ip i+ M ]27r
(36)

with p = —(p2 + p2). So the loop integral F(p ) which
goes into Eq. (29) is given by

F(p-) =
2(2~)

7r sinh [2' r (n) ]
r (n) cosh [2nr (n) ] + cos (2mnn)

(37)

where zl and z2 are the roots of the quadratic form in the
denominator of Eq. (32), which in our case are complex
conjugate. Provided the roots have a nonzero imaginary
part, S can be easily evaluated, for example, with the
Regge trick [22]. The result for S is

B. Algebraic approximation for E(p„)

We now seek to generalize the algebraic approxima-
tion of the T = 0 case to the T & 0 case, providing an
approximation for the loop integral of Eq. (37).

Although for brevity we have shown F as depending
only on p, we can see &om (36) and (37) that it is in fact
a function of the dimensionless quantities P~p ~

(where

~p ~

=
~p ~ ), PM, and n. The PM dependence is to

be expected from the ~p ~

-+ 0 limit, Eq. (1), but some
discussion is in order concerning the separate dependence
on P~p ~

and n. This is associated, of course, with the loss
of (2+1)-dimensional covariance in passing to the finite
temperature case via Eqs. (22) and (24), for example,
with the result that p~ and p + p enter the right-hand
side of (37) separately and asymmetrically. This separate
dependence of F on n and P~p ~

does present a difficulty,
in principle, for our approximate approach, since it is
not at all clear how to set about finding a simple func-
tion which, say, correctly reproduces (37) both for large
and small P~p ~, and for large and small n. A (related)
problem is that, rather than n and P~p ~, we might be
more interested physically in the temperature variable T,
and particularly in the low- and high-temperature limits
of (37); but although these limits are simple enough in
the special case n = 0 = ~p~, in the general case the
limiting regimes will depend on n and ~p ~

as well as on
M.

We have adopted what seems to be the most straight-
forward approach, which is to ignore the separate n de-
pendence of (37), which arises via the term cos(27rnn) for
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n g 0, and to look for a simple function which matches
the leading behaviors of (37) both for small and large

~p ~, recognizing that this may lead to some loss of ac-
curacy in certain regimes. It is simple to verify that, for

~p ~

—+ oo, the function F(p ) behaves asymptotically
as

and that it goes to a finite value when ~p ~; 0 (both
limits are taken at any fixed, but arbitrary, P). Both
behaviors are independent of the way we take the limit,
i.e., on the relation between the spatial and temporal
components of the momentum which, as noted above,
now appear in an asymmetrical way in the loop integral.
This fact and the T = 0 result encourage us to choose a
simple profile for the approximation to E:

(39)

where 0, and b are P-dependent parameters.
In order to fix the values of the parameters a and 6,

we need to impose two conditions on f We m. atch the
values of F and its approximant f at ~p ~

= 0 and also
equate the coeKcients of their terms. Both values of

l~ I

I" can be computed exactly at any temperature, and so
after a little algebra we obtain the approximant f:

M ~sinh(PM/2)
~

[sinh (PM/2))p [+ vr cosh (PM/2)M ] &

(40)

Equation (40) provides the desired interpolation formula
for F, and is the main result of this paper. We note that
f depends on PM and P

~ p ~, but not on n separately;
also, that (1) is recovered in the ~p ~

-+ 0 limit.
We now want to give an idea of the accuracy of (40).

Our procedure of matching the large and small ~p ~

be-
havior should presumably mean that (40) is a good ap-
proximation to (37) in the case n = 0, since then n does
not appear separately and ~p ~

=
~p~ for all T. Figure 2

shows a plot of F [Eq. (37)] and f [Eq. (40)] for PM = 7r,

as functions of M when n = 0. We note that the accu-Iv

racy is very similar to that in the T = 0 case, Fig. 1
indeed the curves themselves are very similar in shape,
the temperature affecting mainly the normalization. This
behavior remains at any temperature, as expected.

Figure 3 compares F and f in the other extreme situa-
tion, when ~p~ = 0 and n g 0, so that ~p„~ = ~p„~ = 2p".
We choose PM = vr, so that ~ ——2n. Again the agree-
ment is very good, despite the appearance of a small rip-
ple at low IM in the exact result, and which is associated
with the cos(2ann) term in (37) which the interpolation
formula smooths out. Note, however, that we have plot-
ted the curve as if the discrete variable in the horizontal
axis were continuous, but it is not. Moreover, the peak
of the ripple appears exactly at ~ ——1, which is outside
the set of admissible values of ~, as the physical values
of this ratio are (for this example) 2 x integer. In fact,
for the first nonzero momentum, the exact and approxi-
mate curves almost coincide. So, this ripple appears only
for values of the external momentum which correspond
to the gauge fields being considered as fermionic, which
is not the case here.

Anyway, the smoothing introduced by the approxima-
tion is a pleasant feature if one wants to regard the dis-
crete momentum as "approximately continuous, " espe-
cially for higher temperatures, where the ripple becomes
much sharper but is always concentrated on unphysical
values of the discrete momentum. Figure 4 shows the
case PM = oo, for which ~ ——200n.

So far we have presented two particular paths for
the variation of the momentum, either purely spatial or
purely temporal. For the sake of completeness we show
in Fig. 5 the case of varying the discrete momentum but
including a constant spatial part for the external momen-
tum, for the same temperature as in Fig. 4. Again the
agreement is very good, and besides the obvious global
decrease in the values of F and f, we see that the ripple
smooths out [this is due to the fact that the cos in the de-
nominator of (37) is relatively small compared with the
other term in the denominator]. In summary, we may

F, f

0.035-

0.03-

0.025-

0.02-

0.015-

FIG. 2. The exact (I', solid curve) and ap-
proximate (f, dashed curve) integral F(p )
for PM = vr and n = 0, as a function of
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F f

0.035"

0.03-

0.025-

0.02-

0.015-

FIG. 3. The exact (F, solid curve) and ap-
proximate (f, dashed curve) integrals F(p )
for PM = vr and p = 0, as a function of ~~" ~

Physical values of ~ are multiples of 2.
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conclude &om Figs. 3—5 that expression (40) deals very
well with the n g 0 (nonstatic) case, for which the adia-
batic approximation is valueless.

It is easy to see that the zero-temperature limit of the
approximation (40) is the algebraic approximation (21)
for the zero-temperature case, which itself contains the
correct low and high p limits. It is also worth remarking
that we can safely take the M -+ 0 limit in (37) or (40) to
confirm [21] that there is no induced Chem-Simons term
at all in the massless Abelian case; this limit cannot, of
course, be discussed sensibly within the framework of an
expansion in powers of ~M .

We conclude that our simple expression (40) does pro-
vide a useful approximation to (37), and can be inserted
in the summed or integrated form (23). As one possi-
ble application, suppose that the Geld A.„had a singular
part, let us say a static vortex. Then the strong spatial
variation of A& in the vicinity of the center of the vortex
makes the low momentum approximation useless, but we
can still compute its contribution to the effective action
to a good approximation by using (40). More impor-
tantly, expression (40) provides a simple and accurate

formula capable of dealing with the nonstatic case, for
arbitrary spatial variation.

IV. EQUATION (1) REVISITED

The approximate result (1) for the induced Chern-
Simons term at finite temperature [1,5] can be obtained
from our equation (37), or its approximant of Eq. (40)
(which in this limit becomes exact) under the conditions

fp] 27m
(41)

as stated in the Introduction. In particular, even if one
assumes that A~ has nonzero Fourier components in the
discrete variable only for n ( 1, say, one still must assume
PM )) 2vr, as is clearly implied by Eq. (4) when one puts
n = 1. Of course, if the mass were infinite, that condition
would be satisfied, but for finite M and finite P it is their
dimensionless product which must be large. The upshot
is that the adiabatic approximation is implicitly also, in

F, f
0.001--

0.0008--

0.0006 -- %

0.0004--

FIG. 4. The exact (F, solid curve) and ap-
proximate (f, dashed curve) integrals F(p )
for PM = ioo and p = 0, as a function of

Physical values of M are multiples of
200.
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F, f
0.0014--

0.0012--

0.001--

0.0008--

0.0006-

FIG. 5. The exact (F, solid curve) and ap-
proximate (f, dashed curve) integrals F(p )
for PM =

~~~ and ~ ——100, as a function ofIx I

M . Physical values of M are multiples of
200.
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this case, a low-temperature (T (( M) approximation.
If the conditions of Eq. (41) hold, one obtains the usual
result given in Eq. (1)—but, as already anticipated in the
Introduction, this is only reliable for n strictly equal to
zero; for n g 0, corrections involving powers of (P~M~)
will enter, in comparison with which the deviation of tanh
from unity is both exponentially small and unreliable.
To obtain a quantitative criterion for the reliability of
the tanh factor, we consider the ratio (r) between our
formula [Eq. (40)] and the tanh factor [Eq. (1)]. Clearly,
this is equal to the ratio between f (p ) and f (0):

f(s-)"'"'= f() (42)

For the sake of simplicity, we assume p = 0 and require
r to be equal to one within an error less than 10%. Then
one easily obtains a relation between n and PM,

F(p) ~ Fo + F~ M2'
2

f(p) = fo+ fiM, ,

(44)

(45)

M
n &

2~5 '

which clearly says that the lower the temperature, the
larger the range of discrete frequencies where Eqs. (1)
and (40) agree within a 10% error. For the case of Fig. 3,
where PM = vr, we get from Eq. (43) that n can only
be equal to zero, as is evident from the curve. For very
low temperatures, n can be larger (for example, if PM =
100m, n could be between 0 and 50).

Now we show a comparison of the next term in the
momentum expansions of the exact [Eq. (37)] and ap-
proximate [Eq. (40)] results. As an example, we will set
n = 0 for the external momentum, so that the expansion

2
parameter will be ~~, (we do not consider the opposite
case, i.e. , expanding in M, because the physical values of
p are discrete, and if they were regarded as continuous,
the behavior of the expansion of the exact solution would
be nonanalytic, as is seen in Fig. 4). The expansion of

2
both results up to M, order is indicated by

where, of course, Fo and fo are equal. The ratio Fq/fq
can be calculated after a little algebra:

F, ~~ tanh(p) + p[tanh (p) —1]

fi tanh (p,)
(46)

H~ = n (p —eA) + poM+ eAp, (47)

the operator responsible for the parity breaking is the
matrix po. If we calculate the thermal average of that
matrix with IID as the Hamiltonian, and under the as-
sumption pM » 1, we see that

tr(poe
—~~

) tr(poe ~~&)—
(~o) =

tr(e —~~o ) tr(e ~~& )—(48)

(note that we dropped from H~ all the terms but the
mass term; it is the crudest approximation one can do).
Now we should be careful about the fact that in the sum
over states one must consider the Dirac vacuum as the
lowest state. This is equivalent to replacing po ~ ~'2+

in Eq. (48) in the Hamiltonian only Then, .

where p =
2 . Then it is easy to see that the ratio of

Eq. (46) tends to the same limit when p, tends to 0 or oo,
2

this limit being equal to 6 1.5. For finite values of

p, this ratio remains almost constant around 6 . So we
see that our approximation does not fit exactly the terms
of the low momentum expansion, because we have only
adjusted our analytical approximation of Eq. (40) with
the exact one of Eq. (37) at zero and infinite momentum.
Nevertheless, the expansions of both expressions are not
very diIII'erent, and this property is almost temperature
independent. The same can be seen mutatis mutandi8 in
the expansion around n = 1 for the external momentum.

We shall now provide a physical explanation of the
factor tanh(~ ) that appears in front of the T = 0
Chem-Simons term, in the crudest approximation.

We recall that the term that induces the parity break-
ing is the mass term. In the corresponding Dirac Hamil-
tonian,
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—PMi )]
—PM('0+—')tr[e ~

]

tr(go[cosh(~2 ) —po sinh(~, )])
tr[cosh(~ ) —po sinh(~2 )]

=--(' )=-
2 /M/ q 2

(49)

det
(detP)R = limM~~ det + iM

lim det[P(P + iM) '], (52)

regulated theory, and thus breaks parity. As there are
no subtractions to be made, the "renormalized" fermion
determinant is defined simply as

~T'go = (&o)Tgo ~z'=o .(2) (2) (50)

This expression can be compared with the induced mass
term for a vector field in presence of a nonzero vacuum
expectation of the corresponding Higgs field P:

So we can interpret this result as explaining that, only
in the crude approximation we are considering here, the
induced Chem-Simons term at finite temperature is of
the form

where P is the Dirac operator,

P =P+g, A„= gA„A, [A, A ] = f 'A',

and P+ iM comes from the action for the regulator field.
Clearly, when M ~ oo we will obtain a gauge invariant
and parity-conserving contribution, plus a Chem-Simons
term (whose sign is that of the regulator mass).

The converse phenomenon is also explained in Ref. [20],
through index theorems for Dirac operators. It turns out
that

1
&M = —(4')Tgo & &",

2
; detP (—1)", (54)

where the P dependence of (P)p comes from the P de-
pendence of the P average due to the temperature de-
pendence of the effective potential. As in Eq. (50), P is
the "breaking operator, " and 2 A„A" is the symmetry-
breaking Lagrangian.

V. MASSLESS FERMIONS IN A NON-ABELIAN
BACKGROUND FIELD

As was shown in Ref. [20], a kind of "parity anomaly"
appears in the T = 0 efFective action for a massless
fermion field (or an odd number of them) coupled to a
non-Abelian gauge field whose group enjoys the property
that its II3 is the additive group of the integers. It is
manifested as a parity nonconservation in the effective
action when one uses a gauge invariant regularization
procedure, and conversely as a gauge noninvariance of
the effective action (under large gauge transformations)
when one uses a parity-conserving regularization.

The way in which gauge invariant regulators destroy
parity symmetry is easily understood. in the example of
the Pauli-Villars procedure, which introduces an explicit
(and eventually infinite) mass term into the action of the

when a large gauge transformation of winding number
n is performed on the gauge fields, and detP is defined
in a parity-conserving way. Turning now to our inter-
est in finite temperature efFects, as long as we require
the model to be invariant under large gauge transforma-
tions at T = 0, we get the infinite fermion mass in the
regulator, and so we are in the region of applicability of
the "adiabatic" approximation for the non-Abelian the-
ory [1], i.e. , PM )) 1. This approximation for the non-
Abelian case gives the same result as in the Abelian case,
the T & 0 Chem-Simons term being just the T = 0 one
multiplied by the same factor as in the Abelian case. The
limit M ~ oo can then be taken within this approxima-
tion, obtaining the result that the induced Chem-Simons
term at finite temperature is temperature dependent, be-
cause the thermal factor goes to 1 in the limit. This is
the main conclusion of this section.

It is worth remarking that in the Abelian case there is
no similar phenomenon at T = 0, because of the triviality
of the homotopy group II (Si) = 1. So one can regulate
the integrals in a parity-conserving and gauge invariant
way.

VI. CONCLUSIONS

The ultraviolet behavior of the integrals that appear to low-
est order in the fermionic determinant is superficially diver-
gent, although it happens that when one adds a regulator field
in order to cure their apparent ill definedness, one finds that
after the calculation of the regulated expression the cutoK can
be taken to infinity and no divergence appears. Then there
are no subtractions to be done: in a sense, the results are finite
but regularization dependent. A similar fact occurs when one
calculates the anomalous divergence of the axial-vector cur-
rent in (3+1)-dimensional massless +ED; it is always finite,
but regularization dependent. The ill definedness is of the
type 0 x oo, and not of the more usual oo type.

We have shown that the temperature and momentum
dependence of the full (nonlocal) induced Chem-Simons
term in the efFective action for massive fermions coupled
to an Abelian vector field at T & 0 can be described
through a simple analytical formula. The accuracy of
this approximation does not rest on a low momentum,
adiabatic, or small temperature assumption, and so en-
ables one to calculate different objects of interest in a
wide range of parameters (for example, temperature de-
pendence of the induced topological mass). Of course,
one should limit oneself to calculations that describe phe-
nomena of a purely parity-violating character; otherwise
one should include the rest of the effective action to one-
loop order.
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We want to remark that the calculations we have pre-
sented in this paper have been restricted in two, possibly
important, respects: first, we have not considered gauge
field configurations of nontrivial topology; and second, we
have worked to second order only in powers of the gauge
field, and have not considered possible non-perturbative
effects (due to a large external field, for instance). As
regards the first point, the case of non-Abelian mass-
less fermions, which we discussed in the previous section,
shows that the possibility of nontrivial large gauge trans-
formations has indeed a very profound eKect on the tem-
perature dependence of the induced Chem-Simons term,
namely, the latter does not depend on the temperature
at all. Of course, our argument was based on the re-
quirement of gauge invariance at T = 0, and from this
followed the above-mentioned consequence; we have not
needed to consider index theorems concerning Dirac op-
erators on S x S, the calculation on S of Ref. [20]
being enough for our purposes. We also note that the
calculation of the induced Chem-Simons term might well
give a diferent result if performed in the presence of a
topologically nontrivial background (which could in prin-
ciple be done in the same way as when one computes the
fermion determinant in the presence on instantons, for
example). As far as we are aware, the impact of these
kinds of complications on the Chem-Simons term at fi-

nite temperature remain generally unexplored, although
Ref. [4] gives some results for the case of a topologically

nontrivial space (viz. , a torus).
As regards the second point (i.e. , nonperturbative ef-

fects), we note that in the case of a constant external
magnetic field was considered in Ref. [2], with the result
that the local part of the induced Chem-Simons term was
independent of the field. There seems to be no reason
why the method of the present paper could not also be
applied to such a case, to study the full parity-violating
term in such a background.

Note added in proof Th. e calculations described in
Sec. III are correct for discrete imaginary values of the
energy variables. However, expression (37) does not, as it
stands, provide the correct analytic continuation to real
energy values [for an analogous case see H. A. Weldon,
Phys. Rev. D 47, 594 (1993), Sec. III]. In particular, the
correct continuation is not analytic at po ——

~p~
= 0 when

T g 0, as was pointed out in Ref. [6]. We shall give a
complete discussion of this issue elsewhere.
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