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Continuum light-cone quantization of Gross-Neveu models
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The Cxross-Neveu models are quantized on the light cone, using an equation of motion approach
tailored to the large N limit. Vacuum properties are exhibited and the fermion-antifermion integral
equation of Tamm-Dancoff' type is derived and solved, with particular attention paid to the issue of re-
normalization. The main results are verified in equal time quantization, by means of the infinite momen-
tum frame.

PACS number(s): 11.10.Ef, 11.10.St, 11.30.Rd

I. INTRODUCTION

"Gross-Neveu models" refer to a family of self-
interacting fermion field theories in one space dimension
which were studied extensively during the second half of
the 1970's [1—8]. The simplest version consists of mass-
less fermions with an internal degree of freedom (N
"colors") and quartic scalar-scalar interactions. In addi-
tion, a chirally invariant model (the two-dimensional
"Nambu —Jona-Lasinio model" [9]) and massive theories
have also been considered. These models exhibit a num-
ber of interesting phenomena, such as dynamical mass
generation, spontaneous symmetry breaking, dimensional
transmutation, fermion-antifermion and multifermion
bound states. They are asymptotically free, renormaliz-
able, and soluble in the I/N expansion [1] or, in the case
of the chiral Gross-Neveu model, by Bethe ansatz tech-
niques even for arbitrary N [7,8]. Recently, interest in
Gross-Neveu models has been revived, both in the con-
text of relativistic many-body theories [10] and as a test-
ing ground for lattice calculations of hadron properties
[11].

In this paper, we shall reconsider the Gross-Neveu
models for yet another reason. During the last years, a
great deal of eFort has been devoted to better understand-
ing and developing techniques of light-cone quantization
in field theory [12,13]. These efforts are triggered by the
necessity of eventually solving relativistic bound-state
problems in strong interaction physics. In particular, in
1+1 dimensions and in the Hamiltonian framework, the
technical advantage of the light-cone quantization over
ordinary equal-time quantization can be quite striking
[14,18]. Conceptual difficulties initially posed by nonper-
turbative phenomena are by now fairly well understood
in the particular case of two-dimensional gauge theories,
QED2 and QCD2 [18]. Here, the severe infrared diver-
gences can be controlled by quantizing in a finite interval.
If one insists on a spacelike separation between the end
points of the interval (where the boundary conditions are

imposed), one is led to introduce coordinates slightly "ro-
tated" with respect to the ordinary light-cone variables.
Thereby, one can avoid the difticulties encountered in the
naive application of discrete lightcone quantization (e.g.,
with the fermion condensate or the axial anomaly in
QED2). Nevertheless, most of the technical advantages
of the light cone can be recovered in a well-defined limit-
ing procedure.

Among many other unrealistic features, one special
property of two-dimensional gauge theories is the fact
that they are super-renormalizable. As soon as one starts
to think about more realistic, four-dimensional field
theories, one has to face the difBcult problem of how to
deal with renormalization in light-cone quantization
[19,20]. Therefore, it is of some interest to study first
two-dimensional models which need UV renormalization,
while still being soluble. One model where such a study
has been attempted is scalar P field theory [17]. Howev-
er, since no systematic approximation scheme is known
and since the distinction between light-cone and ordinary
coordinates was not strictly respected in Ref. [17], the re-
sults are not yet conclusive. Here, we propose to treat
the Gross-Neveu models in the large-N limit on the light
cone. These models are well behaved in the infrared, so
that there is no particular incentive to use a finite interval
formulation; rather, we shall work from the outset in the
continuum. We shall employ relativistic many-body
methods which have already proven useful in solving the
Gross-Neveu models in ordinary coordinates [10],as well
as in the context of large-N QCD2 [18]. We are fully
aware that the Gross-Neveu models are far too simple to
be representative for the whole spectrum of renormaliz-
able field theories. Nevertheless, the light-cone formula-
tion has not yet been given, to the best of our knowledge, '

and turns out to be of interest in its own right, being
somewhat more involved than in the case of the super-
renormalizable large-N QCDz. By way of example, since

'Permanent address: Institute of Physics, University of Tokyo,
Komaba, Tokyo 153, Japan.

iReference [21] addresses the Nambu —Jona-Lasinio model on
the light cone. As is well known, this model is not renormaliz-
able in 3+ 1 dimensions; hence the thrust of this paper is neces-
sarily very different from ours, in spite of some common aspects.

0556-2821/93/48(12)/5883(12)/$06. 00 48 5883 1993 The American Physical Society



5884 M. THIES AND K. OHTA 48

the fermion mass in the Gross-Neveu model is generated
dynamically, rejecting directly nontrivial vacuum prop-
erties, it is clear from the beginning that the conventional
folklore about the "triviality of the vacuum" cannot be
entirely correct. Once the light-cone Tamm-D ancona'

equation has been derived, the gain in simplicity for vari-
ous applications will be shown to be again substantial.

The paper is organized as follows: In Sec. II, we apply
a systematic 1/N expansion to the light-cone Gross-
Neveu model and point out where the issue of renormal-
ization enters. Our main aim is to derive the Tamm-
Danco6' equation for the fermion-antifermion system cor-
responding to the well-known 't Hooft equation of two-
dimensional QCD [14]. In Sec. III, we apply this equa-
tion to bound-state and scattering problems using several
variants of the Gross-Neveu model. In Sec. IV, we exhib-
it the connection to the "infinite momentum frame" limit
in equal-time quantization, and Sec. V contains our sum-
mary and conclusions.

Introducing light-cone coordinates

x —= —(x +x'), 8 = —(8 +8,),
2

' — 2
(2.6)

with x+ the (light-cone) time, x the spatial coordinate,
the Lagrangian (2.1) is converted into

(2.7)

Varying the action with respect to P and itj, we obtain
the Euler-Lagrange equations

and the fermion field in terms of right- and left-handed
components will be denoted by

x= (2.5)

II. FORMALISM
i&Za, y= [m, —g'[(1—X)y'y+(1+X)1{'y]]q,
i&2d g= [mo —g [(1+A,)P g+(1 —

A, )g P]IP .
{2.8)

The Lagrangian of the Gross-Neveu model "family*' is
given by

(2.1)

As expected in light-cone quantization, only the right-
handed fermion field P is dynamical, whereas the left-
handed field f obeys an equation of constraint. The
canonical momentum conjugate to P is given by

Here, we have suppressed the color indices, i.e., used the
notation m(x)= =i&2/ (x),58 P(x)

{2.9)

(2.2) and we impose the standard equal light-cone time an-
ticommutation relations:

0 1
1

0

1 0

0 —1

1 0
(2.3)

The original model of Ref. [1] with scalar interaction and
massless fermions is obtained by choosing A, =O, mo=0;
the chirally invariant model corresponds to A, = 1, mo =0,
and occasionally a mass term has been considered
(moAO). We use the following "chiral" representation
for the y matrices:

[P (x),P(y)] = —&(x —y), [P(x),P(y)] =O .
1

v'2 (2.10)

Q(x;x,y ):=—g P;(x+,y )p;(x+,x ),1

I

As in Ref. [18], we shall develop a systematic large-N
expansion around operators bilinear in the fermion fields,
using an equations of motion approach. Since (unlike in
QCD2) we cannot solve the constraint and eliminate g at
this stage, we have to introduce two types of bilinears:

0 —1

The metric tensor is chosen as

(2.1 1)

~(x;x,y ):=—gP;(x+,y )g, (x+,x ) .1

i

(2.4)

For Q(x+;x,y ), the following equation of motion is
readily derived from Eq. (2.8) (suppressing the x+ vari-
able to ease the notation):

i+2B+Q(x,y )= [mo —Ng [(1—k)A (x,x )+(I+A)A (x,x )]]2 (x,y )

—A (y, x )[mo Ng [(I+A, )A (y—,y )+(1—A)A (y,y )]I . (2.12)

A (x+;x,y ), on the other hand, satisfies the constraint

iV2 A(x,y )=[ma Ng [(I+A)A(x,x— )+(1—A)A (x,x )]JQ(x,y ) . (2.13)
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Following Ref. [18], we now expand Q and A around
their "classical" (c-number) parts, which can be identified
with the corresponding vacuum expectation values:

Q (x+;x,y ) =p(x —y )

+ —Q(x+;x,y )+

and (2.22) (called in the following the Hartree equation) is

mo1— 2 i. dk p(k) (2.23)

For the chirally symmetric model (A. = l, ma=0), we
introduce the modulus and the phase of the complex
number a (0):

(2.14) a(0)= ~a(0)~e'~ . (2.24)

A (x+;x,y ) =a (x —y )

a(x —y )Imo —Ng [(1—A, )a(0)+(1+1,)a'(0)]]
=a*(y —x ) [mo Ng [ (1+—A )a (0)

+(1—A, )a*(0)]],

iv'2 a(x —y )
~

— a
Bx

=
I m0 Ng [(1+—A, )a (0)+(1—

A, )a *(0)] ]

Xp(x —y ) .

(2.15)

(2.16)

These equations determine the vacuum properties in a
Hartree approximation. Their implications are some-
what different, depending on whether or not we have a
situation with chiral symmetry. Therefore, let us discuss
these two cases separately.

In all cases where the chiral symmetry is explicitly bro-
ken (either by the interaction or the mass term), Eq.
(2.15) for x =y implies that a (0) is real; the value of
a (0) is related to the fermion condensate via

+ —A(x+;x,y )+
N

The assu~mtion that the leading fiuctuating part is of or-
der I/VN will be verified in the course of consistently
solving Eqs. (2.12) and (2.13). Inserting this expansion
into Eqs. (2.12) and (2.13), we find in zeroth order

Here, both gg and Py g condensates are nonvanishing,
in general, and related via

& Pg &
=2Nl a (0)

l cosy,

&gy g&=2N~a(0)~ising .

Relation (2.22) still holds in the form

m p(k)
v'2 k

(2.25)

(2.26)

CP,.(x )C '=P;(x ) . (2.27)

If the vacuum is C invariant, we can deduce the following
symmetry property of the density matrix:

&o y', (y-)y, (x-)lo&=&obey, (y-)y,'( -)lo& . (2.28)

Using the anticommutation relations (2.10), this implies
that

p(x —y )+p(y —x ) = —6(x —y )
1

v'2 (2.29)

but m = 2Ng a —(0) is now complex, and Rem plays the
role of the physical fermion mass. The self-consistency
relation can be obtained from Eq. (2.23) above by setting
mo =0.

Of the discrete symmetries, charge conjugation C is the
most important one in light-cone quantization because,
unlike parity or time reversal, it is still manifest. The
right-handed fermion field transforms as

&fg& =2Na(0) .

More generally, Eq. (2.15) yields

a(x —y )=a*(y —x ) .

Defining the physical fermion mass through

m:=mo —g &Pg& =ma 2Ng a(0), —

Eq. (2.16) can be rewritten as

(2.17)

(2.18)

(2.19)

or, in momentum space,

p(k)+p( —k) = 1

v'2 (2.30)

This relation will frequently be used below.
So far, we have done all the forrnal manipulations

without worrying about possible divergences and regular-
ization. In the free theory, the density matrix p(k) is sim-

ply given by

iv'2 a(x )=mp(x ) .
clx

(2.20) p(k) = —0( —k)
1

V2
(2.31)

Upon Fourier transformation using the convention

f(k)= Jdx e' " f(x ) (f =p a),
we get

a(k)=a*(k)= m p(k)
k

(2.21)

(2.22)

The self-consistency condition following from Eqs. (2.19)

since all the negative momentum states of the right-
handed fermions are filled (see, e.g., Ref. [18]). In gen-
eral, one assumes that the interacting vacuum in light-
cone quantization is the same as the free one. Therefore,
the integral appearing in the Hartree equation (2.23)
needs both UV and IR regularization. By contrast, in
normal coordinates, only UV regularization is necessary
[10]. In equal-time quantization, the renormalizability of
the Gross-Neveu models guarantees that the coupling
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constant g will always be accompanied by the same
divergent integral if one calculates physical quantities, so
that the final results do not depend on the cutoff [1]. As
we shall see below, the same phenomenon occurs in
light-cone quantization. We can introduce IR and UV
cutoffs to define the integral in Eq. (2.23) properly; even-
tually, however, no physical results will depend on these
cutoA's, so that we do not have to specify them in more
detail at this point. In particular, there will be no need to
relate UV and IR cutoffs, as has sometimes been done in

light-cone quantization in order to reproduce known re-
sults from ordinary coordinates.

We now proceed to the next order in the large-N ex-
pansion (2.14). To order 1/V'N, we encounter the linear-
ized equation of motion and constraint corresponding to
the Tamm-Dancoff approximation (TDA) in many-body
theory. Without serious loss of generality, we can assume
a nonchiral model or the chiral model with the special
choice y=0. Equations (2.12) and (2.13) then yield the
two equations

i&28+Q(x, y )=m[ A(x, y )
—At(y, x )]

—Ng a(x —y )[(1—A)A(x, x )+(1+k)A (x,x )
—(1+A)A(y, y )

—(1—A)A (y,y )], (2.32)

i&2 A (x,y ) =mQ(x, y ) Ng p(x——y )[(1+A,) A (x,x )+(1—X) A (x,x )] .
X

(2.33)

In order to obtain the usual light-cone formulation in terms of right-handed (dynamical) fermion fields only, we have to
eliminate A, A from Eq. (2.32), using the constraint (2.33). This is again most conveniently done in k space. The
Fourier transform of the fiuctuation operator Q(x,y ) will be defined by

Q(k', k) = f dx dy e'" "~ 'Q(x, y ), (2.34)

and similarly for A. Then, Eqs. (2.32) and (2.33) go over into

i&2B+Q(k', k) = m [ A (k', k) A(k, k')]—

—Ng [(1—
A, )a (k) —(1+A, )a (k')] f A (q —k, q

—k')+ [(1+k)a (k) —(1—
A, )a (k')]

2m

X f A t(q —k', q
—k) (2.35)

&2k'A(k', k)=mQ(k', k) Ng p(k) (I+—A, )f A(q —k, q
—k')+(1 —

A, )f At(q k', q
—k)—2' 2%

(2.36)

Let us sandwich these operator equations between the vacuum on the right and eigenstates of P and H with momentum
P and energy 6' on the left (mesons, qq scattering states):

Q(k', k) P(P, k)
A(k', k} lo& =2m5(P —k+k') y(P, k)
A t(k, k') y'(P, k)

(2.37)

a denotes all other quantum numbers needed to specify the state completely. Using

iB+(a,P~Q(k', k)~0) =(a,P~[Q(k', k), H]~0) = —8$(P, k),

the equation of motion (2.35) for Q(k', k) becomes an eigenvalue equation for P(P, k),

(2.38)

&26 (h(P, k) = m [y—(P, k) —y'(P, k) ]

—Ng I [(1—
A, )a (k) —(1+A, )a (k —P)]F(P)+ [(1+A,)a (k) —(1—

A, )a (k —P)]F'(P)}, (2.39)
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where we have introduced the notation

F(P)= f y(P, q), F'(P)= f y'(P, q) .dq (2.40)
6'P(P, k) = —+ P(P, k)

k P —k

The constraint (2.36) (and its Hermitian conjugate) yield
~g2m2

Z (P) [p(k —P) —p(k) ]
1 1

2&2 k P —k
V2(k —P)y(P, k)= mg(P, k)

—Ng p(k)[ (1+X)F(P)

+ (1—
A, )F'(P) ), (2.41)

&2k''(P, k)= mg(P, k)

Ng p—( k —P) [ ( I +2, )F'(P)

+(1—k)F(P)] . (2.42)

f dk' 1

2~ k'

m 1 16'P(P, k) = —+ P(P, k)
2 k P —k

$(P, k'); (2.48)

Z (P) [p(k —P) —p(k) ]v'2These last two equations can serve to eliminate F(P) and
F'(P) and subsequently derive the desired equation for P
which contains only right-handed fermion fields. Since
the case for general A, is rather nontransparent (and not
necessary), we now specialize to A. =0, 1.

(a) A, =O. Here, only the combination F+F' enters
Eqs. (2.39)—(2.42), and we find

dk' 1 1
~ 2~ kk

(2.49)

F(P)+F'(P) = fm dk 1

v'2 2' k
P(P, k)

Ng dk p(k) + p(k P)—
v'2 2sr k Pk—

In either case, we recognize in the first term. on the right-
hand side the standard kinetic energy in light-cone coor-
dinates. The interaction term is separable, consisting of
one term for A, =O and two terms for A. =1. Notice that
both cases can again be recombined by writing the in-
tegral as

X[F(P)+F'(P)] . (2.43)

Using charge conjugation in the form of Eq. (2.30), we
can show that

f dk' 1 1

k P —k

+i. —+1 1

P —k

1

P —k'

P(P, k') .

dk p(k P) dk—p(k)
2~ k 2~ k —P (2.44) (2.50)

(here, one has to use f dk jk =0, i.e., to interpret this in-

tegral as a principal value integral). Therefore,

F(P)+F'(P) =Z(P) —f —— P(P, k)
&2 2m' k P k

(2.45)

(a,P~Q(k', k)~0) = —(a,P~Q( —k, —k')~0&,

where

(2.51)

This form exhibits in a more transparent way the symme-
try properties under charge conjugation. Using Eqs.
(2.14), (2.27), (2.34), and (2.37), we find

with the definition
~a, P) =C~a, P) (2.52)

Z '(P):= 1+&2Ng
2m. k

(2.46)

Later, we shall see that Z(P) is in fact a constant in-
dependent of P, but we do not wish to put in any preju-
dice at this stage.

(b) A, = l. In this case, the equations for F and F' de-
rived from (2.41) and (2.42) decouple, and

F(P)= —Z(P) —f P(P, k),

F'(P)=Z(P) —f —$(P, k) .
V2 2' k

(2.47)

Combining Eqs. (2.39)—(2.47), we get after some algebra
the following eigenvalue equations for P.

A, =O:

is the charge conjugate state. Thus, charge conjugation
corresponds (up to a phase) to exchanging k and P —k.
H conserves the symmetry property of the wave function
P(P, k) under this transformation, and the first term in
(2.50) acts only in odd, the second only in even states.

Equations (2.48) and (2.49) are the niain result of this
section. Together with the definition of the "renormal-
ization constant" Z, Eq. (2.46), and the Hartree condition
(2.23), they fully define the Tamm-Dancoff equation in
light-cone coordinates from which properties of qq bound
and scattering states can be derived. We wish to em-
phasize that so far we have neither replaced p(k) by the
anticipated step function of the free vacuum, nor have we
introduced the usual rescaled variable x =k/P running
from 0 to 1. The reason is that due to the renormaliza-
tion, these manipulations are somewhat delicate in the
present case and may lead to ill-defined expressions. In
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the following section, where we consider some specific
applications of this formalism, we shall see that it is nev-
ertheless possible to avoid all ambiguities, provided one
consistently uses the Hartree equation. This will also
shed some light on the physical role of Z(P), Eq. (2.46),
which we have introduced for purely notational reasons
above.

& klHO(P) lk' & =2~a(k —k') —+m 1 1

k P —k

and the separable potential V,

&k~V(P)~k'&=&k~g &A(P)&g ~k'& .

The "form factors" of this potential are identified as

(3.4)

(3.5)

III. APPLICATIONS TO BOVND-STATE
AND SCATTERING PROBLEMS

g', ir(P): =g'Z (P) (3.1)

[Z(P) has been previously defined in Eq. (2.46); its P
dependence will eventually turn out to be spurious, so
that the name "coupling constant" for gdr is justified. ]
Using the Hartree condition (2.23) and charge conjuga-
tion, one can derive the following relation for g,ff..

In the present section, we shall demonstrate the sound-
ness of the light-cone formalism developed above by ap-
plying it to a few specific cases. Let us start with the non-
chiral, massless Gross-Neveu model (A, =O, no=0). The
Tamm-Dancoff equation (2.48) for P(P, k) has the form of
a Schrodinger equation with separable potential, and can
be dealt with in exactly the same way as the analogue
nonrelativistic problem. Before doing this, however, it is
useful to introduce an e6'ective coupling constant as fol-
lows:

&klgp&= ——1 1

k P —k'
&k~g &=[p(k —P) —p(k)]&k~g

and the "coupling constant" is given by

Ng, s(P)m
A, (P) =—

2 2

(3.6)

(3.7)

&

klan'(&,

P)lk'& =
& k~gp &~(&,P)&gp lk' & . (3.8)

The Lippmann-Schwinger equation relates ~(6', P) to
A, (P) via

)
A, (P)

1 —X(P)&g ~G (@,P) g
(3.9)

Both Ho and V are diagonal in the total momentum P as
required by translational invariance; however, unlike in
the nonrelativistic case, V has a nontrivial P dependence.
Like V, the T matrix will have a separable form with the
same form factors:

Nga(P) dk 1 1
[p(k —P) —p(k) ] —+

(3.2)

where Go denotes the free Green's function

Go(6, P) = [6 Ho(P)+—i e] (3.10)

This equation can be regarded as renormalization
prescription for the effective coupling constant g,s.(P), in
the same way as the Hartree equation is used to renor-
malize the bare coupling constant g . Now let us exploit
the similarity of Eq. (2.48) with the Schrodinger equation
and use standard time-independent scattering theory to
derive the qq scattering matrix. We write the Hamiltoni-
an underlying Eq. (2.48) as

(3.3)

with the (light-cone) kinetic energy Ho,

+ &g Go(@,P)lg~ & . (3.1 1)

The first term on the right-hand side is potentially
dangerous. If we would try to replace p by a step func-
tion in here, we would encounter ill-defined expressions.
However, this term is precisely cancelled by a corre-
sponding term in the matrix element of Go, so that the
sum of the two terms is well behaved. Indeed, we have

Using Eqs. (3.2) and (3.7), we can transform Eq. (3.9) into

1 2P dk p(k —P) —p(k)
w( e,P) m 2' k (P —k)

&g ~G (A, P)~g &= f [p(k —P) —p(k)]
dk

1 1

k P —k

2

m 1 1—+ +i@
2 k P —k

f [p(k —P)—p(k)]
2PD —4m

2P 6'k (P k) Pm +ie—— (3.12)

The announced cancellation takes place and the net re-
sult, using the standard notation

1 2P 2 dk p(k —P)—p(k)(s —4m )
7 (s P) m 2~ sk (P —k) —m P +i E

s =2P@ (3.13)
(3.14)

for the square of the invariant mass of the qq system, be-
comes At this point, the integral does not contain unwanted
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singularities any more, and we can safely replace p(k) by
the free light-cone vacuum expression (2.31). Rescaling
variables in the usual way via k =xP, we find that ~ de-
pends only on s and has the simple, Lorentz invariant
form

1 +2(s —4m ) yi dx 1

m' o 2~ sx(1 —x) —m +i@

(3.15)

r(s) has a pole at s =4m, exhibiting the well-known qq
bound state at threshold in the large-N limit of the
Gross-Neveu model [1]. The final result (3.15) is ex-
pressed in terms of the physical fermion mass, whereas
the bare coupling constant has disappeared, in agreement
with the "dimensional transmutation" discussed in Ref.
[1]. The fermion loop integral on the right-hand side of
Eq. (3.15) is already in the simple form usually obtained
in covariant perturbation theory, using the Feynman pa-
rameter, and can now be trivially evaluated:

Here we have defined

g:=4m /s, (3.17)

i.e., g ( 1 corresponds to scattering kinematics. This sim-
ple calculation should be contrasted with the correspond-
ing calculation in normal coordinates which leads to
much more "ugly" integrals, and where the Lorentz in-
variance is deeply hidden (see the following section).

As a second application, we consider the chirally in-
variant, massless model (A, =l, mo=0). The Hamiltoni-
an which can be inferred from Eq. (2.49) now involves a
two-term separable interaction:

&kII'(P)lk'&=~(P)(&klgp&&gplk'&+&kIfp &&fplk'&)

(3.18)

Here, A, (P), gp, and gp are as defined in Eqs. (3.6) and
(3.7), whereas the new form factors fp and fp differ by a
relative sign from the previous ones:

1

r(s)

&z
1 —g ln +i~

rrm 1+& I —g

for g(1,
2i/2 1&g —1arctan for q ) 1 .
7Tm 7/

—1

(3.16)

& k~ fp ) = [p(k —P) —p(k)](ki fp & .
(3.19)

Since H preserves C parity as pointed out above, we can
discuss separately the even and odd states under inter-
change of k and P —k. In the odd sector, only the term—(k gp)(gp~k') in the interaction acts and everything
is identical to the previous case (A, =O). In the even sec-
tor, only the second term —(k~fp)( fp~k') contributes
and Eq. (2.49) reduces to

6'P(P, k) = —+ P(P, k) — — [p(k P) —p(k)] J— , +, P(P, k') (3.20)

Here, the expected massless meson ("pion") appears, signaling the breaking of chiral symmetry. Indeed, the ansatz

P(P, k) =p(k —P) —p(k) (3.21)

solves Eq. (3.20) with the eigenvalue 6 =0 [it just converts the expression inside the large square brackets into the re-
normalization condition for g,fr(P), Eq. (3.2)]. Repeating the steps performed in the A, =O case, the T matrix in the even
channel can be derived as

1 2P dk p(k P) —p(k) —dk
k [1/k+1/(P —k)]

r(s) m 2rr k(P —k) 2rr 6 —(m /2)[1/&+1/{P —k)]+i@
&2s i dx 1

m o2~sx 1 —x —m +i@
(3.22)

Except for the replacement of an overall factor s —4m
by s, the result coincides with the one above. Again, the
bare coupling constant has disappeared in favor of the
physical fermion mass.

Summarizing the procedure followed so far, we em-
phasize the crucial role played by the renormalization
condition. If we had attempted to set p(k)=B( —k)/V2
before exploiting this condition, we would invariably
have run into ill-defined distributions like B(x)/x. On

the level of the renormalized, finite expressions, however,
there is no such problem.

Once we are aware of this subtlety, we can further sim-
plify the TDA equations and cast them into the standard
light-cone form. Although this does not yield any new
results, it is instructive and may be of interest when com-
paring different field theories in light-cone quantization.
Using rescaled momenta and step functions for p(k), we
simply rewrite Eqs. (2.48) and (2.49) as

1 1 %g,~msP(x)= m' —+ P(x) — f dyx 1 —x 4m o x
1

1 —x
1

1 —y
+A, —+1 1

x 1 x
1 1—+

y
(3.23)
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and the renormalization condition in the form
2 2

1= Ng, ~ 1 dX g,a- 1 dx
2 IT 0 X 2& 0 1 X

(3.24)

1=- Ng
go

dx
2' —oo X

Ng Jidx J~ dx
2& 0 X 1 X

(3.25)

Taking the second integral to the left-hand side and di-
viding through, this can be written in the equivalent form

with

2&g.a 1dX1=
277 0 X

(3.26)

Ng I dx
g'.a =

27T 1 X
(3.27)

The integrals appearing in (3.23) and (3.24) should be un-
derstood as shorthand notation for

1 —5
lim dx( . . ),5~0 6

so that all the expressions are well defined; x is now re-
stricted to the interval [0,1]. Equation (3.23) is the most
compact form of the 't Hooft equation for the massless
Gross-Neveu models. From this equation and the renor-
malization condition (3.24), one can now easily rederive
the T matrix or the bound state properties discussed in
the present section. In particular, the "pion" wave func-
tion is simply given by P(x ) =const (0 ~ x ( 1), exactly as
in the chiral limit of large-X QCD2.

The transition from g to g,z can now be interpreted as
follows. In the rescaled variables, the Hartree equation
(2.23) reads

1 1
X —+ (3.29)

The Tamm-Dancoff equation, on the other hand, is un-
changed, so that the bare mass enters only through this
renormalization condition.

By way of example, for A, =O (nonchiral Gross-Neveu
model), the qq problem can again be phrased in terms of
~(A, P) of Eq. (3.11), which still holds. Imposing the
modified Hartree condition (2.23) for moWO and using
the notation

2 2

A(P) =AoZ(P), Ao=— (3.30)

we find the simple result

1

~(s;m, mo)

m0 + 1

m A,o r(s; I,O)
(3.31)

where r(s;m, mo=0) stands for r(s) as used above. Since
both terms on the right-hand side of Eq. (3.31) are nega-
tive, there is no bound-state pole any more; the marginal-
ly bound meson disappears for mo&0. In the chiral mod-
el with a symmetry-breaking mass term, we can discuss
again the even and odd channels separately. For the even
states, we find the following eigenvalue condition for a
bound state of mass p:

rederive the same results in ordinary coordinates, using
the infinite momentum frame.

As third and last application, we consider the massive
Gross-Neveu models. The Hartree condition (2.23) now
contains the ratio mo/m; this implies the following con-
dition for g,z..

~o g ff(P) +g ff( ) dk
[p(k —P) —p(k) ]m g' v'2 2m

On the other hand, using our original definition of Z(P),
Eq. (2.46), we have

arctan
v'q —1

7TI 0
2 7 '9

Xg m
(3.32)

Z-'(P) =1+&ZXg'
2m k

X=1+ I B(P —k)
2~ k

&g ~ dX=1—
2'IT 1 X

(3.28)

p2 1 %Pl 0

4m g Xg I (3.33)

We recover the standard relation between pion mass,
quark mass, and condensate, well known from QCD2.

In the limit m0~0, we can apply mass perturbation
theory, exploiting the fact that g —+ ao:

Thus, g,ff of Eq. (3.27) agrees with g,ff(P) introduced
above in Eq. (3.1), and we see that Z is indeed indepen-
dent of P. g is the bare coupling constant, whereas
g,&=Zg can be interpreted as an effective coupling con-
stant to be used when working only in the interval [0,1].
The remainder of the k axis has simply been projected
out. It is plausible that the quark momenta for a qq state
of momentum P are not strictly confined to 0(k &P.
Otherwise„ it would indeed be hard to understand dynam-
ical mass generation which requires some (residual) vacu-
um dynamics. However, everything which goes on out-
side the interval [0,1] can apparently be absorbed in a
redefinition of the coupling constant. These remarks will
be further clarified in the following section, where we

4am 0m 4~
mo(A) .

~g 2 (3.34)

2 2

1—m o g eff &g eff

y
i dx

g 2& 0 X
(3.35)

Once again, the corresponding calculation in normal
coordinates requires significantly more effort; see, e.g. ,
Ref. [11]for both QCDz and the Gross-Neveu model. Fi-
nally, we note that the 't Hooft equation in the shorthand
notation of Eq. (3.23) is still valid for the massive case.
The dependence on m0 appears only in the renormaliza-
tion condition (3.24), which has to be replaced [cf. Eq.
(3.29)] by
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IV. INFINITE MGMENTUM FRAME

Here, we shall rederive the main results of Secs. II and
III, using standard equal time quantization together with
the old idea of the infinite momentum frame [13]. First,
this will serve to prove the equivalence of the two ap-
proaches for the particular case of the Gross-Neveu mod-
els. More importantly, it provides a framework in which
the light-cone formulation emerges more naturally as a
"limit" than in straight light-cone quantization, and
which is therefore conceptually simpler. In particular,
the relationship between renormalization and nontrivial
vacuum structure and the role of the effective coupling
constant g,~ can be understood more easily.

The nonchiral, massless Gross-Neveu model [i.e., A, =O,
ma=0 in the notation of Eq. (2.1)] has recently been
studied in ordinary coordinates, using the same type of
"equations of motion approach" as here [10]. Since this
particular example is sufficient for our present purpose,
we do not have to start all over again but can use many of
the results of Ref. [10]. The reader is referred to this pa-
per for further details of the formalism in ordinary coor-
dinates.

In equal-time quantization, the fermion-antifermion
Tamm-Dancoff equation assumes the standard matrix
form of the "random phase approximation" (RPA):

1 —1
X —1

(4.6)

satisfies the Lippmann-Schwinger equation, provided we
choose

2

r(6, P) =
1 Ng I—(6",P)

(4.7)

The integral I(6', P) is defined as the matrix element of
the free Green's function between the form factors of the
separable potential:

I(P,P)= J v(k)u(k —P)v(k —P)u(k)dk
2m'

X
1

E(k P—, k)+—i c
1

6+E(k P,k)—

Clearly, the right-hand side needs an UV cutoff, and we
interpret Eq. (4.5) in the usual way as renormalization
prescription for the bare coupling constant g . We now
proceed as in light-cone quantization, i.e., derive the T
matrix corresponding to the Hamiltonian H =Hp+ V,
Eqs. (4.2) —(4.4). V is separable and it is easy to see that
the ansatz

(kl T(A, P)lk') = r(@,P)v(k —P)u (k)v(k')u (k' P)—

B X X
(4.1)

(4.g)

Here, X and Y are matrix elements of particle-hole
creation and annihilation operators, respectively, between
vacuum and qq states, rejecting the possibilities of for-
ward and backward propagating fermions. The integral
operators A and B have been derived in Ref. [10]. Inter-
preting Eq. (4.1) as a two-channel Schrodinger equation
and using the explicit form of 3 and B given in Ref. [10],
we can identify the following Hamiltonian: The kinetic
energy part is given by

X
1 + 1

E(k) E(k P)—(4.9)

This integral is logarithmically divergent and can be split
into divergent and convergent parts:

In ordinary coordinates, the calculation can be carried
through as follows: Evaluating the integrand of Eq. (4.8),
one obtains [10]

1

y
dk 4m +P E(k P, k)— —

2 2m 8 E(k P, k)+i—e—

1 0
& klIIO(P) lk' & =2~x(k —k')E (k —P, k) 0

with

(4.2) I ( 6,P) =Iq;„+I,o„„(6,P)

with

(4.10)

E(k P, k) =E(k P—)+E(k), —

E(k)=+ m+k
(4.3)

and

(4. 1 1)
1 pdk 1 1

2 " 2m E(k) E(k P)—
the (Hartree) single-particle energies. The potential has
the separable form

(kl V(P) k') = Ng v(k —P)u (k)v(k')u (k' P)— 1 dk 4m +P
2 2m 6 E(k P, k)+ie- —

T

1 —1
X

1 1
e (4.4)

1 1

E(k) E(k —P (4.12)

Here, u (k) and v (k) are the positive and negative energy
Hartree spinors which in the present case are just free,
massive spinors. The physical fermion mass m is defined
by the Hartree condition

The divergent constant Iz;„ is exactly canceled by the 1 in
the denominator of Eq. (4.7), if we invoke the Hartree
condition (4.5). Therefore, the net result for r(e, P) is
finite and independent of the bare coupling constant, as it
should be.

1= Ng p dk
2~ " E(k) (4.5)

1

I„„„(A', P)
(4.13)
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I„„canbe evaluated analytically, although the calcula-
tion is much more tedious than the corresponding light-
cone calculation, and the result agrees with the one ob-
tained above [22]. However, this is not our principal goal
here. We shall only consider the integral I(6,P) in the
limit of very large momenta P and demonstrate how it
can be used to rederive the light-cone expressions. First,
let us split the k axis for the fermions or antifermions into
two complementary regions of momenta:

Defining
2

2 g
2I (2)

dlv

we obtain

1 Ng—,s [Id;„'+I,",'„„(s)]

(4.19)

(4.20)

region 1: 6 &k &P —5;
region 2: k &6 or k &P —6 .

(4.14)

The renormalization condition for g,ff becomes

Ng's Jp & dk1—
2ir a E(k) (4.21)

Here, 6 is a positive momentum, and we shall assume the
hierarchy

P &)6»m, (4.15)

where s is again the invariant mass of the fermion-
antifermion state:

s=D —P (4.17)

The contribution to I„„v coming from region 2 can be
neglected in the limit P~ ~. To see this, we first note
that it is sufficient to consider the region k & P —6, ow-
ing to the symmetry of the integrand under exchange of k
and P —k. Since the integral I„„,is convergent, it is evi-
dent that the contribution from k )P —5 will be
suppressed for large P (a more detailed analysis reveals
that it is of order I /P). The divergent part on the other
hand, Id;„ is independent of P and receives comparable
contributions from regions 1 and 2. If we nevertheless
want to project out region 2, we can do this by introduc-
ing an effective coupling constant. First, we write (4.7) in
the limit P~~ more explicitly as

+g 2

Ng 2[I(I) +I(2) +I( i) (s)]
(4.18)

for reasons which will soon become clear. Our aim is to
eliminate region 2 and set up an effective theory defined
exclusively in region 1. In the limit P~m (infinite
momentum frame), this effective theory will be shown to
become identical to the light-cone formulation.

In the qq scattering problem, the imaginary part of
I(@,P) arises from the kinematical point where the fer-
mion and antifermion in the intermediate state have the
same momenta as in the initial state (up to a possible ex-
change). If we restrict ourselves to initial momenta in re-
gion I, we can trivially restrict ourselves to region 1 when
evaluating ImI. Because of Lorentz invariance, this as-
sumption is perfectly harmless. As far as the real part is
concerned, let us first consider the convergent part I„„,.
In region 1, the square roots in the single-particle ener-
gies (4.3) can be expanded [this is, of course, the motiva-
tion for requiring the inequalities (4.15)]. Rescaling the
integration variable via k =Px and introducing 5=5!P,
we find

I„„,(s) =—(4m —s)j(1) 1 2 1 —& dx 1
conv 2~ sx(l —x)—m +is

(4.16)

where we have used the Hartree condition (4.5) and Eq.
(4.19). Since, in view of condition (4.15), we can approxi-
mate E (k) by k in region 1, this yields

geff 1 —& dx ~ 2 I(1)
2

g eff div2m 5 x
(4.22)

Substituting Eq. (4.22) into Eq. (4.20), we finally get

1r(s) = —
(i) (4.23)

In the limit P —+ ~, if 6 is kept constant, 6 goes to zero
and Eqs. (4.16) and (4.23) agree with the light-cone result,
Eq. (3.15) of Sec. III, up to an overall factor. This
different normalization is due to the fact that the form
factors of the separable potential were defined differently
in light-cone and ordinary coordinates. Using the expli-
cit form of the spinors from Ref. [10], one finds, for re-
gion 1 [as defined in (4.15)],

U(k —P)u (k)U(k')u (k' P)—
r

m 1

4 k
(4.24)

1 1

Inserting this result into Eq. (4.4) for V and comparing
with Eqs. (3.5)—(3.7), the difference in normalization can
be accounted for. Similarly, the Hartree condition (4.22)
and the definition of the effective coupling constant (4.19)
coincide with Eqs. (3.26) and (3.27) above.

This derivation shows clearly that in intermediate
states, the fermion or antifermion momenta are not
confined to 0 & k & P. However, if we restrict ourselves to
qq pairs with very large center-of-mass momentum, the
contribution from outside this interval becomes trivial in
the sense that it does not depend on the dynamics (i.e.,
the variable s). Therefore, it can be taken into account
by means of an effective coupling constant. The status of
the vacuum from this point of view can be summarized as
follows: In region 1 which is used to define the effective
theory, the vacuum indeed looks trivial, since one can
neglect the fermion mass in the expression for the single
particle energy. Outside this region, the fermion mass
plays a role and the vacuum is definitely different from
the free massless vacuum. However, provided we look
only at fast moving qq pairs, this dynamics is hidden in
the coupling constant and modified renormalization con-
dition of the effective theory.
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V. SUMMARY AND CONCLUSIONS

In this paper, we have applied continuum light-cone
quantization to the Gross-Neveu model "family. " The
motivation for this study was the desire to understand in
a simple, but nonperturbative case the implications of re-
normalizability on light-cone dynamics. On the technical
side, the main tool was the I /X expansion in the form of
the equations of motion approach. This method can be
taken over almost literally from equal time quantization,
the only difference being that certain dynamical equa-
tions become equations of constraint and have to be used
in order to eliminate (nondynamical) left-handed fermion
fields.

To zeroth order or equivalently at the Hartree level,
the situation in light-cone and ordinary coordinates is
very similar: Dynamical fermion mass generation occurs.
However, the value of the mass (or condensate) cannot be
predicted, but has to be put in by hand via the renormal-
ization condition. This is different from the two-
dimensional gauge theories where the coupling constant
provides a mass scale which determines the condensate.
In the (massless) Gross-Neveu models, the dimensionless
coupling constant can be eliminated in favor of the physi-
cal fermion mass in all physical observables, an example
of dimensional transmutation. In the present formalism,
this is achieved by using consistently the Hartree equa-
tion, either in light-cone or in normal coordinates.

To order I/&N, fluctuations are considered and qq
scattering and boundstates come into focus. In equal-
time quantization, the Bethe-Salpeter equation has the
standard RPA form, describing forward and backward
moving pairs. In light-cone quantization, we have de-
rived the analogue of the 't Hooft equation with the ex-
pected simpler TDA structure by systematically eliminat-
ing the left-handed fermion fields. This light-cone
Tamm-Dancoff equation has two conspicuous features:
First, the interaction is of separable type, and secondly,
the coupling constant gets automatically renormalized in
the course of eliminating the left-handed fermions. The
first feature is shared by the RPA equation in ordinary
coordinates and is at the origin of the fact that these
models can be solved analytically. The second feature,
described by the constant Z, is specific for the light cone,
and could be understood in terms of projecting out a cer-
tain region of fermion momenta. We have shown that it
is possible to write the Tamm-Dancoff equation in the
usual light-cone form with the variable x &[0,1], al-
though with an effective coupling constant and a corre-
sponding modified renormalization condition. Applica-
tions of this formalism to the nonchiral, the chirally in-
variant and the massive Gross-Neveu models allowed us
to derive scattering and bound-state properties of the
fermion-antifermion system in a concise way, much more
elegantly than in ordinary coordinates.

Finally, we have reproduced the main results indepen-

dently by working in normal coordinates, in the infinite
momentum limit. Here, the light-cone theory could be
understood as an effective theory defined for a certain
range of momenta. Apart from the infinite momentum
frame, we had to use one other "trick, " namely, prevent
fermion or antifermion momenta from coming close to
the region k -m. This was achieved by introducing the
momentum 6 in defining the effective theory and enabled
us to work with a "trivial vacuum, " thus playing a simi-
lar role as the small interval in Ref. [18]. In this way, the
appearance of the effective coupling constant, which is
somewhat miraculous in the light-cone derivation, is
made very compelling. Of course, this infinite momen-
turn calculation is not meant as a substitute for the light-
cone calculation. After all, there is little gain from the
light-cone if one first has to go through the whole deriva-
tion in normal coordinates, with all its spinorial compli-
cations. The idea was to have an independent
confirmation of the first derivation and try to clarify the
structure and physics content of the light-cone TDA
equation.

This study shows that there are cases where UV renor-
malization and light-cone techniques can be reconciled
without destroying the well-known advantages of light-
cone quantization. As far as the problem of symmetry
breaking is concerned, the situation here is perhaps less
mysterious than in other cases, since renormalization has
forced us into keeping some residual, nontrivial vacuum
structure. To verify the consistency of our procedure,
one should evaluate matrix elements of currents and veri-
fy the corresponding Ward identities. This has not been
done yet, but since we have via the infinite momentum
frame approach a way to relate the light-cone to the ordi-
nary coordinate formulation, we believe that possible
difficulties can be resolved.

It will be interesting to try to apply similar methods to
other, more complicated field theories. As far as the
Gross-Neveu models are concerned, there is one problem
which we have avoided so far: the description of
baryons. As discussed in Refs. [1,10], baryons can be cal-
culated by means of the Hartree approximation in the
large-N limit, provided the effects of the Dirac sea are in-
cluded self-consistently. In order to be able to take ad-
vantage of the light-cone quantization, one needs to un-
derstand clearly how to boost such objects. Although
this can be done in principle, there are still some techni-
cal problems in practice which are presently under inves-
tigation. The solution of these problems may possibly
give a handle on the more general issue of how to de-
scribe and quantize solitons on the light cone.
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