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Role of zero modes in the canonical quantization of heavy-fermion QED
in light-cone coordinates
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Four-dimensional heavy-fermion @ED is studied in light-cone coordinates with (anti)periodic field
boundary conditions. We carry out a consistent light-cone canonical quantization of this model using
the Dirac algorithm for a system with first- and second-class constraints. To examine the role of
the zero modes, we consider the quantization procedure in the zero mode and the nonzero-mode
sectors separately. In both sectors we obtain the physical variables and their canonical commutation
relations. The physical Hamiltonian is constructed via a step-by-step exclusion of the unphysical
degrees of freedom. An example using this Hamiltonian in which the zero modes play a role is the
verification of the correct Coulomb potential between two heavy fermions.

PACS number(s): 11.10.Ef, 03.70.+k, 12.20.Ds

I. INTR.ODUCTION

There has been recent progress [1—4] toward a frame-
work for describing decay processes involving heavy
quarks. Its basis has been the study of QCD in which
some of the quark masses are taken to infinity. In this
limit, the quark spin degrees of freedom decouple from
each other and the couplings of the heavy quarks to the
gluon degrees of freedom become mass independent and
are described by a Wilson line.

The remarkable consequence of this independence is
that all matrix elements of vector and axial-vector cur-
rents bilinear in either or both of a pair of heavy quarks
taken between either vector or pseudoscalar mesons in
initial and final states at arbitrary momentum transfer
are determined in terms of a single normalized function.
The question arises as to how one calculates this function.

One of the more promising approaches to problems in
QCD is light-cone quantization [5, 6]. Light-cone quanti-
zation has turned out to be a useful tool for the pertur-
bative treatment of field theories [7, 8]. In its extension
[9—13] to the nonperturbative domain, we have come to
realize that careful attention must be paid to the nontriv-
ial vacuum structure of light-cone quantum field theory.
Some mathematical aspects of the question about the
existence of such vacuum states were considered in [14,
15] (see also other references therein). For instance, the
light-cone vacuum in the massless Schwinger model can
be understood only by a careful study of the zero modes
of the constraints imposed by the light-cone frame [16,
17]. Indeed it has been conjectured that the dynamics
of zero modes in QCD in light-cone quantization provide
the mechanism for confinement [5, 6].

In the present paper we consider a four-dimensional
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heavy-fermion QED, as an initial step toward the study of
heavy-quark QCD in light-cone quantization. We carry
out a consistent canonical quantization of this gauge i+-
variant model in a light-cone domain restricted in its
"spatial" directions. It is well known that in such a re-
stricted region one has problems with zero modes [18,17].
The canonical quantization of the massless Schwinger
model on a lightlike hyperplane, taking into account zero-
mode contributions, was considered in [17]. Neglecting
such contributions, Tang et al. [19] carried out the dis-
cretized light-cone quantization of four-dimensional QED
and Mustaki [20] developed the canonical quantization of
two-dimensional QED on the null plane. We note that
these questions have also been investigated by first quan-
tizing and then taking the heavy-quark limit, in two-
dimensional QCD [21].

In studying the quantization of gauge field theories one
is con&onted by first-class constraints and their corre-
sponding gauge conditions. A consistent canonical quan-
tization formalism for such problems was proposed long
ago by Dirac [22] and Bergmann [23], and its generaliza-
tion to fermionic (Grassmann-odd) constraints by Casal-
buoni [24]. [There are in fact books on this subject [25,
26]. We will not discuss here other approaches involv-

ing path integration, Becchi-Rouet-Stora- Tyutin (BRST)
or Batalin-Fradkin-Vilkovisky (BFV) methods. ] In the
Dirac approach some problems arise. They involve the
determination of the dynamical (physical) variables and
the construction of the physical Hamiltonian. One needs
to prove, also, that in the physical sector the S matrix
does not depend on the form of the gauge conditions.

The specific gauge theory we address in this paper is in
terms of light-cone variables where, as we shall see, the
quantization comes with some important constraints in-
volving zero-frequency variables which require special at-
tention. To examine the role of the zero Inodes explicitly
we consider the quantization procedure in the separated
zeroless-mode and zero-mode sectors. In such sectors we
choose special gauge conditions and obtain the physical
variables and their canonical commutation relations. The
physical Hamiltonian is constructed by systematic elim-
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ination of the nond. ynamical variables.
In Secs. II—V the canonical quantization of heavy-

fermion QED is addressed by way of the Dirac-Bergmann
algorithm. In Sec. VI we calculate the interaction poten-
tial between a heavy fermion and a heavy antifermion us-
ing old-fashioned. perturbation theory. Conclusions and
a brief discussion follow in Sec. VII.

As in ordinary QED, let us introduce, in light-cone coor-
dinates, two ferrnion fields [27—30]

(2.9)

Since U = 1, Eqs. (2.8) may be rewritten in the form

II. CONSTRAINED DYNAMICS
OF HEAVY-FERMION +ED

i U"D„C (p)
—M(~2U~p0@(~) —U p g(~)) . (2.10)

We begin with the Lagrangian of heavy-fermion QED
obtained [1] by a generalized Foldy-Wouthuysen trans-
formation that removes the terms mixing fermion and
antifermion fields in the action. We have

2 = i C ~"D„C —M@% —,'F„F"— (2.1)

where the Minkowski
g„„=(1, —1, —1, —1),

metric is diag

D„=8„+ieA„

is the covariant derivative,

PU" = p UU",

(2.2)

and U~ is the given four-velocity of the heavy fermion
satisfying the condition U = 1. The field strength tensor
is

F~~ = |9~A~ —8~A~) (2.4)

and we use the system of units where 6 = c = 1. The
heavy-fermion limit means that MU" is greater than any
other momentum in the problem under consideration.

The light-cone coordinates in four dimensions are x" =
(x+,x, x~), j = 1, 2, where

(2.5)

The variable x+ plays the role of the "time" variable. In
terms of such coordinates the Lagrangian 8 becomes

2 = i@/(U+8 + U c)+ —U, c), )C —M4@
+2E+- + F+3E 2 41F2kF2-k

—eiI P'(U+A + U A+ —U, A, )@,
where

(2.6)

F~k ——0~ A& —Bk A~,

F+ ——0+A —0 A+,
F~~ = 0~A~ —0~A~,

c)~ = 0/Bx (2.7)

if'"D„4 = MC .

The fermion part of the Lagrangian (2.1) divers from
ordinary QED by the change p" ~ PV". Let us consider
the equations of motion for the fermion field 4. They are

Prom these equations it follows that both fields 4~~~ are
dynamical fields because both of them contain the deriva-
tive with respect to the "time" coordinate x+. This dis-
tinguishes heavy-fermion QED from ordinary QED where
the fields @(~) are not independent [27—30] in light-cone
quantization: The field 4~+~ can be related to the dy-
namical Beld 4( ) in ordinary QED. (See, however, the
discussion of zero modes in [31].)

The Lagrangian (2.1) is gauge invariant. This means
that the classical theory contains "first-class" constraints
and we need a quantization prescription for systems with
constraints such as that provided by Dirac [22].

According to this procedure "primary constraints"
arise when one cannot relate a velocity to its correspond-
ing canonical momentum. The consistency condition of
a primary constraint, which means that the constraint
must be conserved in time, is used either as a condi-
tion which defines a Lagrange multiplier function or as
a "secondary" constraint. There could even be "tertiary
constraints, " and so on. This procedure terminates when
no new constraints appear.

All constraints are divided further into two groups.
Constraints whose Poisson brackets with all other con-
straints vanish on the constraint surface are called "first-
class" constraints. Otherwise, they are called "second-
class" constraints. If a constraint is first class, a sub-
sidiary condition (gauge condition) must be imposed in
order to determine the corresponding Lagrange multi-
plier function. When all constraints finally become sec-
ond class, we can invert the matrix of Poisson brackets
between the constraints and replace the Poisson brack-
ets by the Dirac brackets. The quantization procedure
consists of replacement of the Dirac brackets by a com-
mutator for bosons or an anticommutator for fermions.

The infrared. problems in the quantization step can be
regularized by considering the system to be contained in
a finite volume. Let us consider the quantization of the
theory in the restricted region —L & x & L, —L &
x~ & L and impose periodic boundary condition for the
bosonic variables and antiperiodic boundary condition
for the fermionic ones. We choose antiperiodic boundary
conditions for the fermions following Refs. [6, 32, 33, 17].
Any boundary condition, however, implies that there is
an additional constraint to be satisfied, in view of the
field dependence in the Schwinger string factor. In this
paper we ignore such constraints. On the other hand, as
we take the box length to infinity, the fields vanish and.
no such constraint arises.

In such a restricted region, the fact that the classi-
cal equations are first ord.er in the "time" x+ leads to
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the well-known problem of zero modes. To separate the
zero-mode contributions, it is useful to generalize the or-
thogonal projection operators found in [17]:

'P(-) *&(—) = 'P( )(x, y)P(y)dy,

'P( )
= ('P, 'P, , Q, Q, ), j = 1,2,

Q = 5 —'P, Qi = 2' —P~,
1

'P(x, y) = b(x~ —y~),
1

P, (x, y) = e, g8(x" —y")8(x —y ),2L
(2.11)

'P(-) P(~) * &(x) = &(-) * ('P(~) * &) (—*)

where x = (x,x, x ) = (x, x~), antidiag a~k = (1, 1),
and 2 is a unit operator, 2 + (t(x) = P(x). Here P, Pi
are the projection operators into the zero-mode sectors
of x, x~, respectively, and Q, Qi are the projection op-
erators which eliminate the zero modes in the sectors of
x, x~, respectively. We shall speak of 7 as the projec-
tor onto the 'P sector, and Q as the projector onto the Q
sector.

In the same way it is possible to define the product of
two projectors:

'8 = II—U '(U 0 —U, c),)4 —iMII PU '@
—ieH+U 'U"A„C + —,'II'
—(a 11 +a.rr. )A +1m.„Z.„. (2.i6)

Consider the Poisson brackets between the constraints
from (2.15):

=-2e, ,a S ~ —y . (2.17)

y(1 &)

y(1 &)
2

p(l, P)'
](1,'P )

2

= Q*ll+,
= Q * (11, —c) A, + c),A ),
= 7 *II+,
=V *(ll, +@A ).

(2.18)

(2.i9)

Following the Dirac prescription we construct the pri-
mary Hamiltonian density

From this expression we see that the constraints P com-
2

mute only in the P sector. Hence in the 7 sector the
consistency conditions for the constraints P. may lead
to secondary constraints. Thus let us consider the de-

composition of the primary constraints P+ and P( into
the Q and P sector constraints:

= &()P(-) *&(—) (2.12)

Because of this definition, the operator 'P1P2 is orthogo-
nal to Q1, Qq and Q1Qq. One can verify that the opera-
tors P1'P2 and Q1+ Q2 —Q1Q2 are projection operators.
Further, P1'P2 + Q1 + Q2 —Q1Q2 ——1, so that the two
subspaces defined by these projection operators span the
space.

We define the canonical momenta IIy as

p(~) ( ~) p(&) (») p(&) (») (2.20)

where A+ ', A. ' are Grassmann-even Lagrange mul-(@») (~»)
tipliers for the constraints (2.18), (2.19), and A~, A+ are
Grassmann-odd Lagrange multipliers for the fermionic
constraints P+, P—,respectively. The consistency con-(1) (1)

d1t1ons for the constramts P+, P— do not give new con-(1) (1)

straints, and hence lead to the determination of their La-
grange multipliers. We will consider the Q and 'P sectors
separately.

(t = ~+4, (2.13)

where the label r denotes the right derivative. Then

II~ )=0,
II~ ) =A —c) A+,
II„)=c) A, —D, A

i 4 pV
Il—= O. (2.14)

The velocity A can be expressed through the momen-
tum II and we have five primary constraints 4( ) = 0,
where

III. Q SECTOR

~(1 g) ~ + p(Q)~(1, Q) + p(Q)@(1,Q)
+ + (3 1)

The consistency conditions for the constraints P. ' de-
2

termine their Lagrange multipliers, and for the constraint
P+' gives a new constraint

p+' ——Q * (c) II + c)ill, + ieli@1I') . (3.2)

In this section we are going to consider the quantiza-
tion procedure in the Q sector. In this sector the primary
Hamiltonian density is

' p(1)
(1}

@(1)—( ~i
(1)

(1)
& ~fr

II+
II~ —6 A~ + 8~A

11 —ieger
II@ .

(2.i5)
This constraint does not commute with the fermionic
constraints. Thus let us consider a new "Gaussian law"
constraint which is equivalent to (3.2) in the presence of
(2.i5)

The canonical Hamiltonian density on the constraint sur-
face (2.15) is

4+' ——Q * (c) II + c),II, + ieii~4 + ie@II~),
(3.3)
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and, on the constraint surface, commutes with all con-
straints. The fermionic constraints are second-class con-
straints and commute now with all nonfermionic ones.
Therefore we will omit them in future consideration.

The consistency condition of the constraint (3.3) gives
neither a new constraint nor determines any Lagrange
multiplier. The constraints P. ', P.+4, P+, P—are sec-(», Q) (Q) (») (»)

I

= Q*A~,(» Q)

=Q*B A (3.4)

So in the Q sector the constraints 4(~) —0 are

ond class, and the P+', P+' are first class. We need
two gauge conditions. We choose them in the form

~ p(i &) y(&)+ — »

y(i &) y(&)
G — 2

C(~) =
&

—Q*A '[c) II ~B&II& ~ie(II+@ y@II~)] = P,'
y(2 &) y(&)

G — 4
y(i &) y(&)j+4 ~

(3.5)

where 4 = 8 and 4 is a nondegenerate operator
whose matrix elements in the Q sector are

) =Q*A~. (3.i3)

(4 ') „=II~(z —y )b(z~ —y~),
(*—y)'II x —y

2 4L

The constraints 4(~) are second class. The matrix of
Poisson brackets between these constraints

It is easy to show that the Dirac brackets between these
variables are

( (&)( ) (&)( )

2b,, h(—z —y )G~(z —y ) . (3.14)

(3.7)

is quasidiagonal (block diagonal) and its nonvanishing
elements are found to be

Thus we can consider the variables w (z) as the phys-
ical variables in the Q sector.

IV. P SECTOR

Ai 2(x, y) = —A2 i(x, y) = —Q(x, y),
As 4(z, y) = —A4 3(z, y) = —Q(x, y)

A, ~4, ~4(x, y) = —28,, c) Q(x, y) .

The inverse matrix A b(y, z),

dyA, (x, y) A b(y, z) = b b8(~) (x —z),

1Dg(z —z) = a(z —.)—
2L '

(3.8)

(3.9)

(3.io)

+(i,P) + + ~('P)~(l, 'P) + ~('P)~(1,'P)
C + + (4.1)

The P sector is a space H(+) of functions which de-
pend on the variables x only. On the other hand the
p sector is the sector of zero modes in the x direction.
To take into account the zero-mode contributions in the
directions x, x one can decompose the space H(+) into
a direct sum of two orthogonal subspaces

In this section we will consider the canonical quantiza-
tion procedure in the P sector. The primary Hamiltonian
density in this sector is

has nonvanishing elements H(&) H(&&1+2) l 5 H[&(Q1+Q2 Q1Q2)]4J (4.2)

A, ,'(x, y) =

As, 4(»y) =
A ~4 i~4(z~

—A. i(* y) = —Q(z y)
—A4,'(x, y) = —Q(x, y),
y) = —26,, b(z~ —z~)G+(z —z ),

(3.11)

e(x —z)
2

(3.12)2L

where H(++'+') is the space of zero modes in all di-
rections and is de6ned by the projector PP»P2 and
the space H [+(Q'+Q' Q' Q') I is de6ned by the projector
7 (Qi + Q2 —QiQ2). Such a decomposition leads to the
corresponding decomposition of the primary constraints
P+', P. ' (2.19), and the primary Hamiltonian den-(»,&) (»,&)

sity A(' ) (4.1):

The functions D~(x —z) and G~(x —z) are the 8 function
and the matrix element of the operator 8, respectively,
in the Q sector.

Consider two variables

~+ = (&+ @+ )
(»,&) (») ., (»)

p~
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~(i,)') ~ + P(i) (i) ~ A(i)@(i)

&(1) (1) &(1).&, (1)+~&'+ (4.4)

y(') = P(Q, + Q, Q, Q, ) ~ 11+,
y(') = P(Q, + Q, —Q, Q, ) * (11, + a,a ), (4.6)

and

P+ = 7 P]72 +II+(1)

p - = PP]P2 'l' IIj )
(1) (4.5)

Here A+, A+, A-, A. are the Lagrange multipliers;(1) (1) (1) (1)

the primary constraints in the 7 7 17 2-subsector are
are the primary constraints in the P(Qi + Q2 —Qi Q2)
subsector.

The consistency condition for the constraints y+, p.
and g+, Q do not determine their Lagrange multipli-
ers, and instead give new constraints in the form (we

denote them as y+, )(,y+, y, correspondingly)(1) (1) (2) (2)

)(+ —P'P, P, * (ieII~C),(1)

~,' ' = 'P'P, 'P2 * (—iell+U 'U, 4),
P(Qi + Q2 Qi Q2) s (B.ll . + zeII|il 4)

= 'P(Qi + Q2 —Qi Q2) * (8~II + OI, Eg~ —ieii@. U 'U~4') .

(4.7)

(4.8)

(4.9)

(4.10)

X+ = ++1&2 + P )
(1)

~2 ++1+2 * ~2
(1)

Z(') = P(Q, + Q, Q, Q, ) + (c),li, + p),
x, = p(Qi + Q2 —Qi Q2) * (c),ll —+ c)gI"g,

(4.ii)
(4.i2)

(4.i3)
—p'),

(4.14)

As it happened in the Q sector the constraints
(4.7)—(4.10) do not cominute with the fermionic con-
straints. Thus let us consider new constraints which are
equivalent to (4.7)—(4.10) in the presence of (2.15):

= 'PP1P2 + A+ )
(1)

= p(Qi + Q2 —Qi Q2) + &+ . (4.18)

Let us discuss the gauge conditions for the first-class
constraint y+ in the P(Qi+Q2 —Qi Q2) subsector. Note
that in this subsector the operator

(4.19)

is an invertible operator. Let us choose the gauge condi-
tion for the constraints y+ in the form

where
xI: = p(Qi+ Q2 —QiQ2) *& 'c)A;&~ (4.20)

p = ie(II+4 + @II~), (4.15)

V~
P U- P (4.i6)

which is the consequence of the heavy mass limit.
Let us consider the quantization procedure where the

strong constraint

'P'Pi'P2 * p~Q) = 0, (4.17)

holds, where ~@) is the state vector. The quantity
pP1'P2 + p is the total light-cone electric charge of the
fermions per unit volume. This is proportional to the
usual electric charge, which must vanish in a compact
system as a consequence of Gauss's law.

The consistency condition for the constraints (4.13)
and (4.14) does not give any new constraints. So in the

P sector we have 14 constraints: p+, y ) g+ ) g-(1) (1) (1) (1)

@+, Q. , y+, y. , P+, P—. The constraints p+
(1) (1) (2) (2) (1) (1) - (1)

y. , Q+ and )('+ are first class and the rest are second
class. We need four gauge conditions.

We consider the gauge conditions for the first-class con-
straints y+ and v)+) in the form

The constraints y. do not commute with the primary
2

constraints g( but do commute with the rest. On the

other hand, the primary constraints vP( ) do not commute

with the gauge condition y& . Thus let us consider a
linear combination of the constraints g. and y+

(1) (2)

(4.2i)

in such a way that g. will commute with the gauge

condition y& . Here o.~ are some functions to be found.
We obtain

= p(Qi+ Q2 —QiQ2) +
~

11 ——p+~, &- l,i(1) c),
2 ) '

(4.22)

(4.23)

Here II. are two-dimensional transverse momenta. Let
2

us introduce longitudinal momenta and an analogous de-
composition for the potentials AI,

(4.24)
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Aj =A- +A

A =~h — '
~A A"=A. =

)
(4.25)

Consider the primary erst-class constraints
Naively one might try to choose the gauge condition as
7 P~'P2 + Aj = 0, which means that the zero modes of Aj
are eliminated. This contradicts, however, the fact that
the integral over a closed loop,

Ajdxj,j j (4.29)

With this decomposition the constraints depend only
on transverse or longitudinal components, but not both:

~,'' = P(Q1 + Q. —Ql Q. ) * (~,ll, + ~), (4 26)

yG() —p(Q1 + Q2 —Ql Q2) * A c)gAq, (4.27)
(.') = p(g, + g, —g, g, ) * (a, ll + aA, —,) .

(4.2s)

P.+10, $ +12. The matrix of Poisson brackets between
these constraints is antidiagonal and its nonzero elements
are

(&q+lo(x) ~ &1 +12 (y))
(&) (&)

= Aq+io, q'+12(x~ y)
6,,—A[p(gl + Q2 —Q1Q2)](x, y), (4.33)

Aj+12,j'+10(X y) —~jj'+[p(Ql + Q2 Ql Q2)](X y)
(4.34)

The inverse matrix is antidiagonal too, and is easily found
to be

A +12, '+10(x y) = ~jj' ~[p(gl + Q2 glg2)](x y)

1
A +10, '+12(x y) = ~ii ' ~ [p(gl + Q2 gl Q2)l(x y) .

(4.35)

is gauge invariant [34], and need not vanish if taken over
a noncontractible loop. Instead, we choose the gauge
condition p.G = 0 in the form

G= pplp. 2 * Ai ~i (x ) ~ (4.3o)

where f~ (x+) is any function of the "time" x+. The con-

straints p.G depend on "time" explicitly. It is well known
that the consistency condition for this type of constraint
can be written in the form

Consider two pairs of conjugated variables:

,(~) = P(g. + Q. —Q, Q. ) *A,
= P(Q1+ Q2 —Q1Q2) * II

(d3 = ppyp2 0 A(&)

~4 = PPyP2 + II(~) =

(4.36)

(4.37)

a p()+ (p() Z (x))ax O (4.3i)
The nonzero Dirac brackets between these variables are

{~l '(x) ~2 '(y))D =2[p(gl+ Q2 —glg2)](* y)
This relation determines the Lagrange multiplier A. in
terms of the derivative 0+ f~, In the next section we will
show that the physical Hamiltonian does not depend on
the function fz(x+).

So the constraints 4(+) 0 in the 'P sector are (we
omit here the fermionic constraints)

I f 1= —
I

~(x~ —»)—L q 4L2 p

(~.' '(*) ~' '(y))~ = (PP1P2)(x y) =
SL, .

(4.3s)

(4.39)

(~) (&)
P+

(~) (&)
O'G

& 7 PqP2 subsector

(~) z(&)
~jG = +j+4 i

( ) (p)
@(v), 4'+ —= (t'7

y(1) p(&)
G 8
(2) (&)

(2) (~) &
'P (Ql + Q2 —Ql Q2) subsector

+G ~10
I(&) (&)= 4'&'+10
(2) (&)
2 ~1+12

(4.32)

The constraints (4.32) are second-class constraints and
the matrix of their Poisson brackets is block diagonal.

The physical variables are among the constraints

Thus one can consider these variables as physical vari-
ables in the P' sector.

V. PHYSICAL HAMILTONIAN

We have come to the step where we can G.nd the "phys-
ical" Hamiltonian. Such a Hamiltonian is defined as

IIphys ~phys dC )

&.'""' = &&~&=0,

where

(C, (Q) @('p) y(1) y(1)
) (5.2)

are all constraints in the problem under consideration.
From Eq. (5.1) it follows that to construct the Hamil-

tonian density 'Rp"y' we have to express all variables
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through the physical variables using the constraints 4 =
0. For this purpose let us return to expression (2.16) for
the canonical Hamiltonian and rewrite it in the form

Here

'R(~) = 4p( i U+—8 + 1'U&c)r, ) 0 + M@@, (5.4)

a. = +(~)de+ Z.'dx . (5.3) is the Hamiltonian density of fermions. The expression
C

Z'. = —,'(Q*II )'+-', [V V,V, *II +V (Q, + Q, —Q, Q.)*11 ]'
+(Q*II )[PP,P. *II +7 (Q, + Q —Q Q.) *11 ]
—(&9 II + 8, II, ) [Q * A+ + P'P1'P2 * A+ + P(Q1+ Q2 —Ql Q2) * A+]
+-', (Q*~,.)'+ -', P (Q, + Q. —Q Q.) *~,.]'+ -', (Q*+,.)[P(Q. + Q. —Q Q. ) *&"]
+.egr~e[Q* A„+m, V .*A„+P(Q1+ Q. —Q1Q. ) * A,], (5.5)

is the Hamiltonian density of the electromagnetic field
and its interaction with the fermions. Then the physical
Hamiltonian becomes

~phys ~E'g + ~r, phys dC )

~r, phys 1 (g (Q) + Q g—1@~ @ (&) (2')
)

2

+1(y(&) + y(&))(g(&) + y(1'))

+e&Ir P@ —U~~. + U+~s(~) (&) i i (&)

x."h" = &'.l~=o .

Because of the property
where

1 —U+U+a~~) (5.10)

e@pU"1lr = U"p, (5.7)

and the strong condition (4.17) one can neglect the term
e4'PU" 1lr'P'P1'P2 * A„ in the Hamiltonian density '8', P"y'

(5.6). This is because the physical Hamiltonian H'P"y',
which corresponds to the density Q,'p"y', by itself is pro-
portional to the zero mode of 'R'p"y':

~I,phys 8L3pp yy ~I,phys
C (5.8)

Thus the physical Hamiltonian does not depend on the
functions f~(x+) involved in the gauge condition (4.30).

Using the constraints 4 0 we are able to write

='P(Q1+ Q2 —Q1Q2) * &,gle=o

= U (UI, &9~
—U, Br,)~, .

After substitution of Eqs. (5.9) into Eq. (5.6) we get

Q*ll l, =-(a,~(~)+.Q. a-'ePV e),
Q* Axle, -o = 0,
Q * +&kle=o = &-'), ~A,. —A~,(g) (g)

'PP1'P2 + A+ l@-o ——0,
'P(Q1+ Q2 —Q1Q2) * A+ l~=o = 0,
'P'P1'P2 * A~ lc =o = f~(~+)

P(Q + Q —Q Q ) * AI, le=

'P(Q1+ Q2 —Q1Q2) *AI, l~=o = —~~2 +
U

~1(v) UI (v )

P(Q1 + Q2 Q1Q2) + &ankle =o

-(P) -(&)
[~s &~4 1

= SIs &

[+(*) +(P)]+= U
~( -u)

(5.15)

(5.16)

A

The physical Hamiltonian Hp"y' can be obtained from
(5.10) by the change w -+ w, where cG are all operators
satisfying the relations (5.13)—(5.16).

We wish to find a realization of the commutation rela-
tions (5.13)—(5.16). Using the periodic boundary condi-

tions for ur( (2:) and Eq. (5.13) one might write (from
now on we will omit the caret)

~(g) (~) (+)
~~a

——U (UI, c)~ —U~ c)r, )u) 1( (5.ii)
Having the physical Hamiltonian and the Poisson

brackets between all physical variables one can now quan-
tize heavy-fermion @ED. According to the Dirac pre-
scription the quantization procedure consists of replac-
ing the Dirac brackets of bosons with bosons (or bosons
with fermions) by a commutator and that of fermions
with fermions by an anticommutator

(A, B)Lr -+ —i[A, B] for bosons,

(A, B}D -+ —i[A, B]+ for fermions, (5.12)

where the caret means that the classical object A- be-
comes an operator A. Then we come to the equal "time"
commutation relations

2[,' '(*) '(9)] = ——~ ~(* —~ )G' '( —9 ),
(5.i3)

[-,')(*.), -,' '(y. )]= —,~ ~( -~ )- „i, (514)4I' )
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l(z) = ) [a,.(P„)exp( —iP„.z) + at. (P„)exp(iP„. z)],0 p 2P+

where

P„=—(n+, n~), n+ =1,2, . . . , n~ =0, +1,+2, . . . , 0=81

and for any vectors a . b = atb —a~b~,The operators a~ (P ) and at(P ) satisfy the nonzero commutation relations

a, (P ), at, (P ) =ib, , hp p

Consider the operators wz 2 (z~). Their decomposition into a Fourier series can be written in the form
t

where

(z~) = ) [a(P~„)exp( —iP~~ . z~) + a (P~~) exp(iP~~ z~)] + (a —a ),0 p 0

(z~) = ) [a(P~ ) exp( —i' . zg) —a (Pg~) exp(i'~ zz)]-
Pg

(5.2O)

P~ ———n~, n~ = 0, +1,k2, . . . , a~ . b~ ——a~6~,I

and the operators a(P~ ), a (P~„),a, a satisfy the nonzero commutation relations

a(Pz~), a (Pg~) = hp~ p, [a, a ] = 1 .

The realization for the zero-mode operators ~3 4 is
)

(+"), -! '=-

(5.2i)

(5.22)

(5.23)

The operators a~ (P ), a(P~ ), a, c and a (P ), at. (P~ ), at, c" can be interpreted as annihilation and creation opera-
tors.

The same decomposition in terms of creation and annihilation operators can be made for the fermion operators
@(z),@(z) satisfying the antiperiodic boundary conditions

4(z) = ) [bp(Q )u+ exp[ —iQ z] + dp(Q )u exp(iQ z)],
OU (5.24)

where

Q = (Q+, Q'

n+ = 0, 1, 2,

A~A~ = tL~ )

tl~tc~ = +8~p
—p cx

) = —(n++ 1/2, n'+ 1/2),
L

n~ =0, +1,+2, . . . ,

~+ = —.'(1+ V),
—p ott~tl~ ——0 ) (5.25) E —E(&) + eE(~) + e E (6.1)

is the static heavy fermion potential. (This calculation
is the analogue in @ED of the calculation of the quark-
antiquark potential in @CD.) For this purpose vre can-
sider old-fashioned perturbation theory up to second or-
der:

and the operators bp (Q ), d& (Q ) satisfy the nonzero an-
ticommutation relations

[b(Q„) b.'(Q )]+

= [d~(Q„), dt(Q )l+ = h-p4 g (526)

The physical Hamiltonian H~"~' can be expressed in
terms of the normal product of the creation and annihi-
lation operators introduced in Sec. V:

VI. CALCULATION OF HEAVY
FERMION POTENTIAL

H ""'(operator)—:: (H~el + eH~&l + e H~2l):, (6 2)

We wish to see the physical Hamiltonian Hp"~' found
in the previous section in action. The example we choose

where the symbol:: is the normal ordering one.
The construction of the normalized eigenstate which

describes the two static heavy fermions r apart yields
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(M ) i/2M
iff) =

I ) 1
I ) exp[ —i(Q —MU) r]bt (~2M —Q+, —Q~„)dpt(Q )I0), (6.3)

where a g P and we choose

1U+=U =, U =U =0.

In Eq. (6.3) we have the efFective summation over Q
which has modulus less than M. It can be shown that
the corresponding eigenvalue (E(p)) of H(p) turns out to
be ~2M and the mean value of the operator H(i) in the
state (6.3) is zero:

E(,)
= (ffiH(, )iff) = 0.

The last term in Eq. (6.1) is

(6.4)

(ffiH iff) + ) -' I&ffl (i)
(o) (o)

(6 5)

and

-'I&fflH(i) Im)I'

E(p) E(™p)

(6.6)

If we remember that r = (—~r, ri, r ) and make use

of the new vectors

P„—:(P„',P„,V 2P+), r—:(r', r, r, ),
then (in the limit L —+ oo),

e 12
e E(,)

= ——) [1+cos(P„r)]0 P2
n

2

+ const,
4 2~r

(6 S)

(6.9)

where r is the Cartesian z component of the vector r.
The additional factor 1/~2 in the expression (6.9) comes
&om the fact that the energy e E(2~ corresponds to the

where Im, ) is an eigenstate of H(p) and E(p) is the corre-
sponding eigenvalue and the summation does not cover
the state

I ff) After .some straightforward calculation
we get

1 1
(ffiH(2)iff) 2fl ). + 2[ +

This gives the potential in the Cartesian coordinates,

e
V(r) =— (6.10)

and clearly shows the Coulomb potential together with
an irrelevant infinite constant in Eq. (6.9) (which is pro-
portional to M) arising &om the fermion self-energy.

VII. CONCLUSIONS

We have considered the light-cone canonical quanti-
zation of the heavy-fermion QED taking into account
the zero-mode contributions explicitly. We have imposed
periodic boundary conditions for bosonic fields and an-
tiperiodic ones for fermionic fields. As in ordinary QED,
this model is gauge invariant, which means that there
are unphysical degrees of freedom. To quantize the the-
ory, we have used the Dirac algorithm for a system with
first- and second-class constraints and the correspond-
ing gauge conditions. In order to make explicit the role
of the zero modes, we have considered gauge fixing and
quantization procedures in the zero-mode and nonzero-
mode sectors, separately. In all sectors we obtained the
physical variables and their canonical (anti) commutation
relations. The physical Hamiltonian was constructed by
excluding unphysical degrees of freedom. We have con-
sidered the role of all physical fields in the calculation of
the potential between static heavy fermions.

We suggest that this approach can be used for the case
of finite-mass QED or, perhaps, one might first address
heavy-quark QCD. An important goal is the calculation
of the QCD quark-antiquark potential.

Note added in proof The role o. f zero modes in light-
cone QED using a Lagrangian approach has been studied
very recently by Kalloniatis and Pauli [35].
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Hamiltonian P in the light-cone coordinates. In the
reference frame where P = 0 we have

P = P1
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