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This paper presents a new renormalization procedure for Hamiltonians such as those of light-front
field theory. The bare Hamiltonian with an arbitrarily large, but finite cutoff, is transformed by a spe-
cially chosen similarity transformation. The similarity transformation has two desirable features. First,
the transformed Hamiltonian is band diagonal: in particular, all matrix elements vanish which would
otherwise have caused transitions with big energy jumps, such as from a state of bounded energy to a
state with an energy of the order of the cutoff. At the same time, neither the similarity transformation
nor the transformed Hamiltonian, computed in perturbation theory, contain vanishing or near-vanishing
energy denominators. Instead, energy differences in denominators can be replaced by energy sums for
purposes of order of magnitude estimates needed to determine cutoff dependences. These two properties
make it possible to determine relatively easily the list of counterterms needed to obtain finite low energy
results (such as for eigenvalues). A simple model Hamiltonian is discussed to illustrate the method.

PACS number(s): 11.10.Gh

I. INTRODUCTION

Light-front field theory raises very complex renormal-
ization issues. Furthermore, traditional Lagrangian ap-
proaches to renormalization do not apply because light-
front field theories are defined instead by their Hamiltoni-
an. This paper explains a new formalism for renormal-
ization of Hamiltonians including determination of the
required cutoff-dependent counterterms. Our interest in
the formalism is stimulated by its potential applicability
to light-front QCD.

The basic reasons for investigating the new method of
constructing counterterms in light-front Hamiltonians
are the following.

The light-front Fock space description of elementary
particles is a natural basis for explaining the Feynman
parton model of hadrons. However, this is not yet ac-
complished because severe divergences appear in light-
front dynamics. There is an urgent need for powerful
methods of constructing Hamiltonian counterterms in or-
der to understand the field-theoretical light-front basis of
the parton model of hadrons.

The light-front counterterms have complex structure
and contain free functions, not just a few free parameters
in their finite parts. Physically required values of the
functions have to be found in part by fitting experimental
data. But, the functions can be severely constrained by
symmetry requirements. Full rotational symmetry,
which is not explicitly satisfied in the light-front formula-
tion, provides the most powerful constraints. In turn, the
counterterms are surely necessary to obtain rotational in-
variance.

The infrared longitudinal cutoff properties of light-
front theory suggest another fundamental role for the
counterterms. Namely, the longitudinal infrared cutoff in

light-front dynamics makes it impossible to create parti-
cles from a bare vacuum by a translationally invariant
Hamiltonian and in addition the number of constituents
in a given eigenstate is limited. Light-front counterterms
to the longitudinal infrared cutoff dependence become a
possible alternative source for features normally associat-
ed in standard equal-time dynamics with a nontrivial vac-
uum structure, including spontaneous symmetry breaking
and confinement.

Powerful methods for finding counterterms in light-
front Hamiltonians are necessary to verify these hy-
potheses. Even if it turns out that the light-front coun-
terterms are not able to solve all problems, we may still
learn about why they fail.

We consider a Hamiltonian H =Hp+HI ~ Hp is as-
sumed to be well understood and its eigenstates ~i ) and
corresponding eigenvalues E, are known. HI is an in-
teraction which requires a solution. The analysis in per-
turbation theory of divergences generated from Hl is
complicated by the presence of vanishing energy denomi-
nators due to nearly degenerate eigenstates of Hp. These
vanishing denominators make it hard to construct upper
bounds on complex perturbative formulas, bounds that
are useful to separate divergent from convergent terms.
At the same time, the terms in HI that cause the diver-
gences in perturbation theory involve large jumps in ener-
gy. The reason for this is that they involve the creation
or destruction of high-energy virtual particles in interac-
tion with low energy constituents. A simple 3 X 3 matrix
Hamiltonian in a basis of eigenstates of Hp will illustrate
the problem:

A gA gA
H= gA m gm

gA gm m
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In this matrix, there are two low-energy degenerate
eigenstates of IIo with eigenvalue m and one high-energy
state whose eigenvalue A defines the cutoff. Then the
source of the divergences in such H would be the off-
diagonal matrix elements gA which jump from the ener-
gies order m to the energies order A, while the source of
vanishing energy denominators would be the off-diagonal
terms gm between the two degenerate states of energies
order rn. In this simple case, one would use degenerate
perturbation theory for small enough g to compute per-
turbative corrections to the low-energy states, thereby
avoiding any problems with vanishing energy denomina-
tors. The question is how to avoid similar problems when
one has a Aeld theory with a continuum of energy eigen-
values rather than isolated degenerate subsets as in the
example.

In this paper, a formalism will be developed which
converts an arbitrary Hamiltonian H to a "band-
diagonal" H' so that the "far off-diagonal" terms that are
the cause of perturbative divergences will be eliminated.
We will give a precise definition of "band-diagonal" later
but the intent is that a matrix element H lies in the band
if E, and E either are of the same order of magnitude or
are both below a threshold energy Eo. In contrast, a "far
off-diagonal" matrix element has E, ))E. or E ))E,
with at least one energy much greater than Eo. Given a
Hamiltonian that is "band diagonal" and where the off-
diagonal terms inside the band are treatable by perturba-
tion theory, no ultraviolet divergences can arise in pertur-
bation expansions to any finite order. The reason for this
is that if one starts with an external state of Axed energy,
and one applies the interaction Hl of the banded Hamil-
tonian only a finite number of times to this state, the re-
sulting state has a finite upper bound on the energies it
contains and so no divergent integrals (i.e. , integrals sen-
sitive to the cutoff' A) can occur in any finite order of per-
turbation theory. If a Hamiltonian is "band-diagonal"
but its immediate off-diagonal terms within the band are
not small enough for perturbation theory to be valid,
there can still be nonperturbative divergences. An exam-
ple is given in Appendix B. We apply our formalism to a
simplified model to demonstrate how one can use it to
find a generally valid structure of Hamiltonian counter-
terms in perturbation theory to all orders.

In two previous papers on renormalization-group
methods applied to Hamiltonians, a simpler approach to
renormalization was used, where all eigenstates of Ho
with energies above a finite bound A, are eliminated, leav-
ing an effective Hamiltonian for the remaining lower en-
ergy states [1,2]. (This simpler renormalization-group
method was applied to light-front field theory in Ref. [3].)
An example of studies of transverse cutoff dependence
and low-order counterterms in a light-front Yukawa
model can be found in Ref. [4], where one can also find
references to the growing literature on light-front
theories. A closely related model of the effective Hamil-
tonian renormalization procedure for transverse light-
front divergences is discussed in Ref. [5]. The mass coun-
terterms in Fock space representation for light-front
Hamiltonians are discussed in Ref. [6]. Unfortunately,
the simpler effective Hamiltonian approach suffers from

small energy denominators, e.g. , the denominators in-
volving differences of the highest energy kept minus the
lowest energy eliminated. A need for renormalization
procedures in Hamiltonian calculations of the S-matrix
elements has been recently exemplified in Refs. [7,8]. Ex-
amples of original and review articles which discuss the
light-front and closely related infinite momentum frame
dynamics can be found in Ref. [9].

The new renormalization formalism is introduced in
Sec. II. Section III describes the application to an ele-
mentary model. Details of the model analysis to all or-
ders in perturbation theory are given in Appendix A.
Section IV concludes the paper. Appendix 8 provides an
example of nonperturbative divergences in a band-
diagonal Hamiltonian.

II. SIMILARITY RENORMALIZATION SCHEME

Let us consider a Hamiltonian

IIo+III (2.1)

where S is the similarity matrix which is unitary,
S '=S~. S can be written as

S =1+T, (2.3)

where T—+0 when Hl ~0. Unitarity of S implies that

T + T~+ T~T =0 . (2.4)

We introduce two parts of T: the Hermitian
h =

—,'(T+T"), and anti-Hermitian, a =
—,'(T —T ).

Equation (2.4) can be rewritten as

with a cutoff A, where Hl includes both a bare interac-
tion and any necessary counterterms. Strong A depen-
dence of the eigenvalues and eigenvectors of H will be
generated in perturbation theory unless one has found the
structure of the necessary counterterms, because the bare
interaction couples states below a Axed energy A, to all
states from between I, and A with growing strength. The
similarity renormalization scheme is based on the obser-
vation that if those couplings with large energy jumps
were removed, the divergences could not be generated in
finite orders of perturbation theory. So, we consider a
similarity transformation of the Hamiltonian matrix H
such that the transformed Hamiltonian matrix H' has all
troublesome elements far away from its diagonal equal
zero. A dependence appears in the transformed Hamil-
tonian in the nonzero matrix elements which are close to
diagonal. The cutoff dependence can be removed from
these matrix elements by introducing counterterms. The
similarity matrix should approach unity when the trou-
blesome interaction is zero, since we work in the basis of
eigenstates of Ho and Ho is therefore already "band diag-
onal" too. Similarity transformations preserve eigenval-
ues and therefore the transformed Hamiltonian H' has
the same spectrum as H.

The new Hamiltonian H' is given by the formula

(2.2)
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(2.5)

Thus, h and a are not independent and h is of higher or-
der in the bare interaction than a.

The new interaction Hamiltonian is defined as
HI=H' —Ho, so that the new free Hamiltonian is the
same as the old one and we have

HI=HI+T H+HT+T HT . (2.6)

Then, we demand that HI is "band diagonal, " which
means that the matrix elements of HI which are far away
from the diagonal are zero. In order to define what we
mean by the matrix elements which are far away from the
diagonal we introduce notions of diagonal remotum of a
matrix M, denoted DR[M], and diagonal proximum of
M, denoted DP[M]. Diagonal proximum refers to the
"band-diagonal" part of a matrix and diagonal remotum
to the "far off-diagonal" part.

Suppose an operator M has matrix elements

M, . =(i~M~j) between the eigenstates of Ho,
Ho~i ) =E, ~i ). The indices i and j run from 0 to some

big number determined by the cutoff A which defines the
size of the matrix M. The diagonal remotum of M has
the same matrix elements as M when i is far away from j
in some prescribed way, and the matrix elements

DR[M];J for the close indices i and j are equal to zero.
Then, DP[M]=M —DR[M], i.e., DP[M]; are the same
as M," when indices i and j are close to each other in the
prescribed way. For example, we may choose

DP[M],) =M;

when

(0+ 1)lE, E, l
((P 1)(E, +—E, )—+2EO,

(2.7)

(2.8)

where Il& 1, E, and E are the eigenvalues of Ho (as-
sumed to be positive), and Eo is some fixed constant.
Equation (2.8) implies that (2.7) holds when

E —Eo
PE, +ED&E, & (2.9)

Otherwise DP[M]; =0. The above choice removes the
possibility that small energy difFerences appear in the
denominators of perturbation theory. This becomes clear
in further discussion.

The new interaction Hamiltonian must satisfy the
proximity condition

HI =DP [HI ], (2.10)

which implies the following condition on the similarity
matrix through Eq. (2.6):

DR[HI+ T H +HT+T HT]=0 . (2.11)

This equation may be slightly rewritten

DR[HI+ [Ho, h]+[Ho, a]+T HJ+HIT+T HT]=0,
(2.12)

[a,HO]=DR(HI+ [Ho, h ]+T HI+HIT+ T HT) .

(2.13)

HI =DP [HI + [Ho, h ] + T HI +HI T + TtHT] (2.14)

since DP[a]=0 by definition. We observe that the argu-
ments of DR and DP in Eqs. (2.13) and (2.14) are the
same. We denote this argument by Q.

For the purpose of carrying out the renormalization
program in perturbation theory to all orders we rewrite Q
in a different form. Namely, we use the inverse of the
similarity relation from Eq. (2.2) and the unitarity condi-
tion from Eq. (2.4) to express HI by HI in all terms of Q
except for the erst term which is HI itself:

Q =HI —[Ho, h ]+HI(a —h) —(a +h)HI'

+ (a +h)H'(a —Ii) . (2.15)

The similarity renormalization scheme is defined recur-
sively in powers of the bare interaction Hamiltonian in
the following way.

Let us assume for simplicity that the bare interaction
Hamiltonian is proportional to a coupling constant g,
with counterterms of higher order:

HI =g~I +g'~2+g'~3+ (2.16)

g VI is the bare interaction projected on the space limited
by the cutoff A and Vz for k =2, 3, . . . denote the coun-
terterms. Correspondingly,

and

HI' =g ~'I +g'~z+g'~3+

a =ga, +g a2+g'a3+

(2.17)

(2.18)

The matrix h is of order g,
h =g h2+g h3+

where, from Eq. (2.5),

(2.19)

h„=—1
k, l;k+1=n

(akai —hkhi) . (2.20)

In order to define the recursion formulas for the coun-
terterms we rewrite Q from Eq. (2.15) as a series in g,

From this condition we can find the similarity matrix re-
cursively in perturbation theory to all orders in the in-
teraction HI since we know the eigenstates and eigenval-
ues of Ho. The commutator of a with Ho is the lowest-
order term in Eq. (2.12) involving the similarity matrix
and it may be used to begin the recursion. Then, it fol-
lows that

and then satisfied by imposing the following condition on
the matrix a:

Q =gQi+g'Q2+g'Q3+

so that

(2.21)
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n —1 n —1 n —1

Q„=V„—IHo, h„]+ g Vk(a„„—h„„)—g (a„k+h„k)Vt+ g (ak+h1, )Hp(a„k —h„k)
k=1 k=1 k=1

n —2n —1 —k

+ g g (ak+hi, )V('(a„k )
—h„k () .

k=1 /=1
(2.22)

Equation (2.22) is our basic result. It is visible that the
structure of Q„ is generated by terms involving only Vk,
ak, and hk with k (n, except for V„and one term on the
right-hand side of Eq. (2.22) which involves h„. h„ is ex-
pressed by lower-order terms through Eq. (2.20) and V„
completes the definition of Q„by eliminating the diver-
gent cutoff dependence of other terms. Now, since all Vk
and ak for k = 1,2, . . . , n —1 are generated from
Qk, k = 1,2, ... , n —1, we have the recursion which
expresses Q„by Qk, k = 1,2, .. . , n —1. Expression (2.22)
for Q„ is designed in such a form, that the counterterm
V„appears in it only once and linearly, added to poten-
tially divergent terms. Thus, the necessary structure of
V„which makes Q„ independent of the big A can be
determined from the knowledge of finite Q's of lower or-
ders and operators appearing in Eq. (2.22).

Finally, we obtain expressions for V„' and a„. Namely,

where the (%+1)th approximation to the counterterm in

Hl~~+, )=gV, + V~+, is defined to remove all diver-
gences in QN+, . The complementary recursive relations
are

and

HI(N+ ) )
=DP [QN+ 1]

[aN+) Ho] DR[QN+1]

(2.31)

(2.32)

Thus, the unitarity condition is not manifest in the first
approximation. The nonperturbative iterative procedure
is defined by

Q„+,=H, („+,) [H„—hN ]+HIN(aN hN )—

(aN+ hN )HIN + (aN+ hN )HN(aN hN )

(2.30)

V„' =DP[Q„] (2.23) hN+1 (aN hN ) (2.33)

and

DR[Q„],,
anij

J I

(2.24)

This is the only equation which involves energy denomi-
nators. Since DR[Q„]; vanishes unless E, and E lie
outside the band condition from Eq. (2.8) one can verify
that

(E, +E, &+p —1 2Ep

+1 ' ' +1 ' (2.25)

Qi =gV1 . (2.26)

Neither divergences nor counterterms appear in this case.
The first approximation to a new interaction is

HI(=DP[gV1 ],
and the similarity matrix is

[a„Hp] =DR[gV, ],
together with

(2.27)

(2.28)

(2.29)

which confirms our claim that energy differences are of
order their sums.

The induction to all orders in g defines the similarity
renormalization scheme in perturbation theory. We are
interested in construction of the counterterms V„ for
n 2y 3) ~ ~ ~ y

x) ~

Knowing the generally valid structure of counterterms,
one can use Eqs. (2.5), (2.13), and (2.14) to find the new
Hamiltonian H' for some values of P and Eo in Eq. (2.8)
in an iterative procedure which is not confined to pertur-
bation theory. In the first approximation one has

If a limit of this procedure when X~~ exists, the result-
ing limiting matrices for large X provide a solution to the
renormalization problem for the initial Hamiltonian H.
It is visible that the unitarity constraints on the similarity
matrix are satisfied only in the limit X—+ ~. Equation
(2.33) implies unitarity constraints if hN+1 —hN. One has
to verify this procedure on a case by case basis, since it is
not possible to generally determine if it is convergent.
When the unitarity condition is satisfied the Hamiltonian
H' is Hermitian and has the same spectrum as H.

Although H' does not introduce cutoff dependence to a
desired order of perturbation theory for a sufficiently
large A it may still happen that H' has large off-diagonal
matrix elements so that its eigenstates may depend on the
cutoff A in a genuinely nonperturbative way. An exam-
ple of such situation is considered in Appendix B.

The bare Hamiltonian may be cut off in various ways,
not necessarily only by restricting its domain. One may
consider the initial Hamiltonian to have built in diagonal
proximity bounds with Eo-A and/or p very large in

comparison to 1. Then, one can reduce the bounds to
finite Ep and p in the same renormalization scheme. The
resulting Hamiltonians H' for different parameters Eo
and p are related by a new renormalization-group rela-
tion.

We proceed to explain how the similarity method
works in a model.

III. MODEL APPLICATION

In this section we present application of the similarity
renormalization scheme to the model from Appendix B 1

of Ref. [5]. Our interest in the model was stimulated by a
special case of the two-fermion bound-state eigenvalue
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problem in light-front quantum field theory. The model
is exactly solvable and provides a well-understood testing
ground.

The eigenvalue problem of the model is given in a form
of the equation

(z +m)P(z) —g I dz'P(z') =M/(z) .
0

(3.1)

H ~z) =(z+m) z),
and the bare interaction V with the matrix elements

(3.2)

(3.3)

Originally, z denoted the square of the relative transverse
momentum of two fermions, I was the square of the fer-
mion mass, and g was the square of the fermion-boson
coupling constant multiplied by the appropriate factors
emerging in a one boson exchange effective interaction.
M was the eigenvalue, equal to the mass squared of the
corresponding eigenstate. P(z) was a wave function
describing the relative motion of fermions. In the present
consideration those facts are mentioned merely for pro-
viding connection between the model and its origin [4,5].
The original Hamiltonian eigenvalue equation in quan-
turn field theory involved complicated dynamics in a lon-
gitudinal direction. All these complications, including
spin degrees of freedom, are removed here for simplicity.

The important feature of the eigenvalue problem in Eq.
(3.1) is that the integral extends to infinity and generates
divergences in the spectrum. An easy way to see a diver-
gence is to notice that the wave function P(z) falls off
asymptotically as z ' and the integral is logarithmically
divergent. Renormalization of this model using
differential equations in the effective Hamiltonian renor-
malization scheme is explained in Ref. [5]. Now, we shall
test the similarity renormalization scheme armed with
that experience.

We introduce the Hamiltonian H0 and its eigenstates,

8it(z, z')=1 —8p(z, z') . (3.8)

For example, the above definitions imply that 8~(z, z') = 1

when

pz'+b)z &
z' —b (3.9)

where

and

P—1

2
(3.10)

c=2 m+ (3.11)

Thus, 8~(z,z')=1 when

E, E, =—
~z

—z'~ —(z+z'+c),1

8
where

+1
P—1

(3.12)

(3.13)

Equation (3.12) is important, since it implies that the en-

ergy differences in denominators of perturbation theory
are on the order of the energies themselves. Therefore,
one is able to make estimates in perturbation theory
without encountering problems with small denominators.

We consider expressions for operators V, Q, V', a, and
h order by order in the coupling constant g. We need to
explicitly discuss some features of Q up to third order in

g in order to discover the structure of divergences and
observe cancellations which occur in the similarity ma-
trix T or its Hermitian conjugate. Then, the induction to
all orders in g is explained.

We begin with first-order terms. From Eq. (2.22) we
find that

Thus, our eigenvalue problem takes the form Q, (z, z')= V, (z,z')= —1 . (3.14)

Consequently, from Eq. (2.23),
(3.4)

It is convenient to denote matrix elements of all operators
as functions of two arguments. For example,

Vi (z,z') = —8+(z,z'),
and from Eq. (2.24), we obtain that

(3.15)

(Z~H ~z') =H (z,z') =h (z)5(z —z'),
where ho(z) =z +m, or

(3.5) 8~ (z,z')
a, (z,z') =

Z —Z' (3.16)

(Z~DP[ V]~z') =8p(z, z') V(z, z'), (3.6)

where V(z, z') = (z~ V~z') and 8&(z,z') is a diagonal prox-
imum factor. The latter is defined as Q, (z, z')~ (c, , (3.17)

No divergence appears in the first order and there is no
first order counterterm. In higher-order terms we need
estimates on various first-order quantities. For example,

where c, is a finite positive constant. From Eqs. (3.12)
and (3.16) it follows that8p(z, z') =8 (E, +E,.)+ —~E, E,, —/3

—1 2Eo

P+1 ' ' +1
(3.7) C)

a, (z, z')~ ( (3.18)

where, according to Eq. (2.8), E, =z +m, E, =z'+m, Eo
is a finite energy constant, and 0 is the step function. The
precise value of Eo is not important. P must be greater
than 1. The corresponding diagonal remotum factor is

where this time c, =8 and d, =c. Similar estimates for
higher-order terms involve powers of logarithms of
Z +Z +C.



5868 STANISKAW D. GKAZEK AND KENNETH G. WILSON 48

Our convention for using constants as c, and d
&

is fol-
lowing. When we consider estimates at certain order, for
example, n, , and derive a new bound which contains a
constant, for example c„, which is similar to a constant
denoted earlier by the same symbol c„ in the already
found bounds in this order, we replace the previous con-
stant everywhere in the nth-order bounds by the new con-
stant if the new constant gives bigger bounds. Thus, c& is
a supremum of the sufficiently large constants from vari-
ous bounds in first-order operators, and d

&
is an infimum

of the sufficiently small constants. We use this conven-
tion in higher orders. We do not need to write the con-
stants explicitly. We only need to know that such finite
constants exist, since we do not yet consider the conver-
gence of the series expansions in g. The convergence is-
sue in this model is settled later.

The second-order term in Eq. (2.22) reads

Q2= V2 —[Ho, hi j+ V', a, —a, V1+a1Ho 1 ( 19

z +z'+c
I Q2(z, z')

I c2 ln
2

(3.25)

where c2 and d2 are some suitable positive constants.
Equation (3.25) implies a similar bound on V2, since
Vz =DP [Q z ]. Moreover, for illustration, since

0~(z,z')
a2(z, z')=, Q2(z, z'),z' —z

(3.26)

and the energy difference in the denominator is bounded
from below by the diagonal remotum condition, we have
a useful bound of the type

la2(z, z') ~, ln
2 z +z'+c

Z+Z + (3.27)

which can be used in perturbative analysis to all orders in
g (see Appendix A).

The third-order term in Q involves features which need
to be discussed. From Eq. (2.22),

From Eq. (2.20) we have h 2
=

—,
' a1 and

hz(z, z') = — dy
2 0 Z y y Z

(3.20)

Q3 V3 —[Ho, h3 j + V', (a2 —hz) —(az+h2)V', + V2a,

—a, V2+a, Ho(a2 —h2)+(a2+h2)Hoa, +a, V', a, .

The integral for h 2 is convergent and [Ho, h z j is not sen-
sitive to the cutoff. Terms involving V& are finite thanks
to the diagonal proximity condition on the transformed
Hamiltonian, since the integration variables cannot reach
the cutoff for finite arguments of Qz(z, z'). The fifth term
on the right-hand side (RHS) of Eq. (3.19) produces a
divergence. Therefore, the counterterm V2 is introduced.
V2 is defined by the condition that it removes the big A
dependence from the fifth term. We need to find a form
of the divergence and discover the corresponding struc-
ture of V2. Using Eqs. (3.5) and (3.16), we write

6R (z,y) Hz (y, z')
a,Hoa, (z, z') = f dy (y +m), . (3.21)

0 z —y y —z'

For sufficiently large y the 0 functions equal 1 and it is
visible that there is a logarithmic divergence independent
of z and z'. Therefore, the counterterm must be indepen-
dent of z and z' also:

Vz(z, z')=vz . (3.22)

In order to cancel the logarithmic A dependence the con-
stant u2 must be of the form

Au2= ln
Xp

(3.23)

where xp is an arbitrary finite scale. A useful way of
writing u2 is

v, =f,—
& ola1Hoa1lo), (3.24)

where f2 denotes an arbitrary finite constant and the
second term cancels the logarithmic divergence in the
fifth term. Thus, we obtain a conclusion that the z- and
z'-independent counterterm Vz, defined by Eqs. (3.22)
and (3.24), removes the big A dependence from Q2. Eval-
uation of the integrals establishes that

(3.28)

Terms involving products of three operators are diver-
gent. For example, consider the term —a, Hphp ~ The
divergence originates from the region where Hp in the in-
termediate state is order A. From Eq. (3.20) one can see
that h2(y, z') for y -A contains terms of the form

1 z' 1
ln +

2y b P —1
(3.29)

when the left y is much larger than the right z' and in

T(z,y)=(zl(a +h)ly )

when the right y is much bigger than the left z. For ex-
ample, consider the matrix element

(yl(ai —h2)lz')= (ylHo(az —hz)lz') .
1

boy
(3.30)

Using Eqs. (2.13) and (2.15),

Ho(az —h2)= —DR[Qz] —[Ho, h2 j (+h 2a+)2Ho(3. 31)

and for sufficiently large y the diagonal remotum factor
Oz (y, z') equals 1, so that the matrix element of DR[Q~]
equals the matrix element of Qz itself. Then,

(ylH (a —h )lz')

= &yl [ —V2 Vla 1+a1Vl a 1Hoa1

+(a2+hi)Ho]lz') . (3.32)

and such term leads to a logarithmic divergence in
(zl —a1Hoh2lz ) which is multiplied by the logarithmic
function of z'. However, this z' dependent divergence is
canceled when one adds the term a &Hpa2. This is a gen-
eric cancellation. It occurs in the matrix elements

—r (y, z')=(yl(a —h)lz')
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V3(z, z') =
U3 ,

where

(3.33)

U3 f3 & ol [a,HO(a, —h, )+(a, +h2 )Hoa )

+a, V', a, ] 0&, (3.34)

in analogy to Eqs. (3.22) to (3.24). A comment is in order
about the last term. Terms of such structure do not ap-
pear in Q, and Q2. The last term is divergent because
there are two intermediate variables to integrate over, for
example, x and y. Although the two variables have to be
close to each other according to the diagonal proximum
condition on V&, the width of 8&(x,y) grows with x +y.
Therefore, this term is logarithmically divergent, since
a

&
(z, x) and a

& (y, z') fall off as only one inverse power of a
big argument. However, the counterterm V3, in particu-
lar its part —&ola, V', a, lo&, removes the divergence. As
a result,

l Q3(z, z')
l

~ c3 ln
3

and also

(3.35)

C3 I

la3(z, z')l ~, ln
z +z'+d3 d3

(3.36)

Equations (3.24) and (3.34) suggest a general method of
estimating matrix elements of subtracted operators,

An examination of this formula shows that a2 —h2 no
longer contains any z' dependence in order 1/y, despite
such a term in h2. One can compare the matrix element
in Eq. (3.32) with

&ylH, (a, —h, )lo&

and see that the difference is order y ', so that the ma-
trix element in Eq. (3.30) does not contain a z'-dependent
term order y ', since the inverse of ho(y) provides anoth-
er factor of y

' and the divergence in

&zla&HO(a2 —h2)lz' &

is independent of z'. These cancellations suggest that we
should consider matrices a and h together, in the sums
and differences. It is convenient to consider a and h

without separating them despite that h is expressed by a
through Eqs. (2.5) or (2.20), since it helps to see that the
divergences are independent of the external states' ener-
gies, i.e., independent of z and z'. Thus,

which we have also adopted in Ref. [5]. Namely, the
counterterms remove A dependence from matrix ele-
ments of an operator 0 and produce finite matrix ele-
ments of a new subtracted operator 0 in the following
generic way:

&zlo lz'& = &z l0lz'&+of —&ol0lo&, (3.37)

where of denotes an arbitrary finite part. Equation (3.37)
can be rewritten as

&zlolz'&=of+(&z —&ol)o z'&

+&olo(lz'& —lo&) . (3.38)

Therefore, it is useful to consider bounds on the
differences of matrix elements of the type appearing on
the RHS of Eq. (3.38), and use these bounds in proving
finiteness of subtracted operators in the limit A ~ ~ .

At this point it is demonstrated that constant counter-
terms of second and third order remove divergences from
Q2 and Q3, respectively. Q, is given by the bare interac-
tion and contains no counterterm. A proof by mathemat-
ical induction that the constant counterterms remove the
big cutoff dependence from the "band-diagonal" Hamil-
tonian matrix elements to all orders in the coupling con-
stant g is sketched in Appendix A.

IV. CONCLUSION

It is recursively established for all powers of the cou-
pling constant g that a constant counterterm is sufficient
to remove the cutoff dependence from the matrix ele-
ments of the Hamiltonian H for finite indices. There-
fore, one can always make the cutoff A big enough so that
all terms in perturbation theory up to an arbitrary order
p are independent of the cutoff. Suppose we consider
correction to a state of a free energy E. Then, using the
diagonal proximum condition from Eq. (3.9), we see that
for large A the new interaction Hamiltonian V' cannot
reach the cutoff until sufficiently high-order terms of per-
turbation expansions are considered. For example, no
cutoff dependence appears up to the order g ~ when
A ~x„(E),where the function x is explained in Eqs. (A9)
and (Alo) in Appendix A. Thus, making the cutofF A
infinitely large removes the cutoff dependence from the
eigenvalue problem of the Hamiltonian H to all orders of
the perturbation theory.

One possible way of proceeding further is to try to con-
struct the effective Hamiltonian H in the iteration pro-
cedure described in Eqs. (2.26) to (2.33), and solve this
Hamiltonian with a sufficiently large cutoff A. The coun-
terterm V&+i is defined through its matrix elements:

&zl V~+( z'& =f~+( &ol[ [~0 hx]+HI+(ax hx) ( x+ahx)H x+1(a~+h~)H ( ~~
—ah~)] 10& (4.1)

Various choices of Eo and /3 in the definition of the diago-
nal proximum lead to corresponding Hamiltonians with
various widths and slopes of their "band-diagonal" struc-
ture. These Hamiltonians are related by a new kind of
renormalization-group transformation which is

parametrized by Eo and P. It is interesting to note that
the diagonal proximum structure of the effective renor-
malized Hamiltonian resembles to some extent phenome-
nologically useful vertex form factors which limit allowed
momentum and/or energy transfers in acts of emission or
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f —g (f +g) lnA/Ap
u(A)= 1+(f+g) lnA/Ap

(4.2)

absorption of particles.
One can also proceed in a more direct way without

constructing the "band-diagonal" Hamiltonians. Name-
ly, one can write the Hamiltonian H which contains an
arbitrary counterterm constant v in its kernel in addition
to the coupling constant g. Then, one can solve the ei-
genvalue problem for the Hamiltonian H, calculate some
low energy observable and try to vary the big A. One
may observe that when A is suKciently large, it is enough
to keep changing the constant U together with changing
A in order to always obtain a fixed value of the chosen
observable, independently of A. This way one generates a
function v of A. The arbitrary magnitude of the constant
v can be fixed by requesting a definite value of the chosen
observable for some value of the cutoff, A =Ap.

This conclusion can be verified by analytic calcula-
tions. The result, given in Ref. [5], Eq. (B4), is

n —1 n —2n —1 —i

+ g 1,Hpr„, + g I; V'r„

where k;=a;+h; and r, =a; —h, for all i. The counter-
terms V„ for n =2, 3, . . . ,N have the matrix elements

&zi V„z'& =u„,
where the constants vn are

n —1

u„=f„—g &O~l, Hpr„, ~0&
i=1

n —2n —1 —i

+ y y & o~t, v,'r„ , , ~0 & ,

(A2)

(A3)

the limit A~ ~.
Following the analysis of low order terms, we write Q„,

for n = 1,2, 3, . .., N as
n —1

Q„=V„—f Hp, h„]+ g V,'r„,—g l„,V,
'

where f =u (Ap) is an arbitrary finite constant to be fixed
by the preferred value for the chosen observable. With
this choice for the function u (A) all observables become
independent of A when A~~. At this point we have
also settled the convergence issue in the model, since the
series expansion from Eq. (2.16) sums up to the result in
Eq. (4.2). Namely,

and f„are arbitrary finite numbers.
The following bounds are assumed to be valid for ma-

trix elements of various operators for n = 1, 2, . . . , N in
the hmit A~ ~:

IQ (
dn

&z~ V~z'&= —g —u(A) . (4.3)

The simplified test model is solvable analytically and
contains only one free parameter which needs to be ad-
justed when the cutoff is changed. In more complicated
models the situation is different and there is little hope
that adjusting a single parameter somewhere in a Hamil-
tonian removes cutoff dependence from its eigenvalue
problem. The similarity renormalization scheme helps in
finding the structure of required counterterms and decid-
ing what is allowed to depend on the cutoff. One tries to
construct or fit the cutoff dependence of the counterterms
so that the resulting observables are independent of the
cutoff. The cutoff independence hinges on the accuracy
of a procedure.
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APPENDIX A

It is explained in Sec. III that constant counterterms of
second and third order remove divergences from Q2 and
Q3, respectively. Qi is given by the bare interaction and
contains no counterterm. In this Appendix we sketch a
proof for that knowing N —1 constant counterterms V2,
V3, . . . , VN „and VN, which make matrix elements of
Q2, Q3, . . . , Q~ „and Q& with finite indices become
independent of the big cutoff A —+ ~, respectively, one
can define the next order counterterm, VN+1, which is
also constant and makes the matrix elements of Qi„+,
with finite indices become independent of the big cutoff in

x, (z)=gz+b .
The above bounds imply that we also assume that

tv+i
1

i„z+z +c
Z +Z +dN+ 1

Then, we define Qiv+,

Q~+i=v~+i IHp hiv+i]+ g V

N

g 1~+i;Vi'+ g I, Hpr

N —1N —i

+ &
i =1 j=l

(A 10)

(A 1 1)

(A12)
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Matrix elements of the counterterm VN+1 are

(zl I iv+ilz') =Uiv+i

and the constant vN+1 is

(A13)

APPENDIX B

This appendix contains an example of a "band-
diagonal" Hamiltonian which exhibits nonperturbative
cutoff dependence due to large off-diagonal matrix ele-
ments. The N XN Hamiltonian matrix is

N

Univ+i=fr+i —X (Olli~o"tv+i —
~

N —1N —i

+ y y (OII, &,'r„. . .lo& .
i =1 j=1

(A14)

co a
a Ace Aa

AQ Ace Aa
A, a A, co

and its eigenvector is

(81)

f~+, is an arbitrary finite number.
One can follow discussion of Eqs. (3.30)—(3.32) in Sec.

III and show that the bounds from Eqs. (A4) to (All) and
the above definition of the counterterm VN+, imply the
following bounds on matrix elements of various operators
of the order g

+' in the limit A —+ ~:

0

02

0N

The eigenvalue equations are
NZ +Z +C

I Qiv+i(z, z')
l

~
catv+ i »

N+1
(A15) EP„=A,

" 'a g„,+A,

"cog�„+

A, "aP„+, . (83)

CN+1 NZ +Z +C
l liv+, (z,z') ~, ln

Z Z + N+1
(A16)

Solving these equations by elimination starting with giv
and denoting

(84)
CN+1 NZ +Z +C

lriv+, (z, z')
l

ln
N+1 N+1

(A17)
one has

ca+i ho(z) ivz+y+cl4+1(z y) —4+1(0»)l ~
"o y derv+i

Q

EX&Ra (85)

(A18)

fory ~xiv+, (z), and

catv+i ho(z') ivy +z'+c
lr~+, (y, z') —r~~i(y, o)l ~

y "o y div+i

(A19)

for y ~ xiv+, (z'), where

and yN+1=0. If E is bounded and n is large with A, ) 1

then

Q 1
yn

CO+ Qyn +1
(86)

One can make a plot which shows how y„depends on

y„+1, which is a hyperbola with its vertical asymptote at
y„+,= —co/a. One can use this plot to show that if the
fixed points y*,

x~+, (z) —x, [x~(z)] .

These bounds imply that

(A20) a 1

co+a y
(87)

( I)l & %+2
1

N 1 ++z+zc
Z +Z +dN+2 dN+2

(A21)

Thus, by mathematical induction, we know that a con-
stant counterterm can remove the cutoff dependence
from the matrix elements of Q to all orders in the cou-
pling constant g. Therefore, it also removes the cutoff
dependence from the Hamiltonian H' to all orders in g,
since the cutoff independence of the matrix elements of Q
implies the cutoff independence for the matrix elements
with finite indices of the new interaction Hamiltonian,
V'=DP[Q].

are real then the smaller of the two is stable and all se-
quences y„converge to this stable fixed point unless one
starts at the unstable point. If a is large enough the fixed
points are complex and all sequences cycle chaotically
forever.

If the sequence of y„'s converges then the eigenvalue
equation has a limit for X~ ~ as predicted by perturba-
tion theory. The opposite case corresponds to the situa-
tion when the matrix H has large negative eigenvalues
which is undesirable for other reasons. This could imply
only that new counterterms are needed for the theory to
make sense, including an overall energy shift to bring the
lowest energy to be at order 1 instead of large.
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