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General structure of correlation functions in stochastic quantization
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We investigate the general structure of stationary correlation functions in stochastic quantization. On
the basis of the (D + 1)-dimensional field-theoretical formulation (operator formalism), we prove the fluc-
tuation dissipation theorem which establishes a link between two types of correlation functions (PP)
and (P~), ~ being the conjugate field to P. A specific structure of the self-energies to the correlation
functions is clarified in (D + l)-dimensional momentum space, which, together with the fluctuation dissi-

pation theorem, enables us to extract the fictitious time dependence of the correlation functions: The
correlation length along the fictitious time is inversely proportional to p +m phy mphy being the physi-
cal (pole) mass obtained in ordinary field theory.

PACS number(s): 03.70.+k, 02.50.Ey

I. INTRODUCTION
(1.4)

Here S[P] stands for a classical action of the system. We
have introduced a kernel factor tc( )0) in the above and
the statistical property of the Gaussian white noise i)(X)
reads

(r)(X))=0, (r)(X)r)(X')) =2a5 +'(X—X') . (1.2)

The quantization is supposed to be completed if we solve
the Langevin Eq. (1.1) to get the solution P„(X)as a func-
tional of g and calculate the equal-time correlation func-
tions

in the equilibrium limit t —+ ~.
It is well known that in equilibrium the correlation

functions represent the corresponding Green's functions
in ordinary D-dimensional field theory:

llm (y„(X, ) y„(X„))

=(Tp(, ) p( „))
x, x„e ~« (1.3)

This equivalence is best seen in the Fokker-Planck for-
malism which prescribes the time development of a prob-
ability distribution P[P;t] inherent to the stochastic pro-
cess described by the above Langevin equation. The
Fokker-Planck equation equivalent to (1.1) is

In the stochastic quantization (SQ) of Parisi and Wu
[1],an extra degree of freedom t, called fictitious time (or
simply called a time in the following if no confusion
arises), is introduced in addition to the ordinary D
dimensional Euclidean coordinates x, and field variables
P(x ) are regarded as random variables P(X )

=—P(x, t ) sub-
ject to the Langevin equation

P(X)= —a +i)(X) .
a 5S[y]

where the Fokker-Planck Hamiltonian H is given by

H[P, m. )= J d x —m (x) a~(x)—1 D 1 2 5S c6

2' 2 5$(x )

5 5 + 5S[$]
5$(x ) 5$(x ) 5$(x )

Remember that the momentum operator m(x ) is
represented by a diff'erential operator —2tc5/5$(x ) in the
P-diagonal representation. We easily see that the equilib-
rium probability distribution P, [P] is nothing but the
usual Feynman measure e ~~ if it is normalizable. It is
also to be noted that the only role of the positive kernel
factor K is to control the rate of the system's approach to
equilibrium and that it has nothing to do with the equilib-
rium distribution itself: A different choice of ~ corre-
sponds to a different stochastic process but with the same
equilibrium state.

Since its proposal, this quantization method has been
applied to various problems in field theories and their re-
sults are shown to be equivalent to those obtained by the
conventional quantization methods [2,3]. However, in
most cases this new degree of freedom has been used just
as a mathematical tool (or a computer time in numerical
simulations) to generate random variables P(x ) subject to
the equilibrium distribution P, [P] and then has simply
been discarded by considering the equal-time correlation
functions (1.3). To exhibit potential advantage of this
quantization method over the conventional ones, possible
dynamical roles of the fictitious time that provide us with
new insight, not accessible in the conventional methods,
have to be clarified.

Several years ago, an interesting observation about the
dynamical role of fictitious time was made by Namiki and
co-workers [4,5]. They considered the stationary two-
point function (P(X)P(X') ) with the nonzero time sepa-
ration ~= t —t' and concentrated on the large ~ behavior.
They claim that the physical mass or energy gap may be
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obtainable from the correlation length along ~. The
claim is based on the observation that in the free case the
correlation length along w is inversely proportional to the
mass squared:

lim d x(P(X)P(X')) = e
1

min(t, t') = oo m
(1.6)

and on a plausible argument in the interacting case.
They also simulated the correlation function using a solv-
able quantum-mechanical model and observed a nice ex-
ponential decay with respect to w. The measured correla-
tion length with respect to w showed a good agreement
with the exact value of the energy gap of the system [4].

Applications of the above idea to field theories need
more care and some progress has been reported. In their
study of the O(N) nonlinear o model, Okano and Schiilke
[6] carried out the renormalization program within the
framework of SQ and obtained the P functions. They in-
vestigated the renormalization-group behavior of the
correlation function with different time arguments [7]
and clarified the effect of the renormalization of sc in their
context [8—10]. A nice scaling behavior of the correla-
tion length along the fictitious time consistent with the
theoretical prediction was observed in their numerical
simulation [7]. On the other hand, the structure of the
stationary two-point functions was also investigated from
the point of view of the (D+ 1)-dimensional field theoret-
ical formulation (operator formalism) of SQ [11]and their
spectral representation was derived under several as-
sumptions [12].

The idea of extracting physical information directly
from the fictitious time dynamics is itself new and very
appealing: It may supply us with additional information
completely independent of that obtainable in convention-
al ways and certain practical advantages can be expected
in numerical simulations [4].

In spite of the analyses mentioned above, however, we
still feel that we have not yet reached a satisfactory un-
derstanding of the fictitious time dynamics of the station-
ary two-point functions. It is true that the time depen-
dence of correlation functions has intensively been inves-
tigated from the viewpoint of dynamical critical phenom-
ena, both for real- and fictitious-time stochastic processes
[13]. We want to stress here that the renormalization-
group equation, on which the analyses are based, can sup-
ply us with scaling properties of correlation functions;
however, the relation between the ordinary and fictitious
dynamics remains unclear owing to an arbitrary function
not determined in the renormalization-group analysis.
The explicit time dependence of the correlation function
and its relation to the physical mass have not been
clarified, in general, except for a special case of the large-
N limit of an O(N)-invariant model [7), because of our ig-
norance about the above-mentioned arbitrary function.
The spectral representation derived so far is crucially
dependent on rather a strong assumption [12] and one
must admit that its justification remains difficult.

What is most needed is a knowledge of the dynamical
structure of the stationary correlation functions (in other
words, the structure of the function which is left arbi-
trary in the renormalization-group analysis). Only when

such information as a dispersion relation between the or-
dinary and the fictitious momenta is provided, as in the
case for the large-N limit of the O(N)-invariant model
[14], can one draw definite conclusions on the above issue
[71.

In this paper we investigate the dynamical structure of
the stationary correlation functions in SQ in order to
meet the above requirement. The investigation is based
on a few general assumptions (e.g. , existence of a normal-
izable stationary state) and no strong assumptions are
needed. Though observation of the perturbative expan-
sions of the correlation functions plays a crucial role in
this study, it should be stressed that the result has a non-
perturbative content in the sense that contributions from
all orders of perturbation have been incorporated. For
simplicity and definiteness we exclusively consider a sys-
tem of self-interacting scalar field P; however, the result
has a model-independent nature and can easily be extend-
ed to other cases within the validity of the general as-
sumptions.

This paper is organized as follows. In the next section,
a relation between the P-P and the P n. correla-tion func-
tions is derived on the basis of the (D+1)-dimensional
field theoretical formulation of SQ [11]. The relation,
which is nothing but the fluctuation dissipation theorem,
implies that all dynamics contained in ( PP ) can be con-
structed simply from those of (Pm). We shall see that
the relation is transformed into another one between
proper self-energies to the correlation functions in SQ.
From observation of the diagrammatic expression of
(Pm. ), we are able to extract a specific functional depen-
dence of the proper self-energy on the fictitious momen-
tum in Sec III. In Sec. IV, integration over the fictitious
momentum is successfully carried out to obtain an expli-
cit ~ dependence of the stationary correlation function
with a time separation ~. It is further shown that the in-
verse of the ~-correlation length is given by a pole posi-
tion Qo(p) of (Pm ), which is proved to be proportional to
p +m~h „m~h„, being the physical (pole) mass observed
in the ordinary field theory. The last section (Sec. V) is
devoted to a summary and discussion. In the Appendix,
a relation which establishes a link between the proper
self-energy to (Pn. ) in SQ and the ordinary one in the
usual field theory is proved by making use of the super-
transformation invariance [15].

II. RELATIONSHIP BETWEEN P-P AND P-w
CORRELATION FUNCTIONS

In this section, we shall clarify the close relationship
between the stationary P-P and P ir correlation f-unctions.
The analysis is based on the (D+1)-dimensional field-
theoretical formulation of SQ (operator formalism) [11].
The operator formalism has been constructed as a
(D+1)-dimensional analogue of the ordinary canonical
theory so that techniques developed in the ordinary field
theory are also available. For example, stationary corre-
lation functions are expressed as "vacuum-to-vacuum"
expectation values of field operators. Details of the for-
malism are found in the original paper [11]or in the re-
view article [3].
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In the operator formalism of SQ, the canonical field
operators P(X) and m(x), subject to the equal-time com-
mutation relation

The stationary correlation functions are expressed as the
"vacuum-to-vacuum" expectation values of the time-
ordered product of operators: e.g.,

[P(x),rr(x')]0=2x5 (x —x'),
satisfy the "Heisenberg" equations

8 P(x) = [H, P(X)]=sr(x) 5S

(2.1)

(2.2a)

D(X—X')—: lim & P(x)P(X') )
min(t, t') = &n

~t
—t'I & ~

=
& v

~
Ty(X)y(X') ~u (2.4)

a
m(X) = [H, vr(x)]=~m. (x) 5S

(2.2b) G(X—X')—: lim & P(x)m(x') )
min(t, t') = oo

~(X)—2~ ~u, ) =O, & v, ~~(X)=O .5S
(2.3)

where H is the Fokker-Planck Hamiltonian already given
in (1.5). There exist two "vacuum" states ~uo) and ~vo),
i.e., the zero eigenstates of H and H, respectively, and
they are prescribed by the stationary conditions

=&v ~Ty(X)rr(X')~u ) . (2.5)

The m.-m correlation function is identically zero owing to
the stationary condition for & vo ~

(2.3).
To derive a relation between the stationary P-P (D)

and the P-m. (G) correlation functions, we differentiate
D (X X ) with respect to x= t

8( —r) D(X X') =8(——r)& vo~g(x') rr(x) ~ —
~uo )

a 5S
ar ' ay(X)

=
—,'8( —r) & v

~
P(x')m(x) iu )

= —,
'

& vo ~
TP(x')vr(x) ~uo ) =

—,'G(X' —X), (2.6)

where use has been made of the Heisenberg Eq. (2.2a) and
the stationary conditions (2.3). From this relation, we
have

a D(X X') = 8( ——r) 8(r) — D(X —X')a
Br 8( —r)

=—'[G(X' —X)—G(X—X')] . (2.7)

It would be worthwhile to remark that the relation,
which is satisfied by the full correlation functions D and
G thus providing us with a generalization of a similar re-
lation in the free case [15], is nothing but a supersym-
metric Ward identity [16] and a realization of the fiuctua-
tion dissipation theorem [17,18]. The same form of the
Auctuation dissipation theorem, which establishes a link
between the correlation and the response functions, has
been previously derived in a slightly di6'erent context
[19]. Here we briefiy mention the relevance to the earlier
works [16—18]. The correspondence would be clear if we
recall that the (D+ 1)-dimensional action integral associ-
ated with the Hamiltonian (1.5) is given by (using an
overdot to denote BIBt )

I= f d +'Xrrg f dt H—
= f d +'X — m- + m- P+sc

1 1 ~ 5S
4K 2K 5$

(2.8)

Introducing a source function j(x) for p(x) and adding a
source term fd x j(x )p(x ) to the classical action S, we

understand that the response function defined by

z(x —x')= . , &y(x)).5
5j(x') j=0

(2.9)

The relation implies that the dynamical structure of the
correlation function D is completely determined

through that of the P-m. correlation function G. If we
remember the fact that the perturbative expansion for G
is less involved than that for D, we may expect a consid-
erable simplification in the perturbative treatment of D.
We stress that this theorem holds for any system given by
a Hamiltonian of the form (1.5), as is clear from the
above derivation.

is nothing but ( ——,
' times) the P-m. correlation function.

In order to study the structure of the correlation func-
tions in more detail, we go into the (D + 1)-dimensional
momentum space (p, 0). We define Fourier transforms as
follows [f(X)—=f(x, t)]:

fdD+lx f(X) EAE —
EP x

(2.10)
df(X)—f P f ( Q) EQE+EP'x

(2~)D 2~

The above fiuctuation dissipation theorem (2.7) is now ex-
pressed as

D(p, Q)= . [G(p, Q) G(p, —0)]=——Im[G(p, Q)] .
1 1

2iQ

(2.11)
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X(p, Q) =X'0(p, Q) —X'0(p, Q)Z(p, Q)X'(p, Q),
where

0 X~ (p, Q)

X &(p, Q) X (p, Q)

(2.12)

(2.13a)

Next let us introduce the proper one particle irreduc-
ible (1PI) self-energies to the correlation functions. It is
well known that there appear to be two different types of
self-energies X &(p, Q) [=X& (p, —Q)] and X (p, Q) in
the (D+1)-dimensional field-theoretical treatment of SQ
[5,10]. They are defined in a 2 X 2 matrix form by

Go(p, Q)/2«. =
iQ —«(p +m )

(2.14b)

G(p, Q)/2«= Go(p, Q)/2«

In the above we have taken into account the fact that the
m-m correlation functions are identically zero both in the
free and interacting cases [i.e., the (2,2) elements of X'
and X'0] and its resulting identity X&&=0 [i.e., the (1,1)-
element of Z]. These characteristics allow us to easily
solve (2.12) for G and D.

From the (1,2) element of (2.12), we obtain

D(p, Q) G(p, Q)/2«
~(»Q)=

G(p, Q—)/2«0 (2.13b)
—[G 0 (p, Q ) /2«]X ~(p, Q )[G (p, Q ) /2«],

Do(p, Q)

Go(p, —Q)/2«
Go(p, Q)/2«

0 which solving for 6 becomes2.13c

(2.15)

The free correlation functions Dp and Gp are explicitly
written as

Do(p, Q)= 2K

[iQ+«(p +m )][iQ sc(p —+m )]
(2.14a)

I

G(p, Q)/2«. =
iQ «(p +—m ) —X„&(p,Q)

(2.16)

The (2, 1) element gives us exactly the same form. The
remaining (1,1) element seems somewhat complicated:

D(p, Q)=DO(p, Q) —[Go(p, Q)/2«]X ~(p, Q)D(p, Q) —[Do(p, Q)X~ (p, Q)+[Go(p, Q)/2«]X (p, Q)][G(p, —Q)/2«] .

(2.17)

However, observing the relations [see (2.14) and (2.15)]

Do(p, Q) =2«[GD(p, Q)/2«][Go(p, —Q)/2«],

1+[Go(p, Q)/2«]X ~(p, Q )

= [G (p0, Q)/2 ][«G(p, Q)/2 ]«
and

Go(p, —Q)/2« —[Go(p, —Q)/2«]X& (p, Q)

X [G(p, —Q)/2«] = G(p, —Q)/2«,
I

we are able to reach the relation

D(p, Q)=[G(p, Q)/2«][2« —X (p, Q)]G(p, —Q)/2«. .

(2.18)

(For another diagrammatic derivation, see Ref. [10].)
Figure 1 shows the structures of 6 and D diagrammati-
cally.

We are now in a position to derive a relation between
the two self-energies X

&
and X in SQ. Because the

above expression for G/2«. (2.16) allows us to rewrite the
right-hand side (RHS) of (2.11) as

1 2K 2iQ [X ~(p—, Q) —X ~(p,
—Q))—Im[G(p, Q)]=

2iQ [iQ —«(p +m ) —X ~(p, Q)][ iQ «(p +—m )
——X ~(p, —Q)]

r

=[G(p, Q)/2«] 2« — [X &(p, Q) —X &(p,
—Q)] [G(p, —Q)/2«],

2tQ

2K
1m[X„~(p,Q) ] . (2.19)

this theorem (2.11), combined with the above relation
(2.18), is transformed into a relation between self-
energies:

X (p, Q)= . [X &(p, Q) —X ~(p, —Q)]2iQ

The relation was first observed from the explicit forms of
X„and X& in the one-loop calculation and was called
the "optical theorem" [10]. The above derivation shows
that it does hold true, in general, at any order and that it
is a direct consequence of the fluctuation dissipation
theorem.

We have already seen from (2.16) and (2.18) that the
P-P correlation function is dependent on the self-energy
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2K

D = ~x~+

~ ~ ~

(2.8). Some of its important characteristics are the fol-
lowing.

(i) The topological structure is the same as that of the
ordinary Feynman graph.

(ii) For each internal line, connecting the ith and jth
vertices and carrying momentum pl, one of the two prop-
agators

+ I ~ ~

G, (p, ;r, t, )/—2~=6(r, t, )—e (3.2a)

=+ ~= =Q +
D, (p, ;r, t, )=— , e

+i Pij
(3.2b)

FIG. 1. Diagrammatic representations of the correlation
functions 6/2v and D. A directed thin line stands for Go/2~.

is assigned, where

Ic, (p, )=~(p&+—m ) (3.3)
X as well as X„&,while X

&
is sufticient to determine the

structure of the P n. correl-ation function. The above rela-
tion (2.19) reveals a close link between these apparently
difFerent self-energies X and X

&
in SQ: The latter has

enough information to determine the structure of the
former. Thus we are led to the conclusion that we only
need to study in detail the structure of X &(p, Q). We
shall consider X &(p, Q) exclusively in the following.

I P —QT+iP x[G ( Q)/2 ][ y ( Q)]OP yP

X [Go(p, Q ) /2~], (3.1a)

or, in configuration space,

= Jd +'X, d +'X~[GO(X —X, )/2~][ —X ~(X, —X2)]

X [Go(X~ —X')/2~] . (3.1b)

Here we are mainly interested in the fictitious momentum
(Q) dependence of X &(p, Q). To extract the Q depen-
dence of X„&(p,Q), let us first focus our attention to the r
dependence of the above diagram Fig. 2 or (3.1).

The diagram (3.1) can be calculated perturbatively on
the basis of the stochastic [(D+1)-dimensional] action

III. THE STRUCTURE QF THE SKI.F-ENERGY X ~(p, Q)

To gain insight into the structure of X &(p, Q), let us

begin by considering a building block whose iterated use
constitutes the full correlation function G(p, Q)/2x. See
Figs. 1 and 2. Its mathematical expression reads as
(r = r t')—

and t,. is the internal fictitious time attached to the ith
vertex. Notice that each internal line depends exponen-
tially on the internal time and the exponent is always neg-
ative.

(iii) We have to perform internal time integrations in
addition to the ordinary internal momentum integrations.

(iv) The causal property of Go and the interaction form

ir6S;„,/5P in (2.8) make the above diagram causal, that
is, t ~ t, ~ tz ~ t' and if t') t it vanishes.

One finds it convenient to work in t-space rather than
in Q-space because the internal time integrations can
easily be performed if they are split into contributions of
fixed-time orderings [2,20]. Then every contribution of a
fixed-time ordering is summed together. (This is the
reason why the above characteristics are presented in t
space. )

Suppose that a specific time ordering is fixed. Every
internal time integration produces two terms, arising
from the upper and the lower limits of the integration.
Because of the inequality t, ~ r' [see (iv) above] and the
ordering of the integration variables, after all internal in-
tegrations except for one over t& are performed, these
internal times are set equal to either t, (the upper limit)
or t' (the lower limit). Observe that at this stage the ex-
ponents assigned to the internal lines connecting the ith
and jth vertices survive only when the two internal times
t, and t attach. ed to t.hese vertices are set differently (i.e.,
t;Wtj). Otherwise (i.e., r; =tj =t, or t; =t =r') the ex-
ponents disappear.

Therefore, we can classify the terms which appear un-
der the final t, integration according to their t& depen-
dence. They are either (a) r& independent if all internal
times are set equal to t&, because all exponents of internal
propagators disappear, leaving only those of external
propagators

—&l(P)(t —tl ) —&$(P)(tl —&') —K$(P)~
7

FIG. 2. A building-block diagram for the correlation func-
tion 6/2x.

or (b) t, dependent if otherwise. The t, -dependence ap-
pears in the exponential form
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e ' ' exp Q—K, (pi )(t, t'—)
I

g K, (pi ) =a. g (pi +m ) =K„(pi,p ),
k=1 k=1

(3.4)

where the summation over l extends over all lines whose
end point times are differently set equal to t, and t', re-
spectively, after the integrations. If there are n ( & 1)
such lines l1, l2, . . . , l„ the summation over l is explicitly
written as

where the line momenta pi should satisfy gk, pi =p
k k

because of the momentum conservation at every vertex.
The final integration over t, is now easily performed.

We can write down the final integration in the form

r

8(r)—f dt, fo(p)e ' + g f g f„(pi,p)exp[ K, (p—)(t —t, ) K„(p—i,p)(ti —t')]
jl

(3.5)

where J stands for the ordinary internal momentum integrations and the summation g(i )
is taken over all possible

i k

combinations [lk]. All contributions of different time orderings have been included in the real functions fo and 7„.
Thus after the integration over t, we can finally reach the general form

r

Fig. 2 = —8(r) f e'P" " ' ufo(p)e ' + g f f„(p)e (3.6)(2' ) 1 Pl

and

g f f„(p)=0
n=1 i

(3.7)

Here and hereafter, to simplify the notation, we suppress
the internal momentum dependence of the functions f„
and E„ together with the summation over possible com-
binations of internal momenta g(i ).k

It is then possible to show that the real functions f„
(n =0, 1,2, . . .) introduced in (3.6) are subject to the
"sum" rules

f„(p)[K„(p) —Ki(p)]'
x ~(p, Q)= —g

p; /Q K„p
(3.9)

It is worth mentioning here that X ~(p, Q) has no singu-
larity at Q= —iKi(p)= ia(p +—m . ). It has only simple
poles at Q = t'K„(p ) with —n & 1 inside the internal
momentum integrations, which may be considered to
represent contributions coming from higher excited states
whose spectrum is continuous.

which, with the help of the sum rules (3.7) and (3.8), can
be further reduced to

fo(p)= g f f„(p)K„(p) .
n=1

(3.8) IV. FICTITIOUS TIME DYNAMICS
OF CORRELATION FUNCTIONS

The first equality (3.7) simply refiects the fact that there is
no integration interval if we set t =t' in (3.5), implying
that the quantity in the large parentheses in (3.6) vanishes
when ~=t —t'=0. It is also not di%cult to see that the
same structure remains even if we take the t derivative of
(3.1b). In fact, it produces two terms, both of which van-
ish if t=t' because the integration volume reduces to
zero in this case also. See Fig. 3. The second sum rule
(3.8) is a consequence of this property: The t derivative
of (3.6) evaluated at t =t' vanishes.

Now a comparison of the Fourier transform with
respect to r of (3.6) and (3.1a) yields [see (2.14b)]

f„(p)
X„&(p,Q)=fo(p) —[iQ K, (p)]—g fp; lQ K„p

Since we have obtained information on the structure of
the correlation functions in momentum space, especially
on their fictitious momentum dependence (2.16) and (3.9),
our next task is to carry out the integration over the ficti-
tious momentum to extract their time dependence.

As was already mentioned in Sec. II, the fluctuation
dissipation theorem allows us to concentrate on the Pvr-
correlation function G. The time dependence of the P-P
correlation function D is determined through the analytic
property of G(p, Q), which is again easily understood
from the fluctuation dissipation theorem (2.7):

f d p ip (x —x')

(2m )

X . GpQ —Gp, —0 e

U, ' " V
X X' X X' X X'

FIG. 3. Time (t) derivative of the diagram Fig. 2 or (3.1) pro-
duces two terms both of which are still causal and vanish when
w= t —t'=0.

(4.1)

Note that the residue at Q=O is zero so that it has no
contribution if r = t —t'%0. —

Consider the P rr correlation function -G in
configuration space. To make its analytical property
transparent, we rewrite G in the form [see (2.16)]
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d6(g Xi) f P rp (x —x') f(2m )

d
ep ip. (x —x')

(2m. )

dQ 2K —i Q7.

2n. i Q K—, (p ) —X &(p, Q )

2~ iv=o [iQ K)(p))
(4.2)

We realize that this expression is nothing but the direct
representation of the diagrammatic expansion of 6 (see
Fig. 1). Remember that X &(p, Q) has only simple poles
at Q= iK„—(p ) (n ) 1) and vanishes at Q= 0() [see (3.9)].
Remember that the numerator [X„&(p,Q)] in (4.2) has
only simple poles since its poles must be considered
nonidentical to each other because of the presence of
internal momentum integration j in each factor. Thus

t

each integrand in (4.2) has only multiple poles, i.e., an
(N+1)-fold pole at Q= —iK)(p) and simple poles at
Q= iK„—(p) (n & 1) and is well behaved at Q= ~. The
integration over Q is now reduced to the evaluation of

I

X &(p, iK„—(p))
2lK n p

—K„(P)7
e (4.3)

There arise N such terms for each n ) 1. Therefore, the
contribution sought is

residues at these poles and the summation over N.
Let us first calculate the contribution arising from the

simple poles of the numerator in (4.2). From (3.9), we see
that the residue of the integrand in (4.2) at one of the
poles of the numerator, for example, at Q= iK„—(p)
(n & 1), is given by

d D X ~(p, iK„—(p ) )
g( )f p ip. (x —x') y y f f ( )N

(2~)D ~ o, , p;
" K„(p)—K((p)

—K„(P)7-
e

2K„(p)—K((p) —K (p)7.

(277) p Kn (p ) K
1 (p )

(4 4)

gee find that the (t) mcorrela-tion function 6 includes terms which decay exponentially with respect to r with continuous
exponents K„(p) (n ) 1).

ext we turn our attention to the (N+1)-fold pole at Q= iK, (p)—of the denominator in (4.2). To calculate its resi-
due, we have to diff'erentiate the numerator N times with respect to Q and then set Q= —iK((p). The calculation
proceeds in the following way:

~n
N —n Ki(»~

2i)~8(r) g ( i )
+'— g [2 ~(p, Q)] ( ir) "e—

oo

=2xO(r)e
N=O n=0

n
a2

[ —rX ~(p, ig)]-
(}7 (} Q =K

) (P )

—K l (&)~ —a'pa~ aQe e
Q=K)(p) (4.5)

where the last equality follows from the fact that the upper limit of the summation over n can be extended to infinity.
—a'iannaTo evaluate the last factor e ~ g e ~ '

in (4.5), first calculate its Fourier transform

dQ gg —a'xa ag y(» 'g' dQ gg gaza y(»e' e e e' e' e
2& 2'

dg ig(g —x ~(p,
—ig)) —~x ~(p, —ig)

2~'
Because X &(p,

—ig) is a real function of real variables p and Q [see (3.9)], the inverse Fourier transform gives us

d I

e ~ ' g e
'

~ ' ' = f dg expIig[g' —Q —X &(p, ig')]]e—
(4.6)

d '6 ' — —X &p,
—i ' e

—6 Qo
—Q)

~1
—(axag, )r.,(p, —)g, )~

' (4.7)
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where Qp =Qp(p, Q) is a solution of the equation

Q=Qo r y(p 'Qo) . (4.8)

It is now clear that the contribution coming from the multipole at Q = i—K, (p) is expressed in a compact form as
D

2x.8 ~ e'i' 1 —Qo&~
)
I —(azaQ, )r.,(p, —i n, ) (

' (4.9)

where Qo =Qo(p ) =Qp (p, K i (p ) ) satisfies

Qp Ki(p )+r &(p, in—p) (4.10)

Observe that, at least perturbatively, Qo(p) is a real positive quantity, Qo(p ) )0, and the denominator in (4.9) never van-
ishes. Thus we realize again that the correlation function decays exponentially with respect to ~. However, it should be
stressed that the exponent Qo is a function of p and does not depend on internal momenta. %'e may regard the above
term (4.9) as a contribution coming from low-lying one-particle states which constitute a discrete spectrum. Further-
more, we should point out that the exponent Qo(p) is just ( i tim—es) the pole position of G(p, Q) [see (2.16)]. The calcu-
lation leading to (4.9) thus demonstrates explicitly an important role of the pole position of G(p, Q) in determining the r
dependence of the correlation functions.

To summarize, we have found the following expression for the stationary P vr corr-elation function G(X—X ):

D
—Qow

e

„~1—(a an, )r.,(p, —in, )~

2
K„(p )

—Ki(p ) —K„(p)~f (p)
"

e
K„(p )

—Ki(p )
—r ~(p, iK„(p—) )

(4.11)

Notice that this expression has been derived under no
special conditions. It should be considered as a general
expression for G.

In the asymptotic limit ~~ ~, the correlation function
is dominated by a term which has the largest exponent
(i.e., the smallest exponent in absolute value). Assume
that the discrete spectrum lies below the continuous one
as in the case in the ordinary field theory and that the
former consists of only one state. Then the integrated
correlation function behaves in the asymptotic limit like

f d x G(X—X')

I

reduces to (w times) the self-energy r„T(p) to the full

propagator in the ordinary field theory EF(p):

1
&F(p ) =

p +m +rFT(p)
(4.14)

This property follows from the equivalence of the equal-
time P-P correlation function D (X—X') ~, , to its coun-
terpart b,„'(x —x') in the field theory. We first write the
equal-time P-P correlation function in momentum space:

b,F(x —x') =D(X X') ~,
—

—0 (0)r
e

~1 —[agan, (o)]r.,(0, —in(o) )
~

(4.12)

~

~

d p ip. (x —x')

(2'�) 2~
(4.15)

0=no(p*)=Ki(p~)+r y(p~ 'Qo(p~))

=i~(p, +m )+r ~(pe, o) . (4.13)

We can show below that the self-energy r &(p, o) in SQ

I

In the rest of this section we shall prove that the discrete
exponent Q(p) is proportional to p +m h„, so that
Q(0) ~ m~h„„with m~h„, being the physical mass defined
as a pole position of the propagator in the field theory.

To prove the above statement, we shall look for a con-
dition under which Qo(p) vanishes. Let p + be the
momentum such that Qo(p+ ) =0. Then, from (4.10),

The last factor can be rewritten in terms of G by the fIuc-
tuation dissipation theorem (2.11):

f D(p, n)= f . [G(p, Q) —G(p, —Q)] .dQ dQ 1

(4.16)

Owing to the causal property of 6 which implies that
G(p, n) has singularities only in the lower-half Q plane
and its asymptotic behavior G(p, n) —+0 as Q~ce [see
(2.16) and (3.9)], we can choose appropriate contours for
each term in (4.16) to conclude that the only contribution
comes from the residue at Q =0 [10]:

f D(p, n)=lim f . . [G(p, n) —G(p, —Q)]=—,'G(p, o) .dQ . dQ 1

2m ~ o 2m 2i(n —ie)
(4.17)
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Combining (4.14), (4.15), (4.17), and (2.16), we arrive at
the desired result

X ~(p, 0)=a X~ (p ) . (4.18)

We understand that the far RHS of (4.13) is simply
v[3,z(p ~ ) ] so that p ~ is a momentum at which the full

propagator b,„'(p ) has a pole, that is, p, +m ~h„, =0 from
the definition of the physical (pole) mass m &„,. There-
fore, expanded around p =p~, we see that Qo(p) con-
tains a factor p —p „

Qo(p) "p' p'. =p—'+m', h,. (4.19)

and the proportionality Qo(0) ~ m h„, follows.
In the Appendix, another proof of the above equality

(4.18), which is based on the supertransformation invari-
ance of the stochastic diagram [15],is presented.

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the ~ dependence of
the stationary two-point correlation functions with a
finite time difFerence r in SQ. The fiuctuation dissipation
theorem (2.7) and (2.11), which establishes a close link be-
tween the P-P correlation function (D) and the P-m corre-
lation function (G) was derived very easily within the
framework of the (D+1)-dimensional field-theoretical
formulation (operator formalism) of SQ. The theorem
shows that the P-P correlation function can be construct-
ed from the P mcorrela-tion function, thus allowing us to
concentrate on the latter. Both correlation functions
have essentially the same time dependence. Then we
found that the P-m. correlation function has a simple
structure (2.16) in the (D+1)-dimensional momentum
space. A close consideration of the stochastic diagram
Fig. 2 made it possible for us to extract a crucial fictitious
momentum (Q) dependence of the self-energy X &(pQ)
(3.9). From its analytic property with respect to Q, we
succeeded in performing the 0 integration to obtain the
final form of the P-vr correlation function (4.11), which is
the main result of this paper. The correlation functions
are thus shown explicitly to decay exponentially with
respect to ~. Furthermore, the appearance of the physi-
cal (pole) mass m~h„, in their discrete exponent
Qo(p ) ~p +m ~„„,has been proved.

It should be stressed again that the analysis presented
here is based on very general grounds and that no special
conditions have been assumed. The result (4.11) can be
considered to exhibit a general structure with respect to ~
of the stationary two-point correlation functions in SQ.

General as it is, it would be worthwhile to comment
explicitly on some general conditions, which have been
implicitly assumed in the analysis, to clarify its range of
validity and limitations. In the operator formalism, it is
always assumed that there exists a stationary state P„.
The existence of such a state implies that correlation
functions acquire translational invariance in this state, so
that the two-point correlation function (P(X)P(X') ), for
example, becomes a function of X—X'. We understand
that these conditions have played a crucial role in deriv-
ing the fiuctuation dissipation theorem. See (2.6) and

(2.7). Of course, for any system described by a Fokker-
Planck Hamiltonian of the form (1.5), we can find a sta-
tionary state P„and, if it is normalizable, we can derive a
similar fluctuation dissipation theorem. It is clear that if
the stationary state -e is not normalizable owing to
the presence of some symmetries in the classical system
(e.g. , gauge symmetries) or if the stochastic process is not
Markovian, the present method could not be applied:
The translational invariance would not be assured in the
former case and a stationary state or even a stationary
state condition does not seem to have been obtained ex-
plicitly in the latter case.

Next we would like to comment on the relationship be-
tween the operator formalism [ll] on which the present
analysis is based and the supersymmetric formulation of
SQ [17,18]. The operator formalism was formulated on
the basis of the so-called "Ito-related interpretation" of
the Langevin equation [21,22], in which no ghost fields
were required because of a trivial determinant factor.
Ghost fields have been introduced to exponentiate a non-
trivial determinant factor when the "Stratonovich-related
interpretation" (midpoint prescription) or a similar one is
adopted. Their introduction has led us to the supersym-
metric formulation of SQ, which has recently been
proved to be prescription independent, i.e., independent
of the choice of interpretation of the Langevin equation,
in the continuum limit [23]. However, their role, impor-
tant as it is for the consistency of the formalism (e.g. , re-
normalizability) [8,24], is limited to a cancellation of
prescription-dependent terms which is proportional to
8(0) [25] if they appear only in internal loops. It is easily
seen that every internal ghost loop and the corresponding

vr loop, both -of which are proportional to 8(0), have ex-
actly the same contributions but with opposite signs.
Therefore, in the present analysis where no ghost correla-
tion functions are considered, we can safely neglect their
contributions from the beginning by adopting a conven-
tion 8(0)=0 [25]. Incidentally, it is a well-established
fact that the Fokker-Planck equations take the same form
irrespective of the choice of interpretation of the
Langevin Eq. (1.1) (i.e., for the additive-noise case) [22],
thus assuring interpretation-independent correlation
functions for P. This may be refiected by the fact that ex-
actly the same Auctuation dissipation theorem as that ob-
tained here has also been derived from the supersym-
metric invariance of the (D+1)-dimensional stochastic
action [16—18].

It is true that the analysis developed here largely de-
pends on the crucial observation of the perturbative
structure of the stochastic diagrams. However, the struc-
ture (3.6) found for the diagram Fig. 2 or (3.1) can be con-
sidered to hold true for any order of perturbation: All
contributions from perturbative series have been taken
into account in f„. In this sense, the results (3.10), (4.11),
and (4.19) are considered to possess a nonperturbative
content. Of course, no essentially nonperturbative effects
(e.g. , instanton efFect) have been incorporated here. The
inclusion of such efFects seems important, but is beyond
the scope of the present work.

The final result (4.11) shows that the ~ dependence of
the stationary correlation functions appears only in ex-
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ponential form. This statement, which has also been
confirmed explicitly in perturbative calculations of corre-
lation functions [26], is nothing but a realization of their
"spectral decomposition" [12]. If we set up the following
eigenvalue equations for the Fokker-Planck Hamiltonian
H (1.5),

HIu„,p &
= —

A, „(p)Iu„,p &,

HtIv„,p &
= —A,„(p)Iv„,p &,

with

(5.1)

G(X X')=2m—O( r)f De' '" ' g p„(p)e
(2n. ) „~0

(5.2a)

(5.2b)

The summation over n should be understood to include
possible internal momentum integrations, and a function
p„(p) defined by

i~p„(p ) =&„(p)& U, lg(0) I ~„,p & ( U„,p I P(0) Idio &,

which is normalized and positive semidefinite,

(5.3)

g p„(p)=i, p„(p)~0,
n&0

(5.4)

is an analogue to the ordinary spectral function. The re-
sults obtained in this paper are found consistent with
these spectral decompositions (5.2). The present analysis,
however, has made it possible to relate the eigenvalues of
the Fokker-Planck Hamiltonian with dynamical quanti-
ties such as the self-energy X &. If we assume that the
discrete spectrum always lies below the continuum one,
we deduce the following correspondence: The low-lying
discrete spectrum, which is assumed for simplicity to
consist of only one state, is given by the pole position
Qo(p) in the P-m correlation function G,

A, ,(p) =Qo(p ) o- p +m h„, , (5.5)

0—:Ao (A, i(p) ~ Ai(p) ~

we can show that the stationary two-point functions D
and G can be decomposed into the spectrum [12]

and the remaining continuum spectrum corresponds to
higher eigenvalues:

&„(p)=K„(p)=~ g (pi +m ) (n ) 1) .
k=1

(5.6)

Finally we shall discuss possible implications of the
final result (4.11) for practical applications. The appear-
ance of the physical mass rn~h„, in the exponent Qo(p) as
a factor p +mphy seems to o6'er a novel way of extract-
ing physical information from the correlation length
along the fictitious time direction. This was already ex-
pected as explained in Sec. I and was the main motivation
to the present work. Our results may be considered to
have partly proved the expectation: The fictitious time
correlation length is inversely proportional to the physi-
cal mass squared. Incidentally, the appearance of the
physical quantity (energy gap) in the exponent Qo in the
correlation functions or in the lowest nonzero eigenvalue
A, 1 of the Fokker-Planck Hamiltonian has also been ob-
served in second-order perturbative calculations for a
simple quantum mechanical model [27,26]. '

However, it should also be noted that to extract such
physical information from the fictitious time correlation
length we need to know the remaining factor of Qo(p ) be-
sides p +mphys That is, if we write

Qo(p) ~(p)(p +~ h (5.7)
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the meaning of the factor h (p) [or at least h (0)] has to be
clarified. Only in the large-X limit of an O(N)-invariant
model, has the exact form of h (p) been derived [14]. It is
generally expected that the factor h(p) should be deeply
connected with the renormalization of the kernel factor
~, as may be clear from the previous renormalization-
group analysis [7,13]. Further study along this line of
thought is now in progress.

APPENDIX

We shall present here another proof of (4.18). The proof makes use of a (hidden) supertransformation invariance of
the stochastic diagram [15] without assuming the equivalence between the equal time P-P correlation function and its
counterpart in the field theory (4.15).

Consider the same stochastic diagram as in (3.1), but this time integrated over t':

The spectrum of the Fokker-Planck Hamiltonian has been investigated in a different context both numerically and analytically.
See Ref. [28].
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J —= f ™
dt'[Fig. 2]= —f -e'~' '[Gp(p, O)/21']X &(p, O)[Gp(p, O)/2'],d P t ~ (x —x')

which may also be written as

J=—f D fdtidt~dt'e'~' '[G p(p;t —ti ) /21']X~&(p;t, —tz)[Gp(p;t~ —t')/2ir] .
(2~)D

(A2)

For definiteness, we consider here a self-interacting scalar theory described by an interaction Hamiltonian gP" /n! and
suppose that there are N vertices in the above diagram J.

We follow the same technique developed in Ref. [15]. First we introduce Grassmann variables g, g; at each vertex i
(i = 1, . . . , X), which enables us to rewrite J as

J=f e'i'" 'f Q dtrdg&dg&dt'( —glr) g, g, [G (p;t —t, )/2'] Q 2),"[G p(p;t&
—t')/ 2a] .2' 1=1 Ii,j

(A3)

(A3)

Here the "super propagator" 2); is defined by

2);J =Dp(t; —t )+erg; G—p(t —t; )/2a+g g Gp(t; t )/—2a. (A4)

and the product +!; ! extends over all internal lines. For notational simplicity, we suppress the ordinary momentum
dependence. Observe that the coupling constant has been properly scaled according to our definition of propagators
[see (2.12) and (2.13)].

Now let t2 be the time attached to one of the vertices directly connected to the vertex V& whose time variable is t,
and define

N

rf(t„g,g„'t„g,g, ) = f Q dt, d( dP dt' g B;,[G (t —t')/2 ] .
1=3 Ii,j I

Obviously

(A5)

J=( glr) —f e'i' " ' f dt, d g,dg, dtzd gzdgz[Gp(t t, )/2a—]g,g, dt . (A6)

Then we consider the supertransformation

5tz =8(t, tz )bz, g'z—= —gaea, 5gz= —aea, (A7)

where e is an infinitesimal parameter, a and a Grassmann numbers and b, z =@(a gz+ gaza ). Remark that the only invari-
ant combination of tz, gz, and gz which is linear in tz and bilinear in gz and gz is tz+8(t, tz)gzjz/a. T—he variation of
the superpropagator 2)z; under this transformation is easily seen to be

a
5z; =8(ti —tz )6z Dp(tz —t; ) KhzGp(t; —tz )/2K

Bt2

8(ti tz )6z fzgz Gp(tz tt )/2K+KGp(tz t( )/2K (A8)

where use has been made of (2.7)
We shall show that the above 4 is invariant under the transformation (A7). Following the same line of thought ex-

pounded in the appendix of Ref. [15],we can arrive at the following expression for 5cf:
N

58= —8(t, t, )b.,f Q dt, dg, dg, d—t'
1=3 V2

—V V —V V —Vr N

X[G,(t, t )/2 ][G (t t—, )/2 ] . [G—,(t„—t )/2 ],[G,(t —t')/2 ] Q'2), , ,
Iij

(A9)

A similar but slightly difFerent superpropagator appears in the superspace formulation of SQ [16,17,24]. Either superpropagator
can be used in the proof for the difference disappears under the Cxrassmann integrations.



48 GENERAL STRUCTURE OF CORRELATION FUNCTIONS IN. . . 5849

where the summation g] ], extends over all vertices V. directly connected with the vertex V; and the last factor is a
J

product of the remaining propagators not included in the product of (Go/2]c) s. Note that the integrand is written as a
total derivative with respect to t'. The integration over t' is trivially performed to give us the boundary (t'=+oo)
values of the integrand, which are both zero thanks to the causal property and the exponential time dependence of Go.
Thus we have proved the invariance of 8 under the supertransformation (A7).

This invariance implies that 8 is dependent on t2, gz, and $2 only through the invariant combination
t2+8(t] t2)g—zg2/«, which enables us to perform the integrations in (A6). Since

+( t ] gi]g]i t2 fi242) +( t ] i g]g] i t2 + 9( t ] t2 )gggp/]ci 0)

we have

=8(t],g]g],'t2, 0)+8(t] —t2) 8(t],g]g],'t2, 0)$2gq/]r,
Bt2

EjJ=( g]r—) f P e']' 'fdt]dg]dg][G]](t t, )/2—]c]g]g]cf(t],g]g]', t„O)/« . (A10)

Observe that the net effect of the integration over t2, g2, and g2 is summarized as a replacement t2 ~t], gz(2~0 and a
multiplication by a factor 1/~.

We are able to apply this technique repeatedly to J, the consequence of which amounts to replacements t;~t„
g;g; ~0 for i =2, . . . , N and the multiplication by a factor (1/«. ) '. All of the super propagators 2); are to be re-
placed by Do(t] —t, ) after the integrations. The final form of J is

I i (x —x')J=]c(—g) f e']' 'f dt]dt'[Go(t —t, )/2]c] Q D ](]0)[ G&(t ]
—t')/2 ]]c.

(2~) int. lines

(A 1 1)

Since the topological structure of the stochastic diagram (3.1) or (Al) is the same as that of the corresponding Feynman
diagram in the field theory, comparison between (Al) and (All) immediately yields the conclusion that the self-energy
X &(p, O) is nothing but (]c times) the ordinary proper self-energy XFT(p) in field theory:

X &(p, O) = —]c( —g ) Q D(q], 0)= —«( —g ) Q b F(q] ) =]rXFr(p), (A12)
int. lines int. lines

where integrations over internal line momenta q& are implicit as before.
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