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Considerable interest has recently been expressed in the entropy versus area relationship for
"dirty" black holes —black holes in interaction with various classical matter fields, distorted by
higher derivative gravity, or infested with various forms of quantum hair. In many cases it is found
that the entropy is simply related to the area of the event horizon: S = kAH/(4E~). For example,
the "entropy = (1/4) area" law holds for Schwarzschild, Reissner-Nordstrom, Kerr —Newman, and
dilatonic black holes. On the other hand, the "entropy = (1/4) area" law fails for various types of
(Riemann)" gravity, Lovelock gravity, and various versions of quantum hair. The pattern underlying
these results is less than clear. This paper systematizes these results by deriving a general formula
for the entropy:

kAH 1+ (gI. —Zx) K"dZ„+ s V"dZ„.

(K" is the timelike Killing vector, V" the four-velocity of a corotating observer. ) If no hair is
present the validity of the "entropy = (1/4) area" law reduces to the question of whether or not the
Lorentzian energy density for the system under consideration is formally equal to the Euclideanized
Lagrangian.

PACS number(s): 04.20.Cv, 04.60.+n, 97.60.Lf

I. INTRODUCTION

For a variety of reasons, considerable interest has re-
cently been expressed in the entropy versus area relation-
ship for generic "dirty" black holes. (By a dirty black
hole I mean a black hole possibly in interaction with var-
ious classical matter fields, possibly modified by higher
curvature terms in the gravity Lagrangian [(Riemann)" ],
or possibly infested with some version of quantum hair. )
Some of these reasons are the following. (1) The low-
energy point-Beld limit of string theory includes a dila-
ton field. The presence of the dilaton field modifies the
Reissner-Nordstrom and Kerr-Newman black holes. (2)
Despite the successes of string theory, a fully satisfactory
theory of quantum gravity has proved elusive. Never-
theless, whatever the underlying quantum theory is, one
would expect on general grounds that the low-energy the-
ory should be describable by the Einstein-Hilbert action
modified by higher-order terms in the Riemann tensor.
(3) Quantum hair is a result of quantum fiuctuations in
the various low-energy quantum fields with which the
black hole geometry interacts. As such, quantum hair
is of interest independently of the details as to how one
quantizes gravity.

In concordance with Bekenstein's original sugges-
tion [1], in many cases it is found that the entropy is
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simply related to the area of the event horizon:

kAH

4P~

On the other hand, in many other cases this simple rela-
tionship fails. The pattern, if any, underlying the various
results is less than clear. Consider the following exam-
ples.

S = (1/4)A: The "entropy = (1/4) area" law holds
for (1) Schwarzschild black holes [2,3], (2) Reissner-
Nordstrom black holes [2,3], (3) Kerr-Newman black
holes [2,3], (4) dilatonic black holes [4,5], (5) rotating
dilatonic black holes [6], and (6) generic (Riemann)
gravity in D = 4 [7].

8 P (1/4)A: The "entropy = (1/4) area" law fails for
(1) specific examples of (Riemann) gravity (D g 4) [8,9],
(2) generic (Riemann) gravity (D=4) [10], (3) specific
examples of (Riemailn) gravity [11],(4) Lovelock gravity
(D P 4) [12,13], and (5) various versions of quantum
hair [14,15].

This paper systematizes these results by deriving a
general formula for the entropy in terms of (1) the area
of the event horizon, (2) the Lorentzian energy density
in the classical fields surrounding the black hole, (3)
the Euclideanized Lagrangian describing those fields, (4)
the Hawking temperature, (5) the entropy density as-
sociated with the fiuctuations [quantum hair, statistical
hair], and finally (6) the metric. The derivation is partic-
ularly transparent, and the physical interpretation clear,
if one temporarily restricts attention to the spherically
symmetric case [zero angular momentum]. In terms of
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the shape function b(r) and the anomalous redshift P(r)
the promised formula reads

e~ (gL, —2@)dsr

(2)

in terms of the asymptotic mass b(oo) = 2GM. This
metric has putative horizons at values of r satisfying
b(rH) = rH. Only the outermost horizon is of immediate
interest.

The Hawking temperature of a black hole is given in
terms of its surface gravity by kTH = (5/2vr)K. A brief
computation yields [17]

If no fluctuations are present, (s = 0, no quantum hair,
no statistical-mechanics effects), the issue of the validity
of the "entropy = (1/4) area" law reduces to the question
of whether or not the Lorentzian energy density for the
system under consideration is formally equal to the Eu-
clideanized Lagrangian. As a rule of thumb, Lagrangians
with quadratic kinetic terms satisfy the "entropy = (1/4)
area" law. Lagrangians containing (curvature)2 terms
and higher typically do not.

The generalization to the case of nonzero angular mo-
mentum (axisymmetric geometry) is straightforward, re-
quiring a little extra technical machinery in the form of
the timelike and azimuthal Killing vectors, and a suit-
able invariant integration over the three-surface defined
by taking a constant time slice.

The basic tools to be employed are the relationship
between the thermodynamic functions and the partition
function associated with the "Wick rotated" Euclidean
section [3], and the Bardeen-Carter-Hawking mass the-
orem for geometries containing a timelike Killing vec-
tor [16]. The technical computations are actually rel-
atively simple. Some care must be taken, however, in
carefully navigating through a thicket of conceptual and
definitional issues, and with various subtleties associated
with the shift in signature.

Notation: Adopt units where c—:1, but all other quan-
tities retain their usual dimensionalities, so that in partic-
ular G = E~/mI = 5/m& = E&/h. The metric signature
is either (—,+, +, +) or (+, +, +, +) depending on con-
text. The symbol T will always denote a temperature.
The stress-energy tensor will be denoted by t&, and its
trace by t.

II. LORENTZIAN TECHNIQUES

The metric, horizon, and Hawking temperature

In any static spherically symmetric asymptotically fIat
spacetime the metric gl, may without loss of generality
be cast into the form

dT
ds = —e ~" [1 —b(r)/r] dt +

b(")/"I
+r (de + sin 8 dp ).

The function b(r) will be referred to as the "shape func-
tion, " while P(r) will be referred to as the "anomalous
redshift" [17]. Applying boundary conditions at spa-
tial infinity permits one, without loss of generality, to
set P(oo) = 0 . Once this normalization of the asymp-
totic time coordinate is adopted, one may interpret b(oo)

O'=SvrG pr,
S~G (p —r)r

2 (1 —b/r)
' (6)

Instead of imposing the third Einstein equation, observe
that (as is usual) the third equation is redundant with
the imposition of the conservation of stress energy. Thus
one may take the third equation to be the anisotropic
version of the Oppenheimer-Volkoff equation

r' = (p —r)[—P'+ z(ln(l —b/r))'] —2(p+ r)/r. (7)

Taking p and v to be primary, one may formally integrate
the Einstein equations:

b(r) = rH + 87rG pr2dP = 2GM —8vrG pT dT)

SvrG (p —r)r
2 „(1—b/r)

The transverse pressure p is then determined via the
anisotropic Oppenheimer-Volkoff equation. The Hawk-
ing temperature is

Sar G (p —r)r
47rrH ( 2 „„(1—b/r) )
x (1 —S~G pH rH) . (10)

Attempting to determine the entropy by integrating the
thermodynamic relation dM = THdS works well in sim-
ple cases, but in general quickly leads to an impenetra-
ble morass. This is about as far as one can get using
Lorentzian techniques. A different method of attack is
called for.

III. EUCLIDEAN TECHNIQUES

A. The metric, horizon, and Hawking temperature

Another way of calculating the Hawking temperature
is via the periodicity of the Wick rotated Euclidean-
signature analytic continuation of the manifold [3]. Pro-
ceed by making the formal substitution t ~ —it to yield

e 4( )[1 b(„)]1
2~0

This formula receives most of its physical significance af-
ter b'(rH) and P(rH) are related to the distribution of
matter by imposing the Einstein field equations.

The first two Einstein equations are [17]
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a fiducial Euclidean metric gz.

dT
dsz ——+e ~~"l [1 —b(r)/r] dt +

+r (de + sin edp ).

In view of the t independence of this metric, this Wick
rotation preserves the mixed components of the Riemann
and Ricci tensors:

[Riemann(gz)] p p = [Riemann(gL, )] p

[Ricci(gz)] p = [Ricci(gl, )] p,

&(gz) = &(91.)

As is usual, discard the entire r ( rH region, retaining
only the (analytic continuation of) that region that was
outside the outermost horizon ( i.e. , r & rH). A Taylor
series expansion about r = rH shows that the (r, t) plane
is a smooth two-dimensional manifold if and only if t is
interpreted as an angular variable with period

(12)

kTH =
4vrrH

e """'(1 —b'(r )1

This is the same result as was obtained by direct calcu-
lation of the surface gravity.

B. Helmholtz free energy

The Helmholtz free energy of an arbitrary statistical-
mechanical system is defined in terms of the partition
function as

Invoking the usual incantations [3], this periodicity in
imaginary (Euclidean) time is interpreted as evidence of
a thermal bath of temperature kTH = 1/PH = h/7H, so
that the Hawking temperature is identified as

For the particular case at hand, one writes the partition
function as [3]

Z = 'D(g, C) exp( Iz—(g, C)/h].

Here 4 denotes the generic class of matter fields:
fermions, gauge bosons, Higgs particles, axions, dilatons,
etc. The range of integration runs over all possible matter
field configurations, and over some suitable class of Eu-
clidean metrics. There is some confusion as to the class
of Euclidean metrics which should be integrated over in
general, but for the present problem it is sufficient to in-
tegrate over all Euclidean metrics g that have the same
topology as the fixed fiducial metric gz, are asymptoti-
cally Hat, and are periodic in imaginary time with period
rH = 2x/r = hP = h/kTH [15]. By adopting background
field techniques one can define an exact decomposition

Z —eXp [ IZ(gZ i C'0)/h] Zfluctuations ~

Here gz is the fiducial background metric, 40 denotes
the background matter fields, and Zflucguaij&&na denotes
the contributions to the partition function coming from
quantum fluctuations around the fiducial background—
these fluctuations can be described by the usual loop ex-
pansion.

(Anyone who is worried about the precise class of met-
rics to integrate over, or unhappy about invoking back-
ground field techniques can go straight from the defini-
tion of the partition function to the semiclassical limit.
Doing so yields an approximation

Z = exp[ —Iz(gz, Co)/h] Z,„,i„~.
This version of the semiclassical limit handles only
one-loop eKects in linearized gravitational and matter
fluctuations. )

Adopting either of these decompositions one may write

kTI@
h

+ +Auctuations.

F = —kT lnZ. (14)
The various contributions to the Euclidean action can be
grouped into three distinct terms

Iz(gz~ C'0) = — [K]y'sgz d &—1 3 1

BA l6~G Rggz d'x+ rzqgz d42:. (19)

These various terms are: (1) the gravitational surface term, to be integrated over the three-surface at spatial infinity
(topology Sz x Si), (2) the Einstein-Hilbert term, to be integrated over the entire Euclidean manifold (topology
S2 x Di), and (3) the Euclideanized "matter" Lagrangian. Higher-order geometrical terms [e.g. , (Riemann)2], if
present, are lumped into the "matter" ? agrangian.

The boundary term is easily evaluated:

1 1 Mr~ hPM
[K]gsgz d z = — rH( —4vrGM) =+

BA 8~G (20)

To evaluate the Einstein-Hilbert term, one invokes the Einstein field equation G„=8vrG t~ . In conformance with
the conventions already established, the Euclidean stress energy tensor is defined by setting its mixed components
equal to the mixed components of the Lorentzian stress-energy: (tz)" = (tl.)"„.Consequently, for the trace, tz = tl, .
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The subscripts (E, L) will often be omitted if no confusion can arise. Thus

1

16+G
1

16~G
1=+—
2

Rgg@ d x=— tgg@ d x

t e ~4mr dr 7H =+ p
2

e-~t d'r.

( 8v—rGt) gg@ d x = +—4 1

2

(21)

Z@gg@ d x = hP e ~Z@d T. (22)

Here Z denotes a constant time hypersurface (topology
S x R+). Similarly, the matter action can be rewritten
as

kTH AH
4/2 (28)

energy in such a way as to eliminate the integral over the
trace of the stress-energy tensor yields

+fluctuations &H = fgg@ d4x.

Finally, the fact that the Helmholtz free energy is an ex-
tensive quantity justifies the introduction of a free-energy
density associated with the fluctuations. This free-energy
density f is defined by

D. Thermodynamic relations

By definition I'" = U —TS. For an asymptotically
flat geometry the internal energy U is defined to be the
asymptotic mass M. Eliminating F

Equivalently, e ~(p —2@ —f)dsr.

+Auctuations = e &f d'r.

Combining everything,

t
e ~ —+C~+f)d r

2

(24)

(25)

This is almost the required form. To proceed, note that
the p occurring above is the total energy density, and
that the way things have been defined, energy density can
arise either from the classical matter fields surrounding
the black hole, or from the quantum fluctuations, or both.
This justifies a split:

P = gg+ gf. (30)

C. Bardeen-Carter-Hawking mass theorem

For a static spacetime, the existence of a timelike
Killing vector, together with the use of the Einstein field
equations, implies [16]

(2t„—t6„")K"dZ~. (26)

kTH AH
2E

e ~(2p+t)d r. (27)

Resubstituting into the formula for the Helmholtz free

This is a purely geometrodynamic statement in terms
of the surface gravity, the area of the event horizon,
and the stress-energy tensor. ln view of the conven-
tions adopted herein, this result holds equally well in
Lorentzian or Euclidean signature. To keep subsequent
formulas more transparent, I have reversed the orienta-
tion of the hypersurface Z relative to that adopted by
Bardeen, Carter, and Hawking [16]. Thus, with my con-
ventions, K"dZ„~ +e ~dsx for the case of spherical
symmetry. Using the relationship between surface grav-
ity and the Hawking temperature, and using the explicit
forms of the metric and the timelike Killing vector, per-
mits this to be rewritten as

But the energy density in the fluctuations, and the
Helmholtz free-energy density in the fluctuations, are re-
lated by f = gf Ts, where s —is the local entropy density
in the fluctuations and T is the local temperature. Be-
cause the whole system is at thermal equilibrium at a
redshifted temperature TH, the local temperature varies
as

TH

Qgn

T~ e+&

Ql —(b/r)

Resubstituting everything yields the final result for the
entropy:

kAH 1S=
48~ TH z

+ d'T.
p Ql —(b/r)

e ~(g~ —Z~)dsr

This is a very pleasing result which accounts for all known
violations of the "entropy = (1/4) area" law in a unified
manner. Furthermore, the result immediately general-
izes: instead of considering quantum fluctuations of the
gravitational and matter fields I could just as easily have
dumped a few particles outside the event horizon of the
black hole and proceeded to do ordinary statistical me-
chanics in a fixed background geometry. Consequently,
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the fluctuations discussed in this paper can be thought
of as being ordinary statistical-mechanics fluctuations as
easily as quantum fluctuations. The entropy formula de-
rived above applies equally well to dirty black holes, to
classical field configurations, and to stars. (Subject to the
present constraint of spherical symmetry. ) Compare this
to the discussion by Gibbons and Hawking [3]. Gibbons
and Hawking discuss electrovac black holes and perfect
fluid stars. There is no need in the present formulation
for the effect of the fluctuations, or for the efFect of the
classical matter fields, to be constrained to mimic a per-
fect fluid —any generic stress-energy tensor will suFice.

In adding statistical-mechanical hair to the system, one
may also wish to include discussion of the effect of the
chemical potential, There are two compensating mod-
ifications. First, note that for the system as a whole
F = M—TS—p N. Here p is the chemical potential as
measured at asymptotic infinity, and N is the total num-
ber of particles. Second, for the statistical-mechanical
hair, f = py

—Ts —pn Here. p is the locally measured
chemical potential, and n is the local number density.
Because the whole system is taken to be in chemical equi-
librium, the local chemical potential must be a constant
up to a redshift factor: p = p /ggii. The putative
additional contribution to the entropy is proportional to

IV. THE ANOMALOUS ENTROPY

A. Lagrangians containing only first-order time
derivatives

Quadratic kinetic energy

Consider a Lorentzian Lagrangian that is quadratic
in first-order time derivatives. Such a Lagrangian may,
without loss of generality, be cast in the form

l:I, = —g b(4) 4 4 —V(C).
2

(37)

The Lorentzian energy density is

gl. = x 4 —l:L, = —g b(4') 4 4 + V(4).
2

(38)

On the other hand, the Euclideanized Lagrangian is de-
fined by l:@ =— l:1.(t t

—+ ——it). For the case under con-
sideration,

In many cases this anomalous entropy vanishes. In many
other cases it does not.

e pnd r=p~N —p~3 n~gs d x = 0 . l:@ = gb(4—) 4 4 + V(C) = gL, .

ds = —e dt + g,~dr'dr~ (34)

and the entropy becomes

kAH 1
4/ TH

e (gL, —l:~)~gpdsx

The formula for the entropy is not disturbed by the ad-
dition of a chemical potential to the system.

Another immediate generalization is that to an arbi-
trary static, asymptotically flat, but not spherically sym-
metric spacetime. The metric is

Consequently, the anomalous entropy vanishes, and mod-
ulo the efFects of quantum and statistical hair, "entropy
= (1/4) area. "

Examples of this behavior are the electrovac black
holes (Schwarzs child, Reissner-Nordstrom, and Kerr-
Newman [2,3]), as well as the various variations on the
theme of the dilatonic black hole [4—6]. This observation
also applies to the Lagrangian of the standard model of
particle physics, modulo minor technical fiddles with the
Fermi fields. The recent general discussion of the "en-

tropy = (1/4) area" law by Moss [18] took the quadratic
nature of the kinetic terms as a basic assumption. Con-
sequently, that analysis failed to detect the anomalous

gl, —8@ term.

s~gsd x. (35)

A subtlety is that because I have not placed any energy
conditions on the stress tensor one cannot now invoke
the usual proof that the Hawking temperature is a con-
stant over the horizon. Instead, constancy of the Hawk-

ing temperature over the horizon is now enforced by the
assumption that the system is in thermal equilibrium.

A striking feature of the entropy formula is the exis-
tence of an anomalous contribution associated with the
interplay between certain types of classical field and the
existence of the heat bath. Explicitly,

2. Generic kinetic energy

l:L, = K(C, 4) —V(@). (40)

The Lorentzian energy density is

Still restricting attention to Lagrangians that are first
order in time derivatives, suppose the kinetic energy term
to be generic (subject only to time reversal invariance).
Then suppressing field indices one may write

1
Sanomalous =

h

e ~(gL, —Z~)d r

(gL, —l:~)gg~d x. (36)

gl. = vrC —l:I, = K'(4, 4) [24] 4 —K(C, 4') + V(C ).
(41)

On the other hand, the Euclideanized Lagrangian is
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8@ = —K(—4, 4) + V(4). (42)

In the difference, gL, —l'.~, the potential energy cancels

tions of motion are proportional to the Ricci tensor, with
the result that the Schwarzschild solution remains a so-
lution of the (Riemann)2 system.

gl. —8@ = [24 ] K'(4, 4) —K(C, C) + K(—C, C).

(43)

This looks like a mess. Fortunately, if the field 4' is a
physical field, one can use the static nature of the space-
time to deduce 4 = 0. In this case

C. Topological Lagrangians

If the Lagrangian contains a topological piece, its con-
tribution to the anomalous entropy can be calculated
trivially. For instance, in D = 4 consider the Gauss-
Bonnet and Pontrjagin terms

gl, —ZE = 0 —K(0, 4 ) + K(0, 4) = 0,

and the "entropy = (1/4) area" law follows.

(44)
(R ~~ R p~p

—2R ~R p+R )

(F""P„). (49)

B. Lagrangians containing arbitrary-order time
derivatives For such topological terms the energy density gr, is zero

by definition. The anomalous entropy reduces to

Independent of the order of time derivatives appear-
ing in the Lagrangian, the stress-energy tensor may be
defined by

1
~anomalous =

+H

k
e Z~ d'r= —— Z~ gg~d'~

~ n
= —k(c X+ Pp) (5o)

t""(x)=-
v' —»g~ (&)

More explicitly,

V'—g &I, ~ (45)

(46)

This is a simple fixed ofi'set to the entropy generated
by the Euler characteristic and Pontrjagin index of the
manifold. This result is not exactly surprising and could
have been easily deduced from the original definition of
the Helinholtz free energy. If Zp denotes the partition
function excluding topological effects E = —kT lnZ =
kT(o'.g + Pp) —kT lnZp.

Here the symbol 681,/bg denotes Bl:I,/Og plus whatever

terms arise from integrating by parts. Now gL,
——t

t"/ig"
i
= t"[g„i, so

~&I,
gI, = —~g~~

~gu
(47)

If one is interested in only physical fields, the static na-
ture of the spacetime implies, via the vanishing of all time
derivatives, 2@ = l:1.(t ~ —it) —= —l:L,. Consequently,

baal.
gL, —&z = —2g~~

~gu
(48)

The generic breakdown of the "entropy = (1/4) area"
law in higher-order gravity theories is thus manifest.
Typically the variation with respect to g«will produce
terms such as R~,q, or such as R~„,Rq„,. Without the
presence of an accidental zero, the failure of the "entropy
= (1/4) area" law follows. In agreement with these obser-
vations, the law fails for (Riemann)~ gravity (D g 4) [8,9]
(Riemann) s gravity (D = 4) [10], (Riemann) 4 grav-
ity [11],and Lovelock gravity (D g 4) [12,13].

Accidental zeros of the type alluded to above preserve
the "entropy = (1/4) area" law for (Riemann)z gravity in

D = 4 [& = R+ aiR + azR„~R" + asR„pR"" ~]. To
see this, note that in four dimensions the Gauss-Bonnet
formula for the Euler characteristic allows one to rewrite
J' (Riemann) as a topological invariant plus a linear com-

bination of J (Ricci) and J' Rz. This system has been
analyzed by Whitt [7]. The modifications to the equa-

V. AXISY'MMETRIC SPACETIMES

—+ C@+f) EC"dE„ (51)

Here Z is a spacelike hypersurface, tangent to the az-
imuthal Killing vector K. The induced three-metric has
volume form dZ„. By construction, K"dZ„= 0.

On the other hand, one form of the Bardeen-Carter-
Hawking mass formula now reads [16]

KA.HM = +2A~JH— (2t„—tb„)K"dZ„. (52)

The discussion up to the present has, for simplicity,
only discussed the spherically symmetric case. To relax
this constraint to merely require axial symmetry is not
particularly difficult. (One needs to do this in order to
be able to discuss black holes possessing angular momen-
tum. )

In a stationary axisymmetric asymptotically Hat space-
time there is a unique translational Killing vector K~
which is timelike and normalized to Ki'K~ = —1 near
spatial infinity. By abuse of language, this is often re-
ferred to as the timelike Killing vector. There is also a
unique rotational Killing vector Ki' normalized by de-
manding that its orbits be closed curves with parameter
length 2~ [16].

The fundamental formula for the Helmholtz free energy
in terms of the Euclidean action is recast as
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The extra contribution involves the angular momentum
of the black hole JH, and the angular velocity of the event
horizon AH. The angular momentum of the black hole is
defined by

This, in fact, defines the comoving energy density. An
observer with four-velocity V" sees no energy flux. By
the assumed axial symmetry the four-velocity must be of
the form

1
JH ——+ K"'"dZ„.

horizon
(53)

(54)

To proceed, it is advantageous to further massage the
term f t„K&dZ„. Note that the stress energy surround-
ing the black hole should be rotating "with" the black
hole. This notion may be formalized by requiring the
stress energy tensor to possess a timelike unit eigenvec-
tor V", with corresponding eigenvalue p. Explicitly

AV" = K" + ~K". (55)

(A is a normalizing factor. ) This indicates that, as ex-
pected, the stress energy surrounding the hole is rotating
"with" it. The value of formalizing these notions in this
indirect manner is that one is no longer restricted to the
case of a perfect fluid. (cf. [3,16].) For the discussion
at hand, one is interested only in a system in internal
equilibrium. Hence one sets cu = AH. (Everything ro-
tates at the same angular velocity throughout the sys-
tem. ) Repeatedly using the fact that K" is tangent to
the hypersurface Z,

t„(AV" —AHK")dZ„= (—A pV —O~t„K")dZ

p(K" + AH K")dZ„—A~

PK d~p H Jmatter (56)

Jmatter = + C„"K~dE„.

The angular momentum of the matter, J~~qq«, is de-
fined in the usual manner [16]

potential, F = M —TS —AH J«i,,i —p~N. Here AH is
again promoted to the status of the angular velocity of
the entire heat bath —not just the angular velocity of
the horizon. Eliminating F,

For the case of interest (internal equilibrium, ~ = AH),
the Bardeen-Carter-Hawking mass theorem now reads

kAH p N 1

4E~ TH TH (p —(l:~+ f) )Ki'dZ„.

rA~M = +2AHJ«i~i+ {2p+t) K~dZ„. (58)

((l:@+ f) —p)K"dZ„. (59)

As was previously also the case, one can eliminate the
integral over the trace of the stress energy. Combining
the above

kTH AH —~H J«esi
P

(60)

To proceed, repeat the previous trick of splitting the total
energy density into contributions from the fields and from
the fluctuations: p = gL, + gf. The energy density in the
fluctuations, and the Helmholtz free-energy density in
the fluctuations, being local quantities, are still related
by f = gf —Ts —pn. Because the whole system is
at thermal equilibrium, the local temperature and local
chemical potential are redshifted by the normalization
parameter A = IIK+ AHK

The relationship between the Helmholtz free energy and
the other thermodynamic quantities is also modi6ed. In-
cluding the effects of angular momentum and a chemical Then

(61)

(gf —f)K"dZ„= (Ts + pn)K"dZ„= (THs + p~n)(K" /A)dZ„= (THs + p n)V"dZ„

8V"dZ„+p~¹ (62)
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Resubstituting everything yields the final result for the
entropy

kAH 1
4/2 jgl. —Z@)K"dZ„+ sV"dE„.

(63)

This final result now applies to stationary asymptoti-
caHy Hat axisymmetric spacetimes. The additional tech-
nical machinery required to go beyond spherical symme-
try boils down to the introduction of appropriate volume
forms on the constant time hypersurface Z, together with
a suitable definition of the energy density in terms of a
corotating observer.

The present version of the analysis also makes it clear
that there is nothing special about (3+ 1) dimensions.
The entropy formula continues to hold —with suitably
defined volume forms —in arbitrary dimensionality.

VI. DISCUSSION

1
~anomalous=

~H
(gl, —Z@)K~dZ„

(gl, —C~)gg@d X. (64)

It is certainly a peculiar object, depending as it does on
both the temperature and on the classical background
fields surrounding the black hole. The vanishing or non-
vanishing of this term correctly reproduces all known vi-
olations and all known verifications of the naive "entropy
= (1/4) area" law.

The effects of various types of Lagrangian can be sum-
marized by a rule of thumb: Lagrangians with quadratic

In summary, this paper has exhibited a general formal-
ism for calculating the entropy of stationary axisymmet-
ric asymptotically Bat dirty black holes. The formalism
serves to tie together and explain in a unified manner
a number of otherwise seemingly accidental results scat-
tered throughout the literature. The total entropy can be
cleanly separated into contributions from: (1) the hori-
zon, (2) quantum or statistical hair, and (3) an anoma-
lous term.

The anomalous entropy is

kinetic terms do not contribute to the anomalous en-
tropy. Lagrangians containing (curvature)~ terms and
higher typically do contribute to the anomalous entropy.

This suggests the following physical picture. Start
with the standard model Lagrangian Lo. It does not
contribute to the anomalous entropy. Integration over
the quantum fiuctuations yields some quantum hair—
call it so. Now introduce some energy scale A and inte-
grate out the fast modes. This yields some efFective La-
grangian Z,g(A). Introducing this efFective Lagrangian
into the partition function and integrating out the re-
maining slow modes will yield modified quantum hair,
call it ssp(A). But the effective Lagrangian will con-
tain (curvature) terms and higher —and these terms
will contribute to the anomalous entropy. Now the to-
tal entropy should not depend on where one places the
division (A) between fast and slow modes (after all, it
is the same physical theory no matter how one divides
it up). This suggests that occurrence of anomalous en-
tropy is to a large extent due to the use of effective La-
grangians, and that moving the division line between fast
and slow modes merely shifts entropy to and fro between
the anomalous term and the quantum Huctuations. From
this point of view, all known violations of the "area =
(1/4) ent, ropy" law can be interpreted as probing the ef-
fect of otherwise uncontrollable high-frequency quantum
Huctuations by resorting to the use of some low-energy
effective Lagrangian. This physical picture has implica-
tions external to the topic of black hole physics insofar at
it indicates the existence of a general scheme for associat-
ing a quantum-mechanical entropy with an effective La-
grangian. Naturally, if the fundamental theory contains
higher curvature terms, some of the anomalous entropy
should be thought of as intrinsic.

As to the future, I would really like to see an ex-
planation for this result phrased completely in terms of
Lorentzian signature techniques. The Hawking tempera-
ture is already well understood from a purely Lorentzian
point of view, and a similar understanding of the entropy
is clearly desirable.
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