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Scattering of discrete states in two-dimensional open string field theory
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This is the second in a series of papers devoted to open string field theory in two dimensions. In this
paper we aim to clarify the origin and the role of discrete physical states in the theory. To this end, we
study interactions of discrete states and generic tachyons. In particular, we discuss at length four point
amplitudes. We show that the behavior of the correlation functions is governed by the number of gener-
ic tachyons involved and values of the kinematic invariants s, t, and u. The divergence of certain classes
of correlators is shown to be the consequence of the fact that certain kinematic invariants are nonposi-
tive integers in that case. Explicit examples are included. We check our results by the standard confor-
mal technique.

PACS number(s): 11.17.+y

I. INTRODUCTION

This is the second in a series of papers devoted to open
string field theory (SFT) in two dimensions. In the previ-
ous paper, Ref. [1],we have constructed Witten-like ver-
tices for open string field theory and discussed the quanti-
zation of the theory in Siegel's gauge (ho=0). We have
used, then, the corresponding Feynman rules to calculate
tachyon-tachyon scattering amplitudes. Our results were
presented in the form of a sum over poles corresponding
to tachyonic and (discrete) excited intermediate states.
Residues of these poles were shown to match the results
of Bershadsky and Kutasov, Ref. [2]. For a summary of
our notation and conventions the reader may consult Ref.
[1],Sec. II.

It is well known that in addition to the massless ta-
chyon, string theory in two dimensions (2D) also has
discrete higher string states. The presence of discrete
states (DS's) in the spectrum of two-dimensional strings,
i.e., states which are physical only for some particular
values of momenta, has been known for quite some time
now. They were first discovered in the matrix model ap-
proach (Refs. [3,4]), and rediscovered in the Liouville ap-
proach (Refs. [5—11]). In Ref. [5], it was shown that
Becchi-Rouet-Stora-Tyutin (BRST) cohomology I"of
the two-dimensional string is nontrivial for more than
one ghost number. This is in sharp contrast to 26-
dimensional string theory, where only H'" is nontrivial
(Ref. [12]). This novel feature of 2D string theory has its
origin in the nontrivial background charge of the system.
The question is then how the discrete states participate in
the field theory. For example, it was even suggested re-
cently (Ref. [13]) that in order to recover the results of
Ref. [5] from the field-theoretic point of view, one would
need to modify Witten's classical action so as to include
more than one ghost number.

In this paper we would like to clarify the origin and the
role of discrete states in the string field theory. We first
show (Sec. II) that one can stay with the original Witten
action. The modification is redundant since the proper
object to consider in investigation of discrete states is a

gauge-fixed action. In particular, choosing Siegel's gauge
is then equivalent to restricting ourselves to the relative
cohomology of the first-quantized BRST operator. To
probe the dynamics of discrete states we study their
scattering with generic tachyons ( T). The naive counting
of the degrees of freedom for string excitations in two di-
mensions gives 2 —2=0, so that the excited (discrete)
states form a set of measure zero with respect to the func-
tional integral measure. It is natural to expect, therefore,
that the correlators involving these states may not be well
defined. Indeed, earlier calculations of the on-shell
scattering amplitudes have indicated that DS-DS ampli-
tudes are intrinsically divergent for the closed (Ref. [14])
as well as open strings (Ref. [15]). It is then of certain im-
portance to consider the calculation of the amplitudes in
SFT. In Sec. V, we present a detailed analysis of the
four-string scattering in the case when all four of the
external states are from H"'. Our expansion is found in
the form of a sum over poles. We have a simple criterion
which allows us to determine whether an amplitude is
well defined, diverges, or vanishes. Namely, we consider
the three kinematic invariants s, t, and u (see Sec. IV). If
some of them are integers we call the corresponding
channels degenerate. A degenerate channel can either
diverge (if the kinematic invariant is nonpositive) or van-
ish (if it is positive). We provide examples which illus-
trate how this works. Clearly, the less generic tachyons
we have, the more channels will degenerate. In fact,
while ATTTD are always well defined and contain an
infinite number of physical poles (which is the behavior
one expects from string amplitudes), AzTDn amplitudes
have a more subtle behavior. Namely, there are three
different subclasses of amplitudes of that type: ATzDD,
ATTDD, and ATPDD. The superscript denotes the sign of
the degenerate kinematic invariant. The correlators of
the first class are well defined and have a finite number of
poles in two channels. Amplitudes of the second class
diverge and have infinitely many poles in two channels.
Class ATE&&i, is divergent and degenerates in all three
channels. The same is true for the amplitudes of the type
ADDDD '
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The paper is organized as follows. In Sec. II we show
how discrete states originate from the field-theoretic
point of view. In Sec. III we discuss three-point func-
tions in the theory and show that they agree with the
first-quantized results. In Sec. IV, we consider four-
tachyon correlation functions A++ . This is an exam-
ple from which one can learn some important lessons. In
particular, we there encounter, for the first time, the de-
generacy of an amplitude. The amplitude is shown to
vanish. Section V represents the main course of the pa-
per. There, we present a classification of the four-point
amplitudes with respect to their dynamical properties.
We show that divergence occurs when, and only when,
certain kinematic invariants are nonpositive integers. In
particular, in Sec. VA we discuss A»» class of ampli-
tudes. Section VB is devoted to the analysis of the
AT»D class. We conclude the section by proving that
the amplitudes of the class ADDDD always diverge (Sec.
VC). We check our conclusions using the conformal
technique. Finally, in Sec. VI we present a brief overview
of the main results and outline some of the open prob-
lems and possible directions of future work.

II. DISCRETE STATES
FROM STRING FIELD THEORY

As mentioned in the Introduction, the presence of DS's
in the physical spectrum of two-dimensional strings is
one of its most intriguing features. Their relevance was
first discovered in context of matrix models (Refs. [3,4]).
In the continuum approach, discrete studies are part of
the spectrum which correspond to string excitations.
They survive the gauge fixing due to the nontrivial back-
ground charge. In general, BRST analysis is a particular-
ly elegant tool for determining physical degrees of free-
dom in a covariant way. In the first quantization, physi-
cal states are cohomology classes of the first-quantized
BRST operator Q. Unlike critical string theory, where
the only nontrivial cohomology group is H" ', two-
dimensional strings have physical states for more than
one ghost number (Refs. [5,11]). For the chiral sector,
which corresponds to open strings, the relative cohomol-
ogy (ho =0) of Q is nontrivial for g =0, 1, and 2. Below
we would like to discuss physical states from the field-
theoretic point of view.

Let us, first, summarize the notation and definitions in-
troduced in Ref. [1]. A string field is given by an arbi-
trary ket vector lA }=+, ls }a, (see Ref. [1], Sec. III).
The kets ls } belong to a one-string Fock space F and
contain information about string excitations. Coefficient
functions a„on the other hand, depend solely on the
center-of-mass coordinates. Second quantization elevates
the coefficient functions to the dynamical level.

The open string field theory can be described by
Witten's action

gauge transformations (gA=O):

AA, =QA+ A, eA —Ae A, . (2.2)

(2.4)

To prove this, one has to take into account the properties
of string field multiplication and integration known as
Witten's axioms (Ref. [1], Eq. (3.3)). In a nutshell, they
state that string fields should be treated in analogy to
differential forms, with the first-quantized BRST charge
(cf. Ref. [1],Eq. (2.17) ) playing the role of the differential
and the (first-quantized) ghost number g, providing for
grading. It was shown in Ref. [12], that it is advanta-
geous to introduce yet another grading, Z2 Grassmann
grading, so that the coefficient functions a, are
Grassmann even or odd. Alternatively, one can define
the target space ghost number 6, = 1 —g, so that the
Grassmann parity of the coefficient functions is con-

a, 6,
sistent with their ghost numbers: ( —)

' = (
—

) '. Then,
the total parity or, simply, parity of a string field is

(
—) '( —

)
'= —1. We demand that all dynamical string

fields are overall odd. This enables us to present a
gauge-fixed action in a very simple way.

The problem of gauge fixing for the systems with re-
ducible gauge symmetry, such as string field theory, can
be treated successfully by the Batalin-Vilkovisky (BV)
formalism. Recent developments in this field provide us
with a geometric understanding of the BV formalism
(Ref. [16]) and are closely connected to the promise of a
background-independent formulation of string field
theory (Refs. [17,18]). In that approach, one would like
to postpone the fixing of the gauge as much as possible.
To formulate the perturbation theory, on the other hand,
we still need to choose one particular gauge. In SFT, the
two most popular choices are the light-cone and covari-
ant Siegel gauge (ho=0). In this paper we work in
Siegel's gauge, although alternative gauges are tempting
to explore (see Ref. [13]as well as comments below). The
gauge-fixed action reads

WGF= —f [A eQA+ —,'A e A e A —2(boP)e A], (23)1

2

where the string field A contains all possible ghost num-
bers and the field P is a Lagrange multiplier enforcing the
gauge condition. It can be proven, along the same lines
as in Ref. [12], that Wo„satisfies the classical BV master
equation, so that, at least on the tree level, it is a con-
sistent gauge-fixed action.

A concrete realization of Witten's operations ([1],Eqs.
(3.12)—(3.16) ) is subject to stringent constraints:

n„.. . „& Vl g ao"+Q"

A, e A, +—A, ~ A
1 2

(2.1)

where the subscript 1 means that this field has the ghost
number g =1. The Witten's action is invariant under the where p" is the momentum (matter and Liouville) of the
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string state, A, is its ghost number, and Q" is the back-
ground charge of the matter-Liouville system (cf. Ref.
[1],Eq. (2.2)). The first of these equations means that we
are necessarily calculating the "bulk" amphtudes, i.e.,
that we are explicitly putting the cosmological constant
to zero. The second one represents the ghost number
conservation. Nonvanishing amplitudes involve the
external states in which ghost numbers add up to 3, or al-
ternatively, in which target space ghost numbers add up
to zero. Another important property of the rnultistring
vertices is that they are cyclically symmetric:

have shown that the relative cohomologies coincide. To
consider the absolute cohomology, one would have to
find a different gauge (Ref. [13])for which b0&0. In that
case, there would be, also physical states of g =3. )

The appearance of states with a ghost number 1 (g =1)
is predictable since they exist in higher dimensions as
well. In two dimensions, H''" consists of a massless ta-
chyon (of generic inomenta) and a DS. Let us consider
them in more detail (cf. Ref. [6]). For a generic tachyon
T to be physical, the mass-shell condition should be
satisfied (Q =2&2 for c = 1):

—,
'k' —

—,'P(P+Q) =1 (2.9)

Now let us go back to the question of physical states.
Naively, the problem consists of solving the free classical
equation of motion (EOM) QA, =0, modulo gauge trans-
formations hA, =QA. It does reproduce part of the
spectrum, namely, H"', but the rest of the states (g =0
and 2) seem to be missing (classical field A, has ghost
number g =1). To circumvent this problem, a modified
classical action was proposed (Ref. [13]) which includes
more than one ghost number. We would like to argue
that this is not necessary. In fact, instead of the classical
action, the analysis should be based on its gauge-axed
version:

W);„=—I [A 4 QA 2(b0p)—4s A] .1
(2.5)

Note that gauge-fixed actions in Siegel's gauge (b0=0)
for both the original and the modified classical actions
have the same form (2.5). The action (2.5) is invariant
under the target space BRST transformations s:

sA (,=(QA)(, ,

SA &2 =(b0p) &2

sp=O,

(2.6)

QA„b0p„+2=0 . —

Substituting Eq. (2.7) into Eq. (2.6) one gets

sA„=QA„

(2.7)

(2.8)

for all g =n It is now o. bvious that s and Q cohomology
are exactly the same, so that H'*' is trivial except for
g =0, 1, and 2. (The more accurate statement is that we

where the subscripts denote, as usual, ghost numbers g of
the states in question. One should bear in mind that s
acts on coefficient functions a, whereas Q acts on the
states ~s ). From the relation G = 1 —g one infers that the
target space BRST transformation s increases the target
space ghost number G by one unit. The Eq. (2.6) implies
that, for g ~ 1, sAi =QA0, sAD=QA i, . . . , whereas,
for g ~ 2, one has that sA2 =b0p~, sA3 =b0p4, . . . . It is
easy to check that s is nilpotent off shell.

Let us now prove that solutions of the EOM corre-
sponding to (2.5), modulo BRST transformations (2.6),
exactly reproduce the physical spectrum of the theory.
The target space BRST symmetry is a residual symmetry
left after the fixing of the gauge. The EOM reads

where k is the matter and p is the Liouville momentum.
Solving for p, we see that tachyons may have two
different Liouville dressings:

k~~ =(k, —Q/2+k) . (2.10)

In an important special case, k is an integer or half-
integer multiple of &2. Such a tachyon is called a special
or discrete tachyon. Discrete tachyons play a very im-
portant role. Namely, they are the highest weights of the
underlying SU(2) symmetry of the spectrum. Starting
from a discrete tachyon V,*, (here s is a non-negative in-

teger or half-integer),

yk i +2' ( —+2++2$)y
$, $

one can construct all of the g =1 discrete states by apply-
ing the raising or lowering SU(2) operators

+E+2X1
+

27Tl

to (2.11) a certain number of times:

pr+ ~ (~ )s
—nyk

7

(2.12)

As we can see, discrete states also have positive or nega-
tive dressings, which correspond to positive or negative
energies. In theories with a nonvanishing cosmological
constant, or in a nontrivial background (black holes), the
sign of the energy is important. The nonzero cosmologi-
cal constant introduces the Liouville wall at —~. This
means that the wave functions corresponding to the nega-
tive energy states cannot be normalized —they are
"wrongly dressed. " In our case the cosmological con-
stant is absent so, dynamically, there is not much
difference between the two dressings. Even in that case,
however, there is a difference in the interpretation of the
two branches of states (Ref. [6]). In fact, the positive
branch of discrete states can be viewed as singular gauge
transformations while there is no such interpretation for
the negative branch. Neither of them are, of course,
gauge artifacts and are physical degrees of freedom.

Matter and Louiville fields enter Eq. (2.12) on a
different footing, since only the rnatter part contributes to
excitations. In fact, it can be proved that such a gauge is
a legitimate one. On the other hand, a gauge which
would have only Liouville excitations is not.

For each DS of g =1 there are "partners" of g =0
("chiral ground ring") and g =2 (Ref. [9]). These states
play an important role in the spectrum-generating sym-
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metry of the theory (W„) and their dynamics will be
studied elsewhere. In what follows, we are interested in
the scattering of g = 1 states only.

III. FEYNMAN RULES
AND THREE-POINT FUNCTIONS

In this section we summarize the Feynman rules and
discuss the three-point functions in the theory. After in-
serting the coupling constant g and integrating over the
Lagrange multiplier field P, (2.3) becomes

of the momenta entering with the same sign in terms of
the third one (using the first equation) and plug it back
into the second equation. In this way the third momen-
turn is completely determined —it corresponds to a
discrete tachyon. We have shown, therefore, that the
amplitude does not belong to VTTT but, rather, to VTTD.
It is customary to normalize the three-tachyon ampli-
tudes to be 1.

Consider, now, the most general scattering of one DS
and two generic tachyons. In that case the momentum
conservation gives

=1
Wgf g K faia, +—g V,&

a a,a, ( —) (3.1) 3/2n, +k2+k3 =0,
3/2(s, —1)+k2+k3 =0 .

(3.4)

where the kinetic term involves

K.i —=2i& Vlls &i&o(Lo —1)ll &2

and the interaction vertices are given by

Vl 321( Vlls & il»2lm &3

Kinetic matrices K,l are invertible and their inverses D,I
are the free propagators of the corresponding coefFicient
fields. Since in this work we are interested in tree ampli-
tudes (the loop corrections are, undoubtedly, very in-
teresting but more complicated since they necessarily in-
volve closed strings, Ref. [12]), free propagators give the
two-point functions. Three-point functions are obtained
in the standard fashion, using Wick's theorem:

3 (s, l, m)= —g( —) 'V„[1+(—)
' ' ], (3.2)

ki+k2+k3 =0,
—&Z+k, +k, +k, =0, (3.3)

where + ( —) corresponds, as usual, to the positive (nega-
tive) chirality. Clearly, we cannot take all signs in the
second equation to be the same. So, we can express two

where by R we have denoted the fermion number of the
corresponding state. It is an eigenvalue of the level
operator which, acting on conformal and physical vacua,
respectively, gives Rl0& = l0&, RlQ & =0 (cf. Ref. [1],Sec.
II). In deriving (3.2) we have used the Grassmannian
parity of the coef5cient functions as well as cyclic symme-
try of the vertices. This completes the derivation of the
Feynman rules.

Let us now consider the three-point functions, Eq.
(3.2). Ghost number conservation allows for two
different types of on-shell correlators: either all three
particles have g =1, or each of them has a different ghost
number (i.e., 0, 1, and 2). One notices that g =1 states
are involved in both cases. Consider in more detail the
three-point functions where all three states are from H'".
There are two distinct classes of amplitudes of that type:
VTT~ and VDDD. Here, we have denoted a generic on-
shell tachyon by T and all g = 1 discrete states, including
the discrete tachyons, by D. The fact that there is no ver-
tices of the type VTTT or VTD~ follows from the momen-
tum conservation. Let us prove that the class VTTT is
empty (the second claim is obvious). The momentum
conservation gives

+ 2 l 2 . v'2
W3/2, /2= —(Bx) — —8 x exp i x

2 2

X exp
2

The calculation of the correlation function A 3

( W3/2 i /2 Tk Tk & performed by the standard confor-
2 3

mal technique gives

A3=(k2) +k2/&2 . (3.&)

To arrive at (3.5) we have fixed, using the SL(2,R) sym-
metry, the three points on the boundary to be z, = —0,
z2=1, and z3 = ~. Also, we have used the momentum
conservation (3.4). Let us calculate the same amplitude
from the field theoretic point of view. From (3.2) one has
that

33=—g( —) 'Vf [1+(—)
* '

]
—2N~

2gVwTT —2g—[e (Nio) (k2 k3) +N'„'

2g
27 4

4(k2) +2&2k2+—
16 27 2

5 3
27

+
27

1= —2g (k2) + —k2
2

(3.6)

where, in the third line, we have used the explicit expres-
sions for the Neumann coefficients (see Ref. [19]),and ex-
pressed, using Eq. (3.4), k3 in terms of k2. It is evident
that, apart from an overall normalization factor, we have
obtained the same amplitude. As explained above, the
normalization is fixed by requiring that the three tachyon
amplitudes are equal to unity, so that —2g = 1.

Here, the index 1 is reserved for the discrete state, while
2 and 3 label the tachyons. Up to now, the chiralities of
the tachyons were arbitrary. However, for k; to be non-
discrete, the determinant of the system (3.4) must vanish.
This means that both signs in (3.4) should be the same.
Let us, for definiteness, take the plus sign. Then, the
compatibility dictates that n, =s& —1. A simple example
of the state of that type is
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In exactly the same way one can calculate VD~D ampli-
tudes. For A+++, for example, the momentum conser-
vation gives

consider an example which shows some of the peculiar
properties of the two-dimensional strings. Let us intro-
duce two-dimensional counterparts of the kinematic in-
variants in four dimensions:

n, +n2+n3 =0,
s&+s2+s3 =1, (3.7) 2

Qs= —' k+k+ — t= —' k+k+—
2 ' ' 2

'2

and similarly for the other possible chiralities. Using the
associativity of the operator product expansion (OPE), a
three-point function can be represented as a linear com-
bination of the two-point functions. CoeKcients in the
expansion are proportional to the Clebsch-Gordan
coefficients, Ref. [6]. To be nonzero, two-point functions
should pair the states with their re Aected states:

A }i=—,z( V~~ 3 ) . They are normalized to the momen-
tum 5 function from which follows that the three point
functions are equal to the OPE coefficients (Ref. [6]).
Such an amplitude is just a number (as opposed to an en-
tire function in momenta, as it is the case for VrzD ). As
an illustration, consider the same example as before, but
instead of choosing both plus signs in the second of Eqs.
(3.4), let us take the second one to be a minus sign. Then,
k2= —1/&2, k3 =0 and the amplitude vanishes, since

(k2) + k~=0.1

2

This result holds, obviously, in both the first- and the
second-quantized approaches. Such an agreement be-
tween the two approaches clearly exists for all of the
three-point functions.

1
4

2

It is well known that for an arbitrary number of space-
time dimensions s + t + u is an invariant quantity, deter-
mined solely by the masses of the external particles in
question. In two dimensions, for four tachyons, one has
that s+t+u =1 [see (5.22)]. The total amplitude is the
sum over s, t, and u channels: A 4""= A „"+A 4" + A &"'.

As a function of kinematic variables, an amplitude can
be, generically, decomposed into the singular (which has
simple poles in kinematic invariants) and the regular
parts: A = A „„+A„.It is important to note that only

A„„ is physically relevant, since the physical informa-
tion is contained in the residues of the poles. Two ampli-
tudes agree if their singular parts agree. We will often be
sloppy and suppress the regular parts altogether.

For the s channel, for example, one obtains (here
a, . . . , d stand for first, . . . , fourth external string states,
respectively)

A4" = —g Vbi, ( —)'[1+(—)
' ' ']D (Vd,

IV. AN INSTRUCTIVK EXAMPLE:
FOUR- TACHYON SCATTERING

As an introduction to our discussion of the four-point
scattering amplitudes, we would like in this section to

(4.1)

The summation over the repeated indices l and m is im-

plied in (4.1). For the four-tachyon scattering, one has
the kinematic-independent expression [cf. Ref. [1], Eq.
(5.5)]

(k&+k2+Q/2) /2
A(4) ~g2

27

—,', (k, —k2) (k3 k4)—
—,'(k, +k2+Q/2) —,'(k, +k2+Q/2) +1

—,', (k, +k2+Q) (k, +k2)++[(k, —k2) (k3 —k4)]

—,'(ki+k2+Q/2) +2
—'"—

—,",, [(ki k2) +(k3 —k~—) ] 4

—,'(ki+k2+Q/2) +2
(4.2)

To obtain t ( u ) channel contributions one, simply, sub-
stitutes 2+-+3 (2= =4) in (4.2).

In Ref. [1],we have analyzed the situation where three
of the external tachyons are of one chirality and the
fourth one is of the opposite. In particular, we have
shown that the amplitude (4.2) reproduces the
Bershadsky-Kutasov amplitude (Ref. [2]) in that kinemat-
ic region, if one compares the residues of the two expres-
sions (see Ref. [1],Sec. V).

Let us now consider our main topic in this section, that

is, a four-tachyon amplitude A++ . Bershadsky and
Kutasov have argued that the total amplitude in that case
should be zero. We would like to show how the same re-
sult appears from a field-theoretic point of view

For that particular kinematics one has, for the matter
momentum, k, +kz = —(k3+ k~ ) =V 2. It is easy to see
that this implies that s =1 and that, therefore, t +u =0.
This proves to be crucial for the vanishing of the ampli-
tude. To see this, let us first calculate the t channel con-
tribution. We obtain
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27 t+ t+2

+ ~ 4 ~ (4.3)

The ellipsis stands for higher level contributions. The u
channel amplitude is obtained from (4.3) by t~u. It is
straightforward to check that almost all poles in A4"
(A4"') are fake, i.e., that they have zero residues. The
only exception is the pole r =0 ( u =0 ). Because of that,
taken separately, singular parts of A4" and A4"' do not
vanish. This is not true for their sum, however, due to
t+u =0. In fact,

A(t)+A(u) o- 2
4 4

16 1 16 1

27 t 27 u

16
27

16
27

(4.4)

V. I BUR-POINT AMPI. ITUDES
INVOI. VING DISCRETE STATES

In this section we analyze four-point amplitudes in-
volving DS's as well as tachyons. We are interested in
correlation functions where all four asymptotic states are
from H"'. As in the three-point case, four-point ampli-
tudes are severely restricted by the momentum conserva-
tion law and can be classified in the similar fashion as it
was done in Sec. III for the three-point functions. There
are three difTerent classes of co elato s: ATTTD ATTDD
and ADDDD. Note that the four-tachyon amplitude
A +++ belongs to A TT» rather than A TTTT
negative chirality tachyon is fixed by the kinematics to be

As expected, the expression (4.4) is regular at t =0. Since
s =1, A" is a regular function as well. Thus, the singu-
lar part of A ("'~ vanishes. We can add to A" " an arbi-
trary entire function without changing the physics. If we
choose A '"g' to vanish, then A '""=0as well. This com-
pletes the proof. In exactly the same way one can prove
that A+ + vanishes and that, more generally,A„„=O[where n; (m;) is the number of con-
secutive + (

—
) for k ~ 2.

To summarize, there are a couple of important mes-
sages from this simple example. First, to be able to draw
physical conclusions, one is to consider all possible chan-
nels and not only one (as is sometimes the habit). Second,
physical information is contained in residues of the poles.
The peculiarity of two dimensions is that, there, due to
special kinematic restrictions, poles in kinematic vari-
ables can "degenerate" —instead of a variable we get an
integer in the denominator. If this number is positive (as
it was the case in this example) the amplitude becomes an
entire function (or a number). If the number is nonposi-
tive (see below), one can anticipate the existence of an un-
bounded contribution to the sum. As we shall see below,
this is the field-theoretic origin of the divergence of 20
amplitudes discovered in Ref. [14] in the conformal ap-
proach.

8'& &. Truly belonging to ATTTT class would be the am-
plitude considered in Sec. IV, A++, but it vanishes.
Clearly, there is no amplitude of the type ATDDD either.
Before proceeding to the detailed analysis of each one of
the three classes, some general comments are in order.

A typical s channel contribution to the four-point am-
plitude is [see (4.1)]

A„(t)
A4" "—2g'& I'w. DPI'di. = X

I )0 S+n

and similarly for t and u channels. In the previous sec-
tion we have shown that s and, therefore, propagator
DI ~ 1/(s +n) can "degenerate" and become a number
(instead of a function of momenta) for some particular ki-
nematics. In that case, s was a positive integer (s =1)
and the amplitude was shown to vanish. Quite generally,
if the amplitude degenerates in some channel, that chan-
nel either does not contribute or the amplitude diverges.
This is determined by the sign of the degenerate kinemat-
ic invariant. To see this, one should bear in mind that
n ~ 0, so that if s is a positive number (in the degenerate
case it is always an integer, cf. Sec. V C) amplitude (S.1) is
an entire, bounded for finite k, function of t and, as such,
it is irrelevant. If s ~ 0, on the other hand, there is always
an n such that s+n vanishes. This leads to the appear-
ance of an unbounded term in the amplitude. This is the
origin of divergencies in two dimensions.

One can arrive at the same conclusions using the con-
formal approach. Consider a generic correlator contribu-
tion

1 k).k~+n) k~ k3+

0

Here, n
&

and n2 are integers. Note that s can be rewrit-
ten as

2

s= —k +— +—k +— +k .k +1.1 2 2 2 2 1 2

Since the first two summands are the masses of the corre-
sponding particles (integers in units of Regge slope) we
see that s and ki -k2 di6'er by, at most, an integer. Simi-
larly, k2 k3 (k&.k3) diff'er from u (t) by, at most, an in-
teger. In higher dimensions the amplitude is, in general,
a meromorphic function of kinematic invariants and is,
therefore, well defined. In two dimensions, when degen-
eracy occurs, the exponents of x and/or 1 —x can be neg-
ative integers. In that case the amplitude is clearly ill
defined. The value of the exponent, on the other hand, is
determined by the value of the kinematic invariant in
question. This proves the claim.

As an application, we check that the whole class of am-
plitudes ATT» is well defined by simply showing that all
three channels do not degenerate (Sec. VA). The oppo-
site extreme is the amplitudes of the type ADDDD (see Sec.
VC). They degenerate in all three channels. What is
more, at least one of the kinematic invariants is nonposi-
tive. Thus, the amplitudes of that class always diverge.
In between the two extremes is the class AzrDD (Sec.
V B). The correlators of that type have, at least, one de-
generate channel. Some amplitudes from A TTDD are
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divergent while the others are well behaved. In what fol-
lows, we analyze in detail the dynamical properties of the
four-point amplitudes and present their classification.

A. Amplitudes involving one DS

v'2n, +kz+ k3+ k~ =0,
2v'2+—v'2s, +kz+k3+k =0 .

(5.2)

If an amplitude is to belong to the class above, tachyons
should be all of the same chirality and the following con-
sistency condition must be valid:

n, =+(s, —2) . (5.3)

Here, the upper (lower) sign corresponds to the positive
(negative) chirality tachyons, respectively.

" It is easy to
check that

1
s = —k +k +— =+(&2k +2n ) —11 2 2 2

with the similar expressions for t and u. They are ob-
tained from s by substituting kz~k3 (kz~k4). It is evi-

Let us begin with the ATTTD class. It contains, among
the others, the four-tachyon amplitude 3+++ . The
properties of this amplitude are well established (see Ref.
[1], Sec. V). In this subsection, we would like to clarify
some of the properties of ATTTD class as a whole. In par-
ticular, we prove that an arbitrary amplitude belonging
to it is well defined.

When a correlator involves an arbitrary discrete state
8'—+„and three generic tachyons, the momentum conser-
vation reads

dent that none of the channels degenerates. In accor-
dance with the discussion above, this means that all am-
plitudes of the type ATTTD are well-defined. Note that
+ 2/i 1 1 are integers so that the possible poles have the
structure k =+N/v 2, where N is an integer. Dynamical
properties of the AT~TD class can be summarized as fol-
lows: amplitudes of that class are meromorphic functions
in discrete momenta. There are no degenerate channels
in this case. Each amplitude of this class has an infinite
number of proper physical poles.

As a simple example, take the discrete state to be
W 3/2 +. 1 /2 Here, the upper-sign state is coupled to the
positive-chirality tachyons and vice versa. One has

s = + &Zk„ t = + v'2k „u= + v'Zk, . (5.4)

Consider in more detail the first poles in the s channel
corresponding to the lower sign in Eq. (5.4). The analysis
of t and u channels goes along the same lines —one is just
to exchange the labels as indicated above. The first po-
tential pole is at k2 =0. The corresponding residue is

1
Ao =2(N io ) 2kz+

2
—2Xzo+2N11 =0, (5.5)

where we have used k2 =0, the momentum conservation,
and the explicit expressions for the Neumann coefficients.
Of course, the same conclusion can be reached without
any calculations since the residue is proportional to the
vertex containing 8'3+/2 1/2 and the two discrete tachyons.
Such a vertex, as it was shown in Sec. III, vanishes. Next
potential contribution is n =1 (kz= —1/&2). In that
case,

3, = 2 2(NIO) N', , (k3 —k4) 2kz+ — +2v 2(k3 —k4)(N', o) (N', 0) 2kz+
27 2 2

'2
+Nli Nil )

= —4V2( —") (N' ) N' k = —v'2k
16

The next one is the pole at kz = —v 2, with the residue

A z
=v'2k3 —2( k3 )

(5.6)

(5.7)

In the same way we can calculate the higher orders. It is clear that the residues are entire functions in k3 and that they
are, in general, nonvanishing.

To check our conclusions, let us calculate the amplitude using the conformal technique. To this end, consider the
correlation function

1 + ik2 p ik .iIti ik4-p
dx ( W&iz iize ce ce )

kz/V 2+(kz) kzk3 k3
dxx ' '(1 —x) ' +2 + —+(k3)

0 X x v'2 (5.8)

In passing from the first to the second line in Eq. (4.8) we have used Wick's theorem, fixed the SL(2,R) gauge by choos-
ing zi =0, z3 = 1, and z& = ~, and integrated over the zz =x (0+x ~ 1). We have also used the on-shell conditions. For
the kinematics in question k, kz = 1+v 2kz and

k = —2 —v'2(k +k )

It is straightforward to see that the amplitude is well defined on the entire complex plane k2, excluding the discrete set
of points V2k +Nz=0, where it has the simple poles. The explicit expression can be easily found:
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r(VZk, )l.(k, k, +1)
+(kz)v2 I (V2k +k .k +1)

k I (V'2k +2)I (k k +1) I (v'2k +1)I (k k +1)+ —+ ( k3 ) — +2k 2k 3V2 I (V2k +k k +3) I (v'2k +k k +2)
(5.9)

n =+(s —1),
n =+(2—s) .

(5.10)

Each of the two systems of equations has a solution,
namely, s =

—,', n =+—,'. These values correspond to the
above-mentioned states. It is unclear, however, whether
this peculiar property of the 8'3+/p+]/2 states has some
deeper physical meaning.

B. Amplitudes involving two DS's

Let us focus, now, on the properties of ATTDD class.
We clarify, first, the conditions under which an ampli-
tude belongs to that class. If we are given two arbitrary
DS's and two generic tachyons, the conservation of
momentum tells us that

V'2n, +k 2 +k 3 +V'2n 4
=0,

—2+2+V 2si+k2+k3+V'2@4 ——Q,
(5.11)

where "1"and "4" label the discrete states and "2" and
"3" the generic tachyons. It is clear that the tachyons
should be of the same chirality. For concreteness, let us
take it to be negative. Then, the consistency requires that

n&+n4=2+s&+s4 . - (5.12)

Since the momenta k i and k4 are fixed (discrete), the am-
plitude degenerates in, at least, one channel —the u chan-
nel. Whether or not it degenerates in the other two can
be easily determined. Since

Positions of the poles are the same as predicted from
SFT. Let us compare the residues. To calculate them we
use the well-known relation I (z) =I (z+1)/z. The resi-
due corresponding to k2 =0 vanishes. Note that only the
first summand in (5.9) has a potential pole for that value
of kz since I (V 2k2 ) ~ 1/+2k&, but it is killed by the fac-
tor k2(k2+1/&2) which multiplies it. The next residue
corresponds to k2= —1/&2. In that case, the potential
contribution from the first summand, is again, suppressed
by the prefactor. However, the third summand contrib-
utes to the residue which reads 2k2k3= —v'2k3. Start-
ing from n ~ 2 all three summands in (5.9) begin contrib-
uting to the residues, which are polynomials in k3.
Again, one readily checks that the values of the residues
calculated from the amplitude (5.9) match the ones calcu-
lated from SFT.

It is rather amusing to observe somewhat special role
of the 8'3+/2 +]/p states. Namely, these are the only two
states compatible simultaneously with VTTD and AT&-TD.
In fact, the compatibility conditions are

k, k&=&2(n, +s, —1)k2+2(+s, —1),
k, k3 =V'2(n, +si —1)k3+2(+si —1),
k~ k3=2(ni+n4 —1),

(5.13)

s and t channels (simultaneously) degenerate if and only if
n, +s, —1=0=n4+s4 —1=0. In that case, k, .kz
=k, k3 =2(s, —1). We refer to such an amplitude as to
tally degenerate. To determine the DS involved in a to-
tally degenerate correlator we use the fact that
—s ~n ~s. It is easy to see that both discrete states
should be taken to be 8'&+/z, /z. Then, k&.k2= —1 and

k2 k3 =2(n, +n4 1)=0—, so the amplitude reads

(5.14)

From the conformal field theory point of view, that sign
determines the convergence properties on the upper limit
of the Koba-Nielsen integral. One can, thus, subdivide
the correlators ATTiin into the three subclasses: AT'PDD,

ATTDD, and ATTDD. The totally degenerate class AT/~~
has been discussed above. Let us, therefore, focus on the
other two.

Amplitudes A TTDD contain physical intermediate par-
ticles. Note that s channel poles, for example, originate
from the expression s+n in the denominator [see Eq.
(5.1)]. We have

s =
—,'(k, + k)z= ,'(V'2n, +—k2) —

—,'[V2(l+s, )+k2]
= [n i

—(1+si )]v 2k2+ [n i +(1+si )], (5.15)

and although n& and s, can be half-integers, their linear
combinations n, —(1+s, ) and n, +(1+s, ) are always
integers. The main difference between the two classes

The integrand on the right-hand side is, evidently, ill
defined. The same result can be conjectured utilizing the
SFT result for the scattering of four tachyons, Eq. (4.2).
The first term in the expansion for A d, is 1/s and, since
s =0, it diverges. Channel t behaves in the same way.
Since u =1, channel u, on the other. hand, does not con-
tain any unbounded summands. Divergence of the in-
tegral (5.14), therefore, shows up in the field-theoretic ap-
proach through the presence of unbounded summands in
the amplitude.

Degeneracy in all three channels of A TTDD is not, how-
ever, the typical property of that class. Much more com-
mon is the situation where only one channel (for example,
u ) denerates, while the other two (s and t) do not. In that
case, as explained above, dynamics is determined by the
sign of u, or, equivalently, by the value of the product

k2.k3=2(n, +n4 —1)=u —1 .
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( W3/2, 1/2 k2 k3 Wl/2, 1/2 ~

I v 2k2+1 k2/&2+(k2)' k2k3
dx x +2

0 X x

+ —+(k3)
k3

2
(5.17)

where we have used the fact that k, k2=3/2k2+1,
k2 k3=0 or, alternatively, that s =3/2k2, u =1 in that
kinematics. The amplitude (5.17) becomes

A~a: 1

3/2k2+ 1
(5.18)

Here, as usual, we have left out the finite part of the am-
plitude.

The same result can be obtained from the field-
theoretic point of view. In fact, one can use (5.5)—(5.7) to
show that, in that case, A, =1 and A„&,=0. In exactly
the same way we find that the t channel amplitude is
A '= 1/(3/2k 3+ 1) and that the u channel contribution is
of the form: g„o [ A„/(n + 1)],where Ao =0,

—27 1 [g(+12 )4+3(+12 )2~12 ]~2(k k )

(k3 —k2),

and so on. We see that A" is an entire bounded function
of momenta. The amplitude has pnl'te number (one in
each channel) of poles in two different channels. One can
readily see that the same holds for any A TED correlator.

Quite different is the situation when ATTDD is con-
sidered. In that case u +0 and the amplitudes have the
form

A=f' "
dx

0 (1—x)" (5.19)

for a positive integer n. Such an integral clearly diverges
on the upper limit (x =1). To illustrate the situation,
consider the correlation function

stems from the fact that, for ATT&D, degenerate channel
is a bounded, entire function (u 1), while ATT23D has an
unbounded contribution (u ~0). Thus, Az+T&D correla-
tors are well defined while ATTDD are not.

To see this in more detail, consider first the ATTDD
class. A generic contribution is of the form

1 aA =J x'(1 —x)"dx, (5.16)
0

where a is a variable and n is a (non-negative) integer
constant. It is well known that the integral of the type
J odx x' ' can be analytically continued, for all aAO, to

fOdx x' '=1/a. The integral (5.16) is of the that type
(one is just to use Newton's binomial expansion formula).
So, amplitudes of the class ATTDD are well defined and
have finite number of poles in two different channels.

For example, let us take the two discrete states to be
3/2, 1/2 and 8 1/2, 1/2' IIl that case, the correlation func-

tion ( W3/21/2Tk Tk Wl/21/2) is

~Zk,
+ — — +( W11Tk2Tk3Wl/2 1/2 ) = dx .

This amplitude is of the type (5.19) with n = 1 and
a =3/2k2. To make some sense out of that expression,
let us perform a simple trick. It consists of expanding
1/(1 —x) in power series and formally integrating term
by term. We say "formally" since the geometric series
diverges for x = 1, so that we do not have, strictly speak-
ing, the right to exchange the order of summation and in-
tegration. Nevertheless, let us do just that. Then, the
amplitude yields

+ — — + &x
( Wl, lTk Tk Wl/2, —1/2 ~

o 3/2k 2+ n + 1

os+n
(5.20)

= —"X 4 X4=1
2

(5.21)

27
16

4 36 X 8 124
81 729 729

12 X 10
729

where, in the last line, we have presented, as separate
summands, the numerical values of the four terms con-
tributing to the residue at s = —2 in (4.2). Although by
now reader should have been convinced that the two ap-
proaches give the same results, it is nice to see how all
these messy coefficients add up to 1. We see that such an
amplitude has infinitely many physical poles. Their resi-
dues are numbers. The same properties has t channel.
On the other hand, u =0 so that u channel degenerates
and contains an unbounded contribution 1/'u. This is
where one can trace the "bad" behavior of the integral.
Thus, although the total amplitude is ill defined, it has a
well-defined "piece" from which one can draw physical
conclusions. "Changing the order of summation and in-
tegration" is, thus, the operation which remoues the
divergence from the pole expansion. One can clearly gen-
eralize the above discussion to any amplitude of the
A TTDD class. Therefore, A TTDD amplitudes have
infinitely many physical poles in two difFerent channels
and are divergent in the third.

where, in the last step, we have used the fact that
s =3/2k2+ 1. It is tempting to check the validity of this
formula employing the SFT approach. Since the example
in question is nothing but the scattering of four tachyons
(some of them of the discrete momenta), one can, once
again, use the general expression for the four-tachyon
amplitude (4.2). Clearly, poles have the same position in
both approaches. The real question is whether they have
the same residues. From (5.20) we see that the amplitude
has the unusual property —all residues are equal to unity.
Let us show that this is the case from the field theory ap-
proach. In fact, the first three residues are

A =(—") =1
zv

A, =( —,", )
'

—,', (k, —k2) (k3 k4)—
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C. The amplitudes involving four DS's

To finish up this section, let us briefly comment on the
third class of correlators, ADDDD. In that case, all three
channels degenerate, and the amplitudes are ill defined.
To prove it, it is enough to show that for every amplitude
of that class there is at least one nonpositive kinematic in-
variant. This follows from the fact that

s+t+u = g —k;+— +1=1—g R;,
i 2 2

(5.22)

where R; are the levels of the four asymptotic states (see
Sec. III). Since R; ~ 0, and the equality holds only for ta-
chyons, we have that

s+t+u +1 . (5.23)

If we can show that the kinematic invariants are in-
tegers then we are, obviously, done. Let us, for example,
show that s is an integer (the other two cases are treated
similarly). We know that s can be represented as

s= —k +— +—k +— +k .k +1.Q 1 Q
2 ' 2 2 ' 2

VI. CONCLUDING REMARKS

In the present work we have aimed to better under-
stand the dynamics of discrete states in open string field
theory. In particular, we have shown that the origin of
divergencies in 2D is rather simple to understand.
Namely, they stem from the fact that, for certain kine-
matics, kinematic invariants become nonpositive integers.
In that case, the amplitude, presented as sum over poles,
has an unbounded contribution tantamount to the diver-
gence of the corresponding Koba-Nielsen integral. We
have seen, also, that, from the dynamical point of view,
discrete tachyons are not at all different from the other
discrete states. They differ dramatically, on the other
hand, from the generic tachyons. As far as convergence
of amplitudes is concerned one can state a simple rule of
thumb: the more generic tachyons, the better the conver-
gence.

There are several important questions which our dis-
cussion left open or partially unanswered. First, our for-
malism is adapted only for calculations of the bulk ampli-

Since the masses of the external particles are integers, it
is enough to show that k, kz is an integer. If we denote
by v'2n, and —V2+&2s, the matter and Liouville mo-
menta of the ith string, the product can be rewritten as

k k =2n&n2 —2s&sz —(2+2s&+2s2) .

The term in parentheses is clearly an integer (since n; are
s, are integers or half-integers). Also, although 2n&n2
and 2s&s2, taken separately, may be half-integers, their
difference is always an integer. Thus, we have proven
that, whenever degenerate, kinematic invariants are in-
teger Ualued. By the same token, using (5.23), we have
proven that at least one of the kinematic invariants is
nonpositive. Since every amplitude of the class ADDDD
has at least one divergent channel, they are all ill defined.

tudes, i.e., cosmological constant is absent in this ap-
proach. Clearly, this makes a difference since presence of
the cosmological constant leads to additional diver-
gences, due to the charge screening integrals (Ref. [14]).
Knowledge of bulk amplitudes allows one, in principle, to
deduce nonbulk correlation functions using the method
outlined in Ref. [7]. However, it is clearly advantageous
to calculate them directly. To do that, one would have to
adapt the formalism of Ref. [1] so as to include nontrivial
cosmological constant. This is an important problem
which still needs to be solved. We have, at present, con-
centrated on the correlation functions involving states
from H'" only. This is, certainly, a very important class
of amplitudes since H'" contains, among the rest, generic
tachyons. However, one would definitely like to know
how the behavior of the correlation functions changes if
some or all of the discrete states are from H' ' and H' '

(these are the other two relative cohomoloy classes; see
Sec. III). The work on this subject is in progress and will
be reported elsewhere. The related problem is the role
which 8' symmetry plays in string field theory.

It is important to better understand the question of
gauge fixing in 2D SFT. As we have shown in Sec. III,
choosing the Siegel's gauge is equivalent to restricting the
physical spectrum of open strings to their relative coho-
mology. In Ref. [13], search for different gauges, which
would allow ghost number three states, is advocated.
How to choose a gauge fixed action is not just an academ-
ic problem since this is the action upon which Feynman
rules are constructed. While Siegel's gauge is certainly
consistent and gives correct tree results, the issue is far
from being completely understood. Related to this is the
problem of constructing an effective tachyonic field
theory ("collective field theory") starting from the
Witten's gauge invariant formulation.

The last, but not least, is the problem of going off shell.
Indeed, we have seen that scattering amplitudes of the
class A~DDD diverge. The same is true for AD~TT and

ADDTT. To make these amplitudes sensible, one may
have to regularize them. In the framework of the first
quantization any SL(2,R) invariant regularization will do
(Ref. [14])—there is no physical reason of choosing one
instead of the other. In field theory, on the other hand,
divergence is the consequence of degeneracy which, in
turn, is the consequence of a peculiar two dimensional ki-
nematics. One way to remove the degeneracy and, there-
fore, divergence is to go off shell. This is not, however, a
trivial problem since while it is intuitively fairly clear
what the off-shell generic tachyon is, it is not quite so for
the states defined, at least on shell, only for some particu-
lar values of momenta. The issue of off-shell amplitudes
has been discussed in Refs. [1,28] but it definitely needs
more attention.
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