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Is it possible to assign physical meaning to field theory with higher derivatives?
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To overcome the difBculties with the energy indefiniteness in field theories with higher derivatives,
we propose to use a mechanical analogy —the Timoshenko theory of the transverse Bexural vibrations
of beams or rods well known in mechanical engineering. This enables one to introduce the notion
of "mechanical" energy in such 6eld models that is wittingly positive de6nite. This approach can
be applied at least to the higher derivative models which efFectively describe the extended localized
solutions in the usual first order field theories (vortex solutions in Higgs models and so on). Any
problems with negative norm ghost states and unitarity violation do not arise here.

PACS number(s): 11.17.+y

I. INTRODUCTION

Field theories with higher derivatives acquire the sta-
ble reputation of nonphysical theories. Nevertheless, be-
cause they frequently arise in difFerent areas of theoret-
ical physics, interest in this issue is periodically revived
[1-1O].

A principal shortcoming of higher derivative theories,
both classical and quantum, is the lack of a lower-energy
bound. Here the energy is implied as a conserved Noether
quantity corresponding to the translation invariance of
the theory with respect to time or, what is the same, as
a value of the Hamiltonian constructed according to Os-
trogradsky's rules on the solution of equations of motion
[11].

The attractive properties of quantum field theories
with higher derivatives are also worth mentioning. In
particular, the convergence of Feynman diagrams is im-
proved owing to the higher derivative terms in the La-
grangian. For example, conformal gravity is found to
be renormalizable whereas Einstein gravity is not [4,12].
Just this property of the theories in question is used to
construct the gauge-invariant renormalization of Yang-
Mills fields by adding higher derivative terms to the stan-
dard Lagrangian [13].

It should be noted that the lack of a lower-energy
bound for a completely isolated system is admissible in
principle if the energy is an integral of motion. But, un-

fortunately, such isolated systems are not realized practi-

cally. A nonremovable interaction with an external envi-
ronment inevitably results in pumping out an arbitrary
amount of energy from the system, lowering its energy
without limits.

Obviously, higher derivatives in time in the Lagrangian
lead to additional degrees of &eedom, since there is one-
to-one correspondence between the dynamical degrees
of freedom and the initial data for the relevant Euler-
Lagrange equations. In the following, for the sake of def-
initeness we shall discuss field theories with Lagrangian
functions depending, at most, on the second derivatives
in time. Here there arises a very typical picture for higher
derivative theories: In addition to the basic mode of os-
cillations which takes place even in the absence of the
second derivatives in the I agrangian there emerge addi-
tional, as a rule, higher-frequency modes. The contribu-
tion to the energy of the second mode has the opposite
sign as compared with the basic one. Therefore, even
at the classical level it turns out to be more profitable
energetically to excite the oscillations from the second
mode. The more oscillations of that sort are excited and
the larger their amplitudes are, the lower the total en-

ergy of a system turns out to be. Prom this it follows
that field theories with higher derivatives are unaccept-
able physically at least in making use of their standard
interpretation.

All these arguments are applied exactly to the quan-
tum level as well. Here the oscillations of both positive-
and negative-energy modes are associated with the cor-
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is usually believed that the energy, being indefinite in sign, entails the instability of the classical dynamics for theories

with higher derivatives, although a very special counterexample is known [14]. More exactly, if the energy of a system is not

definite in sign, the problem of stability cannot be solved using the Lagrange-Dirichlet theorem [15] and, in general, it is not

reduced to searching for the Lyapunov function as in the case of the usual theories with Lagrangian functions, containing, at
most, first derivative in time of dynamical variables.
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responding quanta of excitations. In virtue of the impos-
sibility of removing the external perturbations, as has
been noted previously, an unlimited number of negative-
energy quanta will be created. As a result, in field theo-
ries with higher derivatives a problem such as the infrared
catastrophe in quantum electrodynamics arises, but for
all frequencies of the second mode now. This problem
was successfully overcome in electrodynamics, but it still
remains unsolved in higher derivative theories.

Some time ago, it was popular to use the formalism of
an indefinite metric in the Fock space of the states. This
metric can be introduced by a mutual interchange of the
creation and annihilation operators of quanta of the sec-
ond mode. As a result, the quantum states with excita-
tions from the second mode acquire a negative norm, but
the energy calculated as an expectation value of the Os-
trogradsky Hamiltonian over these states turns out to be
a positive definite quantity [1,2]. Thereby, the problem
of negative energy is reduced to searching for a physical
interpretation of theories with implicitly-violated unitar-
ity. So far there has been no acceptable solution of the
problem along this way [9]. Therefore in the following
we shall only deal with the difIiculty of the energy being
indefinite in sign in theories with higher derivatives.

As far as we know, attempts to attach physical mean-
ing to higher derivative theories are based on the con-
jecture forbidding the excitations with negative energy.
This constraint should appear as the boundary condition
following f'rom cosmology [7] or as a by-product of the
nonperturbative quantum solutions [5], or it has been
introduced from the outset in formulating these models
[10].

We would like to suggest another solution to this prob-
lem. Namely, we will show that the energy in the the-
ory with higher derivatives can be redefined using a me-
chanical analogy. Here we have in mind the special class
of higher derivative theories arising when the effective
Lagrangians are constructed in extended object models
(strings, in particular). Even at the classical level an
extended object requires a field description. We shall
suppose that the original field theory does not contain
higher derivative terms in the Lagrangian so that its en-
ergy is bounded from below. The neglect of the details
of the internal structure of the extended object along one
or several of its internal dimensions results, as a rule, in
higher derivative terms in the effective Lagrangian. Now
the energy of the effective theory turns out to be un-
bounded from below.

As a specific model, we shall treat a relativistic rigid
string with the action functional depending on the second
derivatives of string coordinates [16,17]. Here the rigid-
ity term takes effectively into account the thickness of the
string. It may be imagined clearly that this system sim-
ulates, for example, the gluon tube of finite radius that
connects the quarks inside the hadrons. Such a simple
picture arises in certain approximations to @CD [18,19].
Taking the finite thickness of the cosmic strings into ac-
count one arrives at the model of the rigid string as well
[20—22].

To solve the equations of motion in the model of the
relativistic string with rigidity, we confine ourselves to

II. HARMONIC APPROXIMATION
IN THE RIGID STRING MODEL

The localized vortex solutions to the classical equa-
tions of motion having the form of a flux tube or a string
are well known in gauge Gelds models with the Higgs La-
grangian [25—27]. The behavior of these solutions can be
described by some efFective I agrangians [22,28]. In the
zeroth order approximation in the flux tube width one
obtains here the Nambu-Goto action for the relativistic
string [18]. The first order correction in the tube width
leads to a rigid string model with the action depending on
the second derivatives of the string coordinates [20,21]:

W = —ppc (2.1)

Here x&(uo, u~), p = 0, 1, . . . , D —1, are the string co-
ordinates in D-dimensional space-time whose metric has
the signature (+, —,. . . , —), po is the linear mass density
of the fiux tube (or of the string), r, is the transverse
size of this tube, and t" is the velocity of light. The in-

As is known, the total theory of the relativistic string with
rigidity owing to the reparametrization invariance of its action
is a dynamical system with constraints in phase space [23].
However, the number of these constraints is not enough to
remove all the quanta of negative energy.

the harmonic approximation in a timelike gauge. Then
we shall elucidate an analogy between the rigid string
and the most simple mechanical system that takes into
account the stiffness of an extended vibrating body. To
this end we shall consider Timoshenko's theory of the
flexural vibrations of beams and rods, well known in me-
chanical engineering [24]. This theory takes efFectively
into account the finite thickness of the beam via the sec-
ond derivatives in time and in longitudinal coordinates
in the Lagrange function. It is important that in this
mechanical system there is no problem with the energy
which is positive definite. Thus, this analogy points out
in what way the definition of the energy in the model
of the rigid string should be changed to get a positive
definite energy.

The outline of the paper is as follows. In Sec. II the
problem of the energy unbounded from below, typical
of fi.eld theories with higher derivatives, is discussed in
the framework of the relativistic string with rigidity by
making use of the harmonic approximation. The theory
of flexural vibrations of the Timoshenko beam is given
in Sec. III. The Hamiltonian constructed here by apply-
ing the Ostrogradsky rules leads to an energy unbounded
from below. Nevertheless, in this case there exists the no-
tion of mechanical energy which is positive definite. In
Sec. IV the analogy between the relativistic string with
rigidity and the beam or rod is used for constructing the
positive definite energy. In Sec. V the proposed method
is compared with other attempts to overcome the draw-
back related to the energy unbounded from below in field
theories with higher derivatives.
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ternal geometry on the string world surface is defined by
the induced metric g;~(u) = 0;x"8~x„,i,, j = 0, 1, g =
det(g;~), g ( 0. The Laplace-Beltrami operator with
respect to this metric reads explicitly

The coordinates x2(u) obey the equations

(1 + e ) x2(u) = 0, (2.9)

1 8 ( „8 l k gk—g Ou g Bu&)
(2.2)

For the curvilinear coordinates u and u on the string
world sheet we shall frequently use another, more ordi-
nary, notation u = w, u = o.. The numerical parame-
ter n in the action (2.1) is specified by the concrete mech-
anism generating the flux tube. In the Abelian gauge
model with the simplest Higgs potential (the Nielsen-
Olesen vortex model for the relativistic string) n proves
to be about 20 [20]. The action (2.1) results in the non-
linear equations of motion containing the partial deriva-
tives of the fourth order of the string coordinates x"
[29]. To advance in their study, we employ the follow-

ing parametrization including the time-like gauge on the
string world surface:

X2 = 0, o = O, m.

Pt
xi(t, o.) = Q + + i

ppl

h, n . (1)
cos no. e

vrPpc (~)
n, +0

(2.10)

x2(t, o) = . p sin no c
Vr ppC (2)

m+0

with two series of the eigen&equencies:

As usual, the general solution of the boundary problems
(2.8) and (2.9) is given by the expansions in the corre-
sponding eigenfunctions [30];

lx"(u) = Ict—o; x(u),), v (2.3)
(~) (~) (2) (2) 1

n +

where x(u) are (D —2) transverse string coordinates. Al-
though the parametrization (2.3) holds true only for the
limited string motions (so-called harmonic approxima-
tion [30]), it will be sufficient for our aims.

Inserting the ansatz (2.3) into (2.1) and expanding the
integrand of (2.1) up to second order terms in powers of
x(u) we obtain [30]

n = 1, 2, . . . . (2.11)

Here Q and P are the coordinates of the center of mass
and the total momentum of the string, respectively, and
the amplitudes n and P, in virtue of the reality of
the variables xj and x2, obey the usual rules of complex
conj ugatlon:

w= —fch drr [x —a x'
n„* = n „, P„* = P „, n = 0, +1+2, . . .

(2.12)
—6G G K —K (2 4)

(1+a ) x(u) =0, (2.5)

0 = 2

Bt2 8~2

and the boundary conditions

where a = 7rc/l, e = n (mr, /l), and l is the string
length. The dot means differentiation with respect to
t = w and the prime with respect to o. Variation of the
action (2.4) gives the equations of motion

Thus, the transverse coordinates of the relativistic
string with rigidity x(u) are described in the harmonic
approximation by the pair of independent variables
(xi, x2) . This duplication of the number of dynamical de-
grees of freedom is general for higher derivative theories.
It is also reflected explicitly in the canonical formalism
worked out for higher derivative theories by Ostrograd-
sky more than a century ago [11]. In our case according
to the Ostrogradsky method the independent generalized
coordinates are gq ——x and g2 ——x and their conjugate
momenta are defined by the expressions

(1 + e ) x' = 0,

&x = 0, 0. = O, vr.

(2.6)
px = 0 &Bl-l pol 1+ e

Bx Ot (Bxj vr

Owing to Eqs. (2.5) and (2.6) being linear, their general
solution can be represented as the sum

ppl
P2 —— .. ———6 +X.

Bx
(2.13)

x(t, rr) = x, (t, o) + x2(t, o). (2.7)

Here xi(u) are transverse degrees of freedom of the open
Nambu-Goto string [18],

With the use of (2.7), (2.8), and (2.9) from (2.13) we

find pi —— (ppl/7l) xi p2 = (ppl/vr) x2. As a result,
the canonical Ostrogradsky Hamiltonian

x, (u) = 0, (2.8)
ppl do. (pix + p2x —2),
27r

(2.14)

1 = 0, o = O, vr. in terms of the variables xq and x2, takes the form
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clo' (xg + a XP}
P0l

0

~

x, —a x, ——x, —2x,x,
~

(2.15)

Hence it follows that already at the classical level the ex-
citations of the degrees of freedom w2 may give a negative
contribution to the total energy of the string. Indeed, in-
serting the general solution (2.10) into (2.15) we obtain

P GA+ —) (cx„'cr + n„n„*)
n=1

(2.16)

where M = p0l is the total mass of the string.
Thus, in the rigid string model we arrive at the prob-

lem general for all higher derivative theories of the lack
of a lower-energy bound [10,14]. In the quantum theory
of this system the following annihilation and creation op-
erators a' and 6' are defined:

III. FLEXURAL VIBRATIONS
OF THE TIMOSHENKO BEAM

Ty" —py = 0. (3 1)

Here T is the string tension and p is the linear density
of the string matter. As was to be expected, none of the
characteristics of the transverse string sizes enter into
(3.1). By taking into account the beam thickness eifec-
tively, Eq. (3.1) is modified as [24]

To elucidate the analogy between the rigid string and
the mechanical vibrating systems we consider in this sec-
tion the flexural vibrations of the so-called Timoshenko
beam.

In principle, the flexural vibrations of three-
dimensional extended objects such as rods or beams
are described by the general equations of the three-
dimensional theory of elasticity [33]. However, in virtue
of their complication this description is not suitable for
practical use. Therefore, one has to employ here some
approximations.

If a rod or a beam is considered as an infinitely thin
one (that is, if we fully neglect its transverse sizes), then
we obtain the string described by the equation for the
lateral deflection y(x, t):

EIy"" —Ty" + Epy' = 0, (3.2)

(2)
~„V„, P* „=Pt' = (2)

b„',

with the standard commutation relations

at2 — P gt2] —P2 $

E= + ah) cu„
i
ata„+(&) f t D —2l

)

—ah) ~„~ btb„+.(2) (
&

D —2b
(2.17)

(2)
As is well known [1,2,9], the negative-energy (—aha )
creation operators bt can be regarded as positive-energy

(2)
(+ah cu ) annihilation ones. Thereby, in the Fock space
of the states the positive norm negative-energy excita-
tions are transformed into negative norm positive-energy
ones. So the violation of unitarity in the quantum theory
is really a reQection of the essentially classical problem of
the lack of a lower-energy bound [see (2.16) and [9,31,32]].
In a recent papers (see [10] for review) it was proposed to
apply the perturbative constraints to freeze out the exci-
tations of those degrees of freedom which give rise to the
negative contribution to the energy. In the present paper
using the mechanical analogy we would like to show that
there exists another solution of the problem in question.

i, j = 1,2, . . . , D —2, n, m = 1, 2, . . .

Therefore, taking account of the zero-point oscillations
of the string we obtain the expression of the energy in-
de6nite in sign:

where E is Young's modulus, I is the momentum of iner-
tia of a cross section around the principal axis normal to
the plane of motion, E is the cross section area, and p is
the mass density. In applications the case of the absence
of longitudinal strength (T = 0) is frequently considered.
If it is really the case, then Eq. (3.2) is transformed into
the Bernoulli-Euler equation

EIy"" —I'py' = 0. (3.3)

Apart from this, the inertia of the gyration of the beam
cross sections is taken into account in the Timoshenko model
(the Rayleigh correction [35]). However, this fact itself does
not lead to the appearance of higher derivatives in time in the
theory.

The effect of the transverse sizes of the beam leads to
the appearance, in Eqs. (3.2) and (3.3), of higher deriva-
tives as compared with the string case (3.1). The corre-
sponding Lagrange densities contain the (y")2 term, but
the problem with the positive definiteness of the energy
does not arise there. Only theories with higher deriva-
tives in time suffer from the above problem. The model
of flexural vibrations of beams proposed at the begining
of our century by Timoshenko [24,34] belongs to such
theories. In add. ition to the bending of the beam under
the Bexural vibrations the Timoshenko model takes into
account the shear deformations of its elements. Two
degrees of freedom are associated with each cross section
of the beam: the deflection due to bending and that due
to shear. This duplication of the number of degrees of
freedom in the Timoshenko model leads to the equation
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of the fourth order in time:

y(t, o) = y" (t, o) = 0, y(t, l) = y"(t, l) = 0. (3.s)

The general solution of Eq. (3.4) and the boundary
conditions (3.5) have the form

EIy"" + I » —&I
~

1+
I

y" + &I
'

y = o.
kG) kG

(3.4)

Here G is the shear modulus and k is the shear coeKcient
(the phenomenological parameter depending on the ge-
ometry of the beam cross section).

Equation (3.4) should be supplemented with the
boundary conditions at the ends x1 ——0, x2 ——l of the
beam. In the following for the sake of simplicity we shall
consider the hinged-hinged beam, when both the flexure
and the bending moment of the beam are equal to zero:

q1
——y, q2

——y,

OC 0 (BZI. .. a2 . ,y+
Oy Ot l By) 2

a2
p2 = .. = —a3y + y

Oy 2
(3.12)

and construct the Ostrogradsky canonical Hamiltonian

H =—
2

dx 2piq2 ———
q2 +

~

ai —
I qi

p,', ( a', 5

as l 4as)

a2+ P2q1
a3

Further, using (2.13) one can define the canonical vari-
ables

y(t, x) = ) sin A„x [q„,(t) + q„2 (t)],
n+0

(3.6)
dx y + 2a3y 'y —a2yy —a3y + a1y

2

(3.13)
where A = n7r/l and the functions q, (&)
A, cos(u„, t + e, ), s = 1, 2, are the normal coordi-
nates corresponding to two series of the eigenfrequencies

i)E/pc@, „s = 1, 2, respectively. The dimen-
sionless frequencies ~, , are defined by the formula

�

40enl
A2r2

~1+(+ ~, , I

—4((
l A„'r') (3.7)

where ( = kG/E is the dimensionless parameter and r
is the radius of gyration of the beam cross section around
the principal axis normal to the plane of motion, r
I/I'.

When the shear modulus G tends formally to the in-
flnity, the Timoshenko equation (3.4) is reduced to the
Bernoulli-Euler one with the Rayleigh correction

A„r
+%1 1+ A„r~2 2' (3.9)

and those of the second mode of oscillation go to infinity.
The Timoshenko equation (3.4) and the corresponding

boundary conditions (3.5) can be derived by varying the
Lagrangian density [36]

EIy"" + pEy —pIy'" = 0.

In this case the frequencies of the first series (3.7) in the
Timoshenko theory tend to finite values,

This Hamiltonian is conserved in time and it generates
the time translations t ~ t + Lt. The value of H in the
general solution (3.6) is the energy of the Timoshenko
beam calculated according to Ostrogradsky:

Eo = —as ) (a'„2 —~„i) (~„i&„i —~„2& 2) .

(3.i4)

Thus, the flexural vibrations with amplitudes A 2 give
the negative contribution to Eo [36] because for all n's
we have, from (3.7),

(d 2
—(d 1 ) 0.2 2

Formula (3.14) is completely equivalent to that (2.16) for
the energy of the relativistic string with rigidity in the
harmonic approximation. In spite of the principal difFer-
ence of these objects, they suffer from the same lack of
lower-energy bound. However, in the case of the flexural
vibrations of beams there exists the well defined notion
of mechanical energy which is always a positive quantity,
of course.

The mechanical energy of a rod or a beam is a sum
of the kinetic and potential ones of their elements. Let
yi(t, x) be a lateral deflection of the beam due to bend-
ing only and y2(t, x) be that due to shear and y(t, x)
yi(t, x) + y2(t, x) is the total lateral deflection of the
beam. In the Timoshenko model the kinetic energy
contains the contribution from the transverse motion of
beam elements,

Z = —,
' (y' —a,y"' —a,y' + a,yy") . (3.1o)

Here a;, i = 1, 2, 3, are the coefficients of Eq. (3.4):

pI' I
Tt

2
dxy (3.is)

EI I ( Ei pI
I" I kG ' I kG

(3.ii)

lpI ~ /2Tgyp: dX y 12 0
(3.16)

and that from the gyration of the beam cross section,
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According to the Hooke law one can easily R.nd the
potential energy of the Aexural vibrations of the beam.
This energy consists of the elastic energy of the bending
deformations,

Em = 4). l1+
n=i

Vb,„= l
I/2

2
dxyg ) (3.17)

+ 1 + 4J 2A (3.26)

and that of the shear deformations,

kEG
2

dx yg (3.18)

W= dx (y + r y', )
— dxy",

Joining together formulas (3.15)—(3.18) we obtain the
action functional of the Timoshenko model:

As was expected, the energy (3.26) is positive definite in
sign because of the positive definiteness of the original
functional (3.23) .

So in the Timoshenko model there exists a mechanical
energy positive definite in sign [formulas (3.23), (3.26)]
and an Ostrogradsky energy unbounded from below [for-
mulas (3.13), (3.14)]. Both these quantities are integrals
of motion and they are mutually related:

kFG
2

dx y2 (3.19) n=l

Variation of the action (3.19) gives the following equa-
tions for yi (t, x) and y2 (t, x):

x (cd 2A 2
—cd iA. i)

y2
kG

y2 = y&~
P

p. . „kG—yj —
yg =

2
—y2,

(3.21)

(3.27)

However, the mechanical energy (3.23) in contrast with
the Ostrogradsky energy (3.14) has quite a clear physical
meaning.

Q'(t, o) = y'(t, l) = 0. (3.22)

Here g(&, x) = y'i(t, x). Combining Eqs. (3.20) and
(3.21) one may obtain the Timoshenko equation (3.4) for
the total lateral deflection y = yq + y2.

The sum of (3.15)—(3.18) is the total mechanical energy
of flexural vibrations of the Timoshenko beam:

E= dx y + r + dx
pE .2 2

.
2 EI

+
2

d*(y' —&) . (3.23)

In the case of the hinged-hinged beam we have the general
solution (3.6) for y(t, x) and the analogous expansion for

(t *):

@(t,x) = ) cosA„x "
q„i(t) + "

q„2(t)

(3.24)

where A:, /I are the amplitude ratios in the expansions
(3.6) and (3.24)

k„, = n7r (1 —( '(u.'„.), s = 1, 2, n = 1, 2, . . .

aIld thc boUIldaIy coIldltloIls which take foI' thc hlIlgcd-
hinged beam the form

y(t, o) = y(t, l) = o, y"(t, o) = y"(t, t) = o,

IV. "MECH~~ICXI, ZWZRCV"
OF THE R,ICII3 STR,INC

The description of the rigid string dynamics [Eqs. (2.5),
(2.7), (2.8), and (2.9)] is in many respects analogous to
that of the Bexural vibrations of the Timoshenko beam
[Eqs. (3.4), (3.20), (3.21), and (3.22)]. Indeed, both ob-
jects can be described either by one equation of the fourth
order. [Eqs. (2.5) and (3.4), respectively] or by two equa-
tions of the second order [Eqs. (2.8), (2.9), (3.20), and
(3.21) for the "partial" deflections]. The "material" of
the gluon tube in comparison with that of a beam has
very distinct mechanical properties, of course. Therefore,
in these models there is no complete identity between the
corresponding equations. But it is important that start-
ing from Eqs. (2.8) and (2.9) in the rigid string model
one may identify according to the usual rules the energy
corresponding to the mechanical one in the Timoshenko
model.

For Eqs. (2.8) and (2.9) we have the standard I a-
grangian densities

X.Z, = —(x.', —xi2), r, = —(x,' —x", ) ——'. (4.1)

The total energy is defined by the formula

ENI = — dCT (xi + Ki )2

(3.25) + — do (x2 + x2 + x2)2
(4.2)

Substituting (3.6) and (3.24) into (3.23) we obtain the
expression for the mechanical energy in terms of the am-
plitudes A„„8 = 1, 2:

Substituting the general solution (2.10) into (4.2) one
finds
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(4.3)

As was expected, the mechanical energy (4.3) in the
rigid string model is the quantity positive definite in sign.
Obviously, this property of the energy also holds at the
quantum level. Taking account of zero-point oscillations
one may write the mechanical energy of the rigid string
as

(4.4)

positive definite "mechanical" energy instead of the Os-
trogradsky energy unbounded from below. Obviously,
the same can be done for any field model describing ex-
tended objects at the classical level. An appealing as-
pect of our approach is the absence of any constraints on
the physical degrees of freedom introduced "by hand" in
some other papers on this subject. This enables one to
construct a complete quantum theory instead of a trun-
cated one. Further, at the quantum level the problems
with negative norm states and the loss of unitarity do
not arise.

On the other hand, the energy constructed according
to Ostrogradsky generates time translations, but the me-
chanical one does not. Therefore, the sole difBculty which
can occur here is to prove the relativistic invariance of
such theories by making use of the notion of mechanical
energy.

In this case all string states in Fock space are positive
in norm; hence, the above mentioned problem with the
violation of unitarity does not arise here.

V. CONCLUSION

Thus in the framework of the rigid string model we
have shown that one can construct, for this object, a
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