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Exact solutions of heterotic string theory corresponding to four-dimensional charge Q magnetic black
holes are constructed as tensor products of an SU(2)/Z(2Q+2) WZW orbifold with a (0, 1) supersym-
metric SU(1,1)/U(1) WZW coset model. The spectrum is analyzed in some detail. "Bad" marginal
operators are found which are argued to deform these theories to asymptotically Aat black holes.
Surprising behavior is found for small values of Q, where low-energy field theory is inapplicable. At the
minimal value Q =1, the theory degenerates. Renormalization-group arguments are given that suggest
the potential gravitational singularity of the low-energy field theory is resolved by a massive two-
dimensional field theory At .Q =0, a stable, neutral "remnant, " of potential relevance to the black hole
information paradox, is found.

PACS number(s): 11.17.+y, 04.20.Jb, 12.10.Gq, 97.60.Lf

I. INTRODUCTION

One of our expectations of string theory is that as a
quantum theory of gravity it should help us understand
the puzzles of black holes, possibly by resolving the prob-
lem of curvature singularities. Perhaps a complete un-
derstanding of this must await a fully nonperturbative
understanding of the theory, but we have begun to inves-
tigate the role of singularities by studying exact classical
string solutions. In particular, in [1] Witten found an ex-
act conformai field theory corresponding to a two-
dimensional dilatonic black hole. Although the stringy
meaning of the singularity in this solution is not fully un-
derstood, it does serve as a well-defined example in which
to address the questions. One concern, however, is that
this two-dimensional example is oversimplified: singular-
ities in higher-dimensional black holes may be qualita-
tively diferent. For this reason classical string solutions
corresponding to four-dimensional black holes should
also be useful. Such solutions have previously been found
in [2,3] as solutions of the low-energy effective theory for
string theory. Although these charged solutions are
known to leading order in the o." expansion, correspond-
ing exact solutions had not yet been found.

In this paper exact string solutions corresponding to
certain limiting cases (in which the asymptotic two-
spheres have finite radius) of the magnetic black holes of
Refs. [2,3] will be given. In these limiting cases the solu-
tions become simple products of the black hole of [1] and
a nonsingular conformal field theory on a two-sphere.
The singularities found are therefore identical to those of
the two-dimensional black holes. Further, the general
solutions are expected to arise from these limiting cases
by a deformation corresponding to a (1,1) operator in the
conformal field theory (CFT) that we will construct. This
suggests that even for the general solution the singularity
is closely related to the two-dimensional version. Finally,
it should be noted that such solutions may be relevant to
the real world, if it is described by string theory. This is

seen by noting that for black holes whose radii are small
compared to the dilaton Compton wavelength the dilaton
is efFectively massless. This means that real black holes
below this scale could be described by the string solutions
of this paper [4—6].

An important virtue of having the exact solutions is
that it will allow us to study small values of the monopole
charge, outside of the validity of the o.' expansion. We
find some surprises for small values of the charge, namely
two solutions with unexpected properties.

In the a' expansion the balance between the magnetic
field and curvature gives the throat a radius proportional
to the monopole charge, r2 =Q. In particular, there
would not seem to be a neutral solution. In the exact
solution this is corrected to r2 =

~ Q
—1

~

', and so a

Q =0 solution of finite radius exists. There is an extremal
Q =0 solution with zero Hawking temperature, i.e. , a
neutral remnant. This is of obvious interest to advocates
(among which we do not necessarily count ourselves) of
neutral remnants as a solution to the black-hole informa-
tion paradox.

Equally surprising is the fact that at
~ Q = 1 the radius

is zero. The solution is trivial in the sense of conformal
field theory, but that need not mean that it is uninterest-
ing. There do not yet exist methods to analyze the inter-
polation between the exact throat and Oat exterior solu-
tions; this is one of the important open questions in this
work. We will introduce an approximate picture, based
on the renormalization group, which suggests that there
exist solutions where the Q=O, +1 throats do connect
onto the Bat exterior. In particular, at

~ Q ~

= 1, the
infinite throat narrows steadily to zero radius. This is
perhaps a counterexample to the phenomenon of duality
observed in toroidal compactification: down the throat,
almost all states of the string move to arbitrarily high
IIlass.

In this conjectured form of the ~Q~ =1 solution, the
would-be singularity is resolved by a massive two-
dimensional field theory. The nature of the singularity is
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essentially stringy, and does not have a spacetime inter-
pretation. The generality of our arguments invite the
speculation that this is a general method for resolving
singularities in string theory.

The solutions factor into an xt CFT, an angular CFT,
and an internal CFT. The xt CFT is the linear dilaton or
two-dimensional black hole, already known exactly. The
angular "monopole" CFT has a central charge which ap-
proaches 3 in the semiclassical limit. Rotational invari-
ance implies the existence of an SU(2) current algebra.
Both of these observations point to a close connection
with the Wess-Zumino-Witten (WZW) o. model. In fact,
we will find that the monopole theory is a coset of the lev-
el k =2~Q —

1~ SU(2) WZW model by a discrete sub-
group. For Q ) 1 this is

SU(2)L X SU(2)~
Z(2Q+2)~

to make a c =4 CFT the two-dimensional black-hole fac-
tor would be the level k'=2(Q +1), SU(1, 1)/U(1) coset
theory.

In Sec. II we review the low-energy effective field
theory description of the magnetic black holes, and
present the heterotic o. model. In Sec. III we bosonize
the action and find that the result is indeed the coset (1.1)
of the WZW model. We also describe a mild generaliza-
tion, a bosonic theory with independent left- and right-
moving monopole charges QL z. In Sec. IV we bosonize
the vertex operators. Taking appropriate monopole har-
monic wave functions, the vertex operators are WZW
vertex operators with a twist of the right-moving U(1) bo-
son. In Sec. V we take a more abstract approach, looking
for consistent level-matched string theories of the form
(1.1), and recover the monopole theories constructed ear-
lier.

In Sec. VI we return to the heterotic case, where Q~
takes the value 1 appropriate for spin connection. We
verify world-sheet supersymmetry [which is (0,2) due to a
U(1) symmetry], check level matching, and show that
there is no spacetime supersymmetry. We show that the
solutions are in general unstable if the monopole U(1) is
embedded in a non-Abelian group (as expected from
low-energy considerations), but can be stable otherwise.
We find the vertex operator corresponding to a widening
of the throat toward the mouth, but are unable to extend
the exact solution through the mouth to the asymptotic
spacetime. Also, we verify that the exact solution is con-
sistent with the index theorem for massless fermions in a
monopole field. In Sec. VII we present the Q=O solu-
tion, which is a slight variation of the ~Q~ ) 1 case. In
Sec. VIII we discuss

~ Q ~

= 1. Our main tool is an approx-
imate identification of the radial dependence of the solu-
tion with a renormalization-group How. The monopole
CFT becomes strongly coupled and develops a mass gap
in the region of the mouth, leaving a trivial CFT in the
throat. The index theorem is useful in understanding the
physics of the solution, and world-sheet instantons play
an essential role. One of the main open problems is to
obtain more control over the mouth region and verify the
existence of a solution interpolating between the known
throat and asymptotic theories.

II. REVIEW OF I.OW-ENERGY SOI.UTIONS

The exact heterotic string solution that we will con-
struct corresponds to the extremal member of a family of
magnetically charged four-dimensional dilatonic black
holes. These black holes first appeared [2,3] as solutions
of the low-energy effective act on

which results when strings are compactified to four di-
mensions. We henceforth use units in which a'=2. The
black-hole solutions are parametrized by the o.-model
mass M, the charge Q, and the value of the dilaton at
infinity, No. For general values of these parameters they
take the form

ds = —4Q tanh o dt +(2M+hsinh o ) (4dcr +dQz),
2(e + ) 2M+A sinh o.

e 0

A cosh o.
(2.2)

where dQ& and e2 are the line element and volume form
on the unit two-sphere, and we use a U(1) embedding
with Tr(F )=2F„F"".Here

6=2M —Q /2M . (2.3)

To give a complete string solution Eq. (2.2) should be
supplemented by an internal solution corresponding to
the compactification to four dimensions.

The spatial geometry of a constant t slice through this
solution is shown in Fig. l. In the limit M~Q/2 the
throat length approaches infinity as Q ln(Q/6). Near
this limit there are four distinct regions:

(i) o ))—,
' In(Q /6) asymptotically liat region,

(ii) o —
—,
' ln(Q/6) mouth,

(iii ) —,
' ln( Q /b, ) ))o. )) 1 throat,

(iv) cr ~ 1 black hole .

(2.4)

It is worth mentioning that the solution might have
been presented in a different, and much shorter, manner.
One could simply demonstrate that the coset model (1.1)
obeys all the criteria for a building block of a consistent
heterotic string theory: modular invariance, (0, 1) super-
symmetry and a suitable Gliozzi-Scherk-Olive (GSO) pro-
jection. The identification of (1.1) as a charge Q mono-
pole on S2 then follows from the existence of SU(2) rota-
tional symmetries together with 2Q massless spacetime
fermions. We have instead chosen the scenic route to the
final result, along which one views in detail the beautiful
interplay between the current algebra, spacetime, and o.
model descriptions of the theory. The insight gained via
this route is important in our interpretation of the unex-
pected phenomena at Q =0 and 1.

There is by now an extensive literature on stringy black
holes. An excellent review with references can be found
in Ref. [6].
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AF regions Here the additive constant in the dilaton is shifted so that
the dilaton is finite at finite x rather than at infinity. Fi-
nally the black hole plus infinite throat is given by

ds = —4Q tanh cr dt +4Q do. +Q diaz,

Throat
2( N —4&0)

e ' =Q/cosh cr, (2.7)

F=ge2,
Horizon

Mouth

FIG. 1. Shown is the geometry of a spatial slice through the
near-extremal black-hole geometry. In the extremal limit the
throat becomes infinitely long.

At the limit M=Q/2 one then finds three distinct solu-
tions [7] depending on where one's attention is focused
and how the dilaton is held fixed while taking the limit.
The asymptotically flat region plus infinite throat is

ds = 4g~dt +(1 —+Q/ y)~(dy +y dQ ),
e ' =1+Q/y,
F=QE2,

(2.5)

ds = —4Q di +4Q'dx'+gad@,',
@=—x++0,
F=Qe.

(2.6)

where y =6 cosh 0.. If instead o. =x +o.o where
—,
' 1n(Q/b, ) ))oo))1 the M=Q/2 limit gives the throat
solution

I

where once again the dilaton is shifted to be finite in the
region of interest. Since the asymptotically Hat region
has disappeared in the latter two limits, it is not ap-
propriate to associate the mass M =Q/2 with the space-
time. An application of the Arnowitt-Deser-Misner
(ADM) procedure to spacetimes of the form (2.7) which
are asymptotic to (2.5) yields a mass proportional to
e ' [1).

In both of these latter cases the solutions are trivial
products of two two-dimensional solutions. In both the
angular solutions is the round two-sphere with constant
radius threaded by a uniform magnetic Aux. The other
solution is in the first case the linear dilaton, together
with time, and in the second the two-dimensional black
hole of [1,8]. Both the linear dilaton vacuum and the
black hole correspond to exact conformal field theories.
A similar factorization occurs for analogous five-
dimensional black holes in the extremal limit, with S re-
placed by S with torsion. In that case the angular
theory corresponds to an exact conformal field theory
and therefore the five-dimensional solution is an exact
string solution [9,10] when supplemented by an extra five
dimensions. This together with the simplicity of the
above S theory leads to the conjecture that it also corre-
sponds to an exact conforrnal field theory, and thus yields
an exact string solution representing a four-dimensional
black hole. The present paper will construct that theory.

A world-sheet description of such a solution is via a
heterotic o. model, with the action'

S= f d z r G„'r),X"r) X + f d z[X (t) ice„"r)X")A, +X (8,——i2 QA„,c|X)A, +i2QF„Q"P'X~A, ] .

(2.8)

Here 6„is the unit round metric on the two-sphere, A,L
is the current algebra fermion, A, & is the supersymmetric
fermion in tangent space,

and in the "southern" patch it is

~(g) ~ M(N) l
~ —i&a ip 1+cosH

(2. 1 1)

A,~ = (e„'+ie„)g~~, (2.9)
The four-ferrnion interaction is necessary for world-

~(N) 1 COSH
(2.10)

u„is the spin connection for vectors on the two-sphere,
and 2

„

is the gauge field of a magnetic monopole of unit
charge. In the "northern" coordinate patch the mono-
pole potential is iOur conventions are o.'=2 and d z=2do. d~. The current

algebra fermion A.L has charge e =1. The action is well deAned

for a Q half-integer, but we will find below that Q must in fact
be an integer.
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sheet supersymmetry. The one-loop P function equations
fix the radius r2 in terms of the charge Q:

1
FpvWR PR p eyv0g Pli

2T2
r2 —Q2 (2.12)

The spin connection on the two-sphere is simply a mono-
pole field of charge 1, and the four-fermion interaction
can be rewritten using

2P'2

The action then takes the form

(2.13)

5= f d z(G„+8„)B,X"8 X + f d z[A~(B —id~ 8 X")A~ +A L(B,—ill„r),x")Al —hkgA~AI AL j (2.14)

with backgrounds

2 2SG„=r2G„
8„=0,
AR„=2Q~A„
A1„=2QIA

Ql. =Q, Qg =1,

(2.15)

(2.16)

and a Thirring coupling, h = —Qlrz The. world-sheet
fermions in the north and south patches are related by

L
R, L (2.17)

In order to make the connection with the %'ZW model,
we will bosonize the left- and right-moving fermions.
The world sheet supersymmetry will then not be explicit,
and it will be just as easy to work with general charges

QL ~. In Sec. VI we will return to the supersymmetric
case Qz =1.

III. KQUIVALKNCK TO WZW ACTION

We now boso»ze (2.14), introducing a third embedding field X which is periodic with period 2~ The bo. sonized ac-
tion is

S= d ztr G„'a,X"a,X'+r2(a, X3 ~ „a,X")(a X3—g+ q X~)1 2 2 S2

+ ~„-(a,x'a, x~ —a,x'a, x~)+ -,' ~ „-~,+ (a,x~a,x —a,x a,x~) I, (3.1)

where

2i = &+2h

and

A„—= A„+A„=2QA„, Q =Ql+Qg .

The invariances

(3.2)

(3.3)

to torsion, which is quantized. Similarly, the two terms
in 0,X + A „B,X" must have h-independent relative
coefficient in order that the mapping between the north
and south coordinate patches respect the 2m periodicity
ofX .

The quantization of the torsion is seen explicitly if one
integrates by parts:

x'~x'+e (x")+~ (x"), fd'z X'F„d,x"d X (3.5)

(3.4)
Under X ~X +2&, this chaIlges by

F dX"dX = i 2vrnQ—
4 pv (3.6)

provide a check that the gauge Geld has been correctly in-
troduced. Notice in particular that the 2

„

term must
have an h-independent coe%cient because it corresponds

2The last term in the action vanishes for the particular back-
ground (3.3), but was included to allow independent L and R
gauge transformations.

where n is the winding number of the map from the
world sheet to Sz. The path integral is therefore well
defined for all n if Q is integer. The restriction to in-
teger values is due to a global world sheet anomaly. In
the fermionic language, if we take a genus zero world
sheet mapped once to the spacetime two-sphere, there are
2Q net fermionic zero modes; this number must be
even. There is also a spacetime interpretation: in the
left-moving Ramond sector, the charges are half-integer.

The three-dimensional target space of the bosonized
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theory has curvatures 8 vr, 0 )&2~, 0&(&4ir, (3.16)
2r2 —r, g+2 2 2

R —=R—=
11 22 2 4

2

+33
——

p ig+ /2r2,4

and torsion

(3.7)

the fiber coordinate is g and the base coordinates 8,$.
One sees from Eq. (3.15) that at the north pole (8=0) g is
a good coordinate, while at the south pole (8=sr) g —2$
is a good coordinate. Noticing the ranges, the winding
number is one. Thus, if we have an SU(2) WZW model of
torsion (level)

H--= —Q- «2ri2 (3.8) k =2Q+ Q (3.17)

e-,. =(r2d8, r2 si n8dp, r i(d X —2& dp)) . (3.9)

where we have for convenience used tangent space in-
d1ces

and if we identify

X, g —(+
Q+

'
Q+

(3.18)

The one-loop /3 functions are then

p() jknr2 =R-——'8--
p 2 11 2 123

2"2" i "iQ+ Q-
2T T2 1

pB lnr1=R- ——8--J 2
p 33 2 123

4Q2 g2

2T 72 1

(3.10)

QI. —Q~ —0 . (3.11)

y red fin ng ~R~~R ~L~~L and ~~z, we may as-
sume

3k
k+2 (3.19)

The monopole model (2.14) is invariant under SU(2)
spatial rotations and under one nonanomalous linear
combination of chiral fermion rotations, QI eL =gee~.
Correspondingly, the WZW model with identification
(3.18) is invariant under SU(2) left multiplication and
U(1) right multiplication, the remainder of the right
SU(2) being inconsistent with the identification. The
Noether current of the U(1), /~/+A, is

the group manifold is topologically the same as the o.
model (3.14). Not surprisingly, one finds that in terms of
Euler angles the WZW action [11] is precisely Eq. (3.14).
The exact central charge is then

The one-loop P functions then vanish for
1/2

I'2
7"2 = +, I"1 =

Q+

This also implies, for the Thirring coupling,

(3.12)

l

J — (a,x' —4g, ~ Ma, x~)
2

l
a x'.

(3.20)

Ji = —
Qg /Q+

The action is now

(3.13) This current is not chiral, but becomes so after a trivial
redefinition

S= + f d'z (G" +4~ ~. )a,X~a X

+, (a,x' —4g, a, a,x~)a x' .
Q+

(J,J—)=(J,J )+ig (a,x', —a x')/2,

j,=ig (a,X —2Q+ A „a,X")=—tr(o. g 'a, g ),k

j =0. (3.21)

(3 14) From the SU(2) current algebra we have

As we have discussed in the Introduction, one expects a
close relation to the SU(2) WZW model [11]. Topologi-
cally, the o model (3.14) is an Si bundle over S2, with
winding number 2Q+ and torsion

j,(z )j,(0)—k /2z

We can write j, as the gradient of an analytic scalar:

j,(z) = ik

(3.22)

(3.23)

with

The SU(2) group manifold is also an Si bundle over S2
(the Hopf fibration). Writing the group element in terms
of Euler angles

i Po 3/2 i Oo. &/2 i (g—P)o.3/2g=e ' e ' e (3.15)

with ranges

4(z)pic(0)- ——1~ .
2

(3.24)

The normalization is fixed so that j,(z)gz(0)= —i/z.
Notice that g'L =g—

g& is not antianalytic, and a,g, is

not a conserved current.
In summary, the monopole CFT is
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SU(2)r X SU(2)ri

Z(2Q+ )z
(3.25)

with the unbroken SU(2) currents being antianalytic and
the unbroken U(1) being analytic. In our conventions
right-moving (analytic) happens to coincide with right
multiplication. The z-z asymmetry of the construction
arises from the inequality QR (Qr. For Qri =Qr, the
level k is zero and the CFT is trivial; we will discuss this
case further in Sec. VIII.

IV. THE SPECTRUM

F~ —p3+ w3/2, Fl. —p3 W3/2 . (4.1)

Note for further reference that Fr is the same as U(1)
charge e. The canonical bosonization formula is [12]

F~ +FL
Gr F (0)=exp i X (0)

To complete the identification we will express the ver-
tex operators of the monopole theory in terms of the
WZW operators. The fermions A,~ L have momenta
p3= —,

' and winding numbers w3=+1 in the 3-direction.
The right- and left-fermion numbers are then

monies, which we briefiy review [13]. We start by recal-
ling the relation between the ordinary spherical harmon-
ics and the representation matrices of SU(2). Consider
first a particle moving on the SU(2) group manifold. The
representation matrices

(g) (4.6)

(4.7)

Now let us consider the two-sphere S2 regarded as a
coset SU(2)/U(1)z. We obtain a complete set of wave
functions by restricting the set (4.6) to those which are in-
variant under the identification —namely, those with
mz =0. Left SU(2) takes this set into itself, and is the ro-
tational symmetry of the two-sphere. The transformation
law (4.7) thus identifies D~ 0(g ) as the spherical harmonic
Y~, up to normalization.

Now we consider mz =q/2%0. The representation
matrix (4.6) is no longer well defined on the coset S2, so
let us make a convenient choice of map S2 ~SU(2):

form a complete set of wave functions on SU(2). These
transform as spin j under both left and right multiplica-
tion:

m' «Dm' m' g) m' m «).

+2~i (F~ I'r )f d rr a—3(o. )
0

The canonical momentum is

(4.2)

i rtia3/2 i eo &/2 —i po 3/2
g&&=e ' e ' e

With this choice, the elements

D', ,n«e, y)

(4.8)

(4.9)

4„~.(4 —4» (4.3)

where gri r are as defined at the end of the previous sec-
tion. The bosonization formula is then

(4.4)

@F,F exp[&'(+c, Qr. ++R Qri )kr. + (+r. Qri ++a Qr, 4ri ]

are well behaved at the north pole but not at the south
pole. Note that the P dependence of D~ r2(gs &

) is
At g=O, the only nonvanishing matrix ele-

ment is m =q/2, which is single valued. At 8=m, how-
ever, the only nonvanishing element is m = —q/2, which
thus is multivalued as e '~~ Thus, DJ. «2(gs&) is the
wave function of a particle of unit charge in a monopole
field of strength —

q /2.
Consider also the rotational properties of these func-

tions. Expanding in Euler angles we can write

In particular,
—1 i g'o 3/2

go, y =go', y'e (4.10)

~ri =exp[&(Qr~kL+Qr. 4)]
~r =exp[&(Qr 4+Qz 4 ) ] .

(4.5)

This is the same form that holds without the gauge in-
teraction of the fermions [but with the Thirring coupling
(3.13)], though in the present case gr is not a free field.

We now wish to relate ~he vertex operators of the
monopole theory into those of the exact CFT. A vertex
operator is a polynomial in fields and derivatives, times a
wave function of the embedding coordinates X". There is
an important subtlety: the charged fields are not globally
defined. For example from Eq. (2.17) we see that at the
south pole A, z' r' is e ' times a single-valued function.
In order to make a conformally invariant vertex operator,
we need a compensating singularity in the wave function.

The necessary wave functions are the monopole har-

Eg o3/2
D qr, (gs &

)=D', r, (g& goree )

1=D' (gr ')D' qr2(ggp)e (4.11)

This is the spin-j transformation up to a phase. The
phase, which is independent of the state j,m, is just the
gauge transformation needed to bring the Dirac string
back to the south pole after a rotation. Notice, by the
way, that there is a lower bound on the angular momen-
tum:

j ~q/2 .
Let us also note the property

(4.12)

for some functions 9'(O, g, gr ), P'(O, g, gL ), and
g'(O, g, gr ). This defines the action of SU(2)r on the coset
S2, (8, $)—+(O', P'). Then the transformation (4.7) be-
comes
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—~'—,D' q/2(ge p)= Ij (j +1)—q'/'4]D', n(ge y»
(4.13)

50~ ~ = i (Fl e +F~ e )GF (4.14)

The total monopole field felt by OF F is then

where V is the covariant Laplacian for a particle of
unit charge in a monopole field —

q /2.
We now make vertex operators by combining 0~

with an appropriate wave function. Under the gauge
symmetry (3.4),

j(j +1)
@+2

j (j +1) q' (F)iQI. +F1.Qg)'
@+2 4k k

(4.23)

F~ —
FL,

Lp+
2

Let us check the correspondence with the semiclassical
expansion for some low-lying states. The tachyon has
Fz =FL =0, so the vertex operators are just the spherical
harmonics D~ 0(g). Using the one loop result k=2rz,
the dimension is

(4.15)

/2(ge &)exp[iqg/2+i(F)t FL )Q —
g)i ]

q =2FL QL, +2Fg Qg .

The proper vertex operators are therefore

Dm, q/2(ge, y)@F,,F

j(j+1)P+ P
—

2+1 (4.24)

while the spin Lp Lp=0. This matches the semiclassi-
cal value for r2 )&1, the "+1"being a correction to the
semiclassical result. The vertex operator with one k~ os-
cillator excited is

=DJ ~/2(g )exp[i(Fi, FL )Q —
gii ] . (4.16)

The translation between the wave functions (4.6) on SU(2)
and the current algebra primary fields is known [14],

D & (g()&)kii =(() (z)(t& (z)exp[iQ gii(z)] .

The spin is L p
—L p

=
—,', while the dimension is

+ — j(j+1) 1
Lp+Lp — +

(4.25)

D' [g(z, z)]=(b (z)P~ (z), (4.17)

so the final result is

, n(g(), y )Oz, z (z z )

=pJ (z)(11'/2(z)exp[i(Fii Fl )Q gii(—z)] . (4.18)

This is a satisfying result: consistent with the
identification (3.25) of the theory as a coset, the vertex
operators are current algebra fields with a twist of U(1)ii.
Also separating the analytic primary into a parafermionic
primary and a free boson part,

j (j +1) QR +—+
r', +1 2 1+2~ r'+1 (4.26)

D ~ (g() ~)kt =P~ (z)P~& (z)exp[ —iQ g)i(z)] . (4.27)

The spin is Lp
—Lp

= —
—,', and the dimension is

In the last line, the first term is from the monopole Lapla-
cian (4.13), while the last is the shift in the dimension of A,

from the Thirring interaction [we have used Eq. (3.13) for
the Thirring coupling]. Again the "+1" represents
corrections to the semiclassical result. Similarly, the ver-
tex operator with one XI is

P' (z) =i)/' (z)e

we have

D', q/2(g e, y )@F,,r (z» )

(4.19) j(j+1) 1
0 0

j (j +1)—Q'

+1 2 r +1 1+26 r +1
=4 «)0/2(z)exp[&(Fi Qii+F~ Qi 4~ «)] (4.28)

The energy-momentum tensor is

(4.20) with the semiclassical limit again evident.

V. LEVEL MATCHING

T 1 1'8 'Q a ~ a

2(k+2) J J — 2(k+2) J J (4.21)

We can also decompose into a parafermion part and a
free boson part:

Now let us make a new beginning, from a different
point of view. We start with a level k SU(2) WZW
theory, and without reference to any spacetime interpre-
tation we try to make a consistent string theory by twist-
ing on Z(X )ii for some integer N:

2 ( ) 7 sU(2)/U(1)(z ) (j
k

(4.22)
SU(2)L x SU(2)ii

Z (X))i

The states (4.20) thus have weights A general twisted vertex operator is of the form
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(jg P )(Jx P )e (5.2) J,+J,'eNZ, J,—J', EN'Z. (5.10)

Here w3, which runs from 0 to N —1, is the winding
number associated to the right-moving U(1) boson gz.
That is, gii shifts by 4vrw 3/N as z encircles 0:

iw3kg& (0)/N 2&w 3 1~ im3kg& (0)/N3 R 3 R (5.3)

J3 =m~ +N+ —N, J3 =J3+w3k /N, (5.4)

N+ being the number of j—+ raising operators. The
weights are, therefore,

(5.5)

The notation j~ and jz stands for generic products of
raising operators j' „and j' „,respectively. The
untwisted part of (5.2) depends on gz as e and the

full operator as e ', where

These states satisfy level matching, and a check of the
characters shows that the partition function is in fact
modular-invariant.

Now let us relate these theories to the monopole back-
ground. Comparing the twisting and the level gives

N=2Q+, N'=Q (5.1 1)

Also, comparing the gz dependences of the vertex opera-
tors (4.20) and (5.2), we have

J3+J3
F~+Fl =2 F~ —FI = (5.12)

The condition (5.10) is thus that the total right plus left
fermion number be even, which is the diagonal GSO pro-
jection. Note that the modular-invariant spectrum neces-
sarily includes the Ramond-Ramond sectors with half-
integer Fg L.

Notice that Eq. (5.11) implies that Q is an integer, as
we found in the previous section, but allows Q+ to be
half-integer. In this case,

Jtg
Lo —Lo=

k

J2
mod Z

w3
2J3+w3k/N mod Z . (5.6)

Let us for the present section think of this CFT as a
background in bosonic string theory. The CFT is then
modular invariant by itself, so in particular the spectrum
must be restricted to states for which I.o

—L,o is an in-
teger. Let us focus on w3=1; by assumption there are
states with w3 = 1, or we would redefine N~N/(w3
Then

2J +3k/NENZ . (5.7)

Since 2J3 is an integer, we learn that k/N must be an in-
teger, N'. This is the quantization of the torsion on the
coset manifold. The level matching condition is then

2J3+N'ENZ (w3 =1), (5.&)

which has solutions. Since J3 and w3 are both conserved,
the w3 = 1 result plus closure of the operator product ex-
pansion (OPE) implies that, at general w3,

2J3+w3X'ENZ,

or equivalently

(5.9)

In Eq. (5.2) we have acted first with the raising operators and
then twisted. Alternately, we can first twist the primary, and
then act with the twisted algebra of j „,j:„g2/, and j
These descriptions are equivalent.

where ~E
~

and ~X~ are the total levels of the raising
operators.

A consistent string theory requires level matching.
The level mismatch here is

N+2N' N —2N'
L 4 & R (5.13)

are not half-integers, and the fields A,L z have gauge-
invariant Dirac string singularities. There is a simple
reason why these theories are consistent: the actual
states appearing in the GSO-projected spectrum all have
properly quantized charge. Notice also that when N is
even the interchange

N+-+2N' (5.14)

6gz =e 5('I. =0, (5.15)

while —,'(J3+J3 ) corresponds to the naive Noether
current (3.20) and generates

just flips the sign of QR. This is equivalent to the original
theory, with redefinition kz ~A.z. In the bosonized form
this is a duality transformation on g.

This completes our construction of the monopole CFT
for bosonic string theory. We conclude with one general
remark. Twisting by Z(N)z, one might naively restrict
the spectrum to 2J3 ENZ. This would differ from the ac-
tual spectrum (5.10) by a term proportional to winding
number. It is well known that in twisting (orbifolding), it
is not in general possible to determine the projection
naively, ' rather, one must explicitly solve the level-
matching condition. We would like to point out that this
is a special case of a well-known ambiguity in field
theory: one is always free to add to a Noether current a
term which is trivially conserved, j ~j +QbE for any
antisymmetric K', as we have done in going from the
current (3.20) to the current (3.21). In a topologically
nontrivial sector, this changes the conserved charge. In
the present case, there is a simple interpretation for the
actual projection The charge . J3 corresponds (up to nor-
malization) to the chiral current (3.21), which one can
think of as generating
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5g'~ =e/2, 6$L =e/2 . (5.16)

In a nonwinding sector, only the combination gz +gL ap-
pears, and these symmetries are equivalent, but in wind-
ing sectors they difFer. Level matching picks out states
invariant under the vectorlike symmetry (5.16).

VI. HETEROTIC STRING BACKGROUND

As discussed in Sec. II, the heterotic string in a mono-
pole background of charge Q is a special case of the ac-
tion (2.14), with

QL, =Q Qz = I (6.1)

and a particular value of the Thirring interaction. Since
we found that in the bosonic case the Thirring coupling
was fixed by conformal invariance, it must be that for
Q~ = 1 the theory is actually superconformally invariant.

Let us show this, following the general approach of the
previous section. We will not initially assume Qz =1. It
is well known that a twist of the SU(2) current algebra
produces an X=2 supersymmetry algebra:

TP =j exp[+i —[&(k +2)/2 —1]gz ]

=g +—
, exp[+i [v'(k +2)/2]g~ ], (6.2)

NS~+, F~ E2Z,

NS~: F~ E2Z+1,
R~g. F~ E2Z

(6.3)

with g& being the parafermionic currents. The %=2
algebra appears because the nonanomalous combination
of A,z and A.L chiral rotations acts on the supercharge.

We must see whether these currents survive the projec-
tion. Level matching is now more intricate: there are
four sectors, NS+ and R+, where NS denotes Neveu-
Schwarz and R denotes Ramond on both the left- and
right-moving sides, defined by the fermion numbers

J3 =QzFz+QL, FL

J3 =QLF~+Q~Fc .
(6.6)

1F„+FL=—
2 +

(6.7)

which is never a half-integer. Thus these theories are not
spacetime supersymmetric, in agreement with the result
of the a' expansion [3].

Without spacetime supersymmetry, there is the possi-
bility of tachyons. To get the mass-shell condition we
need to look at the xt CFT. In the throat limit the xt
energy-momentum tensor is

(6.8)

Now, the supercurrent has J3 =+1 and J3
=+&(X%'+2)/2. Taking the product of Eqs. (5.12) im-
plies Fz —Fz =1. If the supercurrent is to appear in the
operator algebra (6.3) it therefore must have Fz =+1 and
FL =0. Then (6.6) with J3 =+1 implies Q~ =+1 as the
condition for the supercurrent to appear in the algebra,
as expected; we are free to take Qz = 1 by gz ~fz .

There are several special cases. If QL =0 we have a
neutral remnant; however, this case requires special treat-
ment because QL (Qz. If QL =1 (or equivalently —1),
the level k vanishes and the CFT degenerates. We will
discuss these cases separately below, after discussing
some general issues for QL 2: spacetime supersym-
metry, stability, the connection to the asymptotic space-
time, and fermion zero modes.

In order to have spacetime supersymmetry, we need a
weight (0, —,') field in the sector FL =0, Fz =+—,'. This
would combine with the xt XinternalXghost spin field
SXe + of weight (0, —,

'
) to produce the (0, 1) current cor-

responding to spacetime supersymmetry. This field can

only be e'~&, with J3=0 and J3=&k/8. Inserting
into (5.12) gives

1/2

and correspondingly for FL on the left. Conservation of
Fz and FL implies the correct fusion NS. NS =NS,
R.R= NS, R.NS=R. In order that the full world-sheet
theory satisfy level matching, a state in a sector (Fr, F+ )

of the monopole CFT must have spin

The total four-dimensional central charge is

3+12+ + =6,3k

so

(6.9)

Lo —L06 +Z . (6.4) 1 1

i/2k +4 2QL
(6.10)

For example, the sectors NSL +R~+ have spin —,
' and the

sector NSL +NS~ has spin —,'.
Note first that in the diagonal sectors (same on right

and left), the spin is an integer. From the previous sec-
tion, the condition for a nontrivial spectrum is k =NX'.
Then if we define FL z as in Eq. (5.12) we have

L L=— + ~K—
~

—~E
~

mod Z, (6.5)
2

The primary field

—ax ik. Y

with F"=t,x has weight

k k"
+

2 2

(6.11)

(6.12)

which is precisely the correct level mismatch.
Inverting (5.12) gives

A scalar in the —1 picture has total weights (1,—,
' ). Us-

ing Eqs. (5.5) and (6.12), the mass shell condition is
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F —F'+—(2j+"+ ' '+Iz +r,
8QL 2

+ j ) +IrcI+L, ,',8Q2

(6.13)

2j +1~21J31+1=2IQ~F&i+QLF& I+1 .

The only possibilities for a tachyon are then

(6.14)

where LO, Lo are the weights from the internal CFT, plus
the contribution of any excitations from the xt theory.
To have a solution with k )0, it is necessary that
IKI =O. The quantum number J3 then comes entirely
from the primary field, so, in particular, To see this, translate into the WZW fields [11,14]

tr(g 'a'8 g )tr(o g 'B,g )tr(g 'a'go')

=2tr(o'g 'a,g)tr(g 'a go') . (6.20)

black-hole horizon. This is similar to the instability pre-
viously studied by Lee, Nair, and Weinberg [20].

Aside from the non-Abelian instabilities we have there-
fore demonstrated the stability of the horizon and throat
regions of the magnetic black holes under linearized per-
turbations.

The vertex operators corresponding to changes in the
radii r, and r2 are both of the form

(6.19)

F&i
= —1, FL =1, j=QL —1,

Fz= —1 FL, = —,
' j = ,'QL, ——1.

For these,

+ +2L'
4QJ

The operators are

(6.15)

(6.16)

(6.17)

Note in particular that this preserves rotational invari-
ance, SU(2)L. Now, setting b =c and summing yields
tr(g 'B,gg '8 g) giving an overall change in the radius
of the WZW model, 6p', /7"& =6T2/~2 ~ Setting & =c=3
changes only the radius ~, . In a bosonic theory, these are
both allowed vertex operators, but in the supersymmetric
case we know that supersymmetry relates r& and ~2, so
only one linear combination can be the highest operator
in a superfield; The relevant superconformal primary is

(6.21)
for the appropriate j value (6.15). We can use the bosoni-
zation formulas from Sec. IV to express the result in
terms of the original Fermi fields, giving, respectively,

Taking the operator product with the supercurrent (6.2)
yields the 0-picture vertex operator

e e'" D» (gs~)R'&+X~V,„,. (6.18)
(j'—i 4.')(j—+ i.4' +j:i 0'+)—.

The primary is irrelevant and has weight

(6.22)

The internal part of the vertex operator must have spin—
—,
' or ——', , respectively, in order that the whole operator

be the correct (1,—,
' ). The simplest case would be a ( —,', 0)

field A,L from the NS sector of the current algebra or a
( —'„0)field RL from the Ramond sector, for which the
masses squared (6.16) will indeed be negative. These ver-
tex operators correspond to gauge bosons, and the
currents &(,LA,L and RL RL + are charged under the U(1) of
the monopole. In other words, these states are only
present if the U(1) is embedded in an unbroken non-
Abelian group in the four-dimensional gauge group. This
instability is precisely the Brandt-Neri instability [9] to
emission of non-Abelian radiation; in field theory
language it arises due to the negative centrifugal potential
at j=QLFL —1. Even in a theory in which the U(1) is
embedded in a broken non-Abelian group the black hole
is destabilized if the radius r2 of the black-hole throat is
small as compared to the breaking scale. The unstable
mode produces a non-Abelian monopole core outside the

4Of course, the tachyon could also be the unit operator from
the sectors NS+ paired with a state from the sector NS of the
internal theory. Such a state, if tachyonic, would also be ta-
chyonic in Oat surface. Since the theory is supersymmetic in Aat
space, this is not possible and we can restrict attention to the
sector NS of the monopole theory.

1 1 11+ —,—+
K 2 QL,

(6.23)

R,+X,S+e+e -+", (6.24)

is a massless fermion in four dimensions, where S+ is the
(0, —,') spin field from the xt theory, Vl+ is a ( —,', —,') field
from the internal theory, y is the bosonized ghost, and
R+ are the Ramond ground states from the monopole
CFT. Its U(1) charge is e =1 from &(,~. The appropriate
spatial wave function is e e'" D& +i&2(g& &). 'The
mass-shell condition Lo = 1 is then

5We thank Tom Banks for suggesting this.

so we can make an on-shell primary by multiplying by
e . This perturbation represents the widening of the
throat as x ~ ~, but we do not know of an exact CFT
which interpolates between the throat and asymptotic re-
gion.

Finally, we look for fermion zero modes on the throat. '
This gives a useful check on the construction, and will
aid us in understanding the physics of the QL 1=1 solu-
tion. A massless fermion of charge e has 2eQ zero modes,
by the index theorem. The state
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2 (2j+1)
4Q2

(6.25)

with I'L =1. Recalling that j ~q/2, the lowest state is

R~ AL at j=QI —
—,'. This is indeed massless, and its

multiplicity is 2j + 1 =2QI as expected. This can also be
phrased as an index. The spectrum is

X~=e =pl +i/I =p+ . (7.4)

(7.5)

Let us check the supercurrent. Taking J3 =+1,J3 0,
one obtains the (0,—,') operators

QI. + ,' QL-+ —,
'

Rg —:j=QL, 2 QI. +2 QL, +2
(6.26)

In fact, there is only one independent operator here. The
left-moving side is the unit operator, as it must be since it
has zero weight. The right-hand side is seen from the
free Fermi representation to be 5' times

The Ramond generator Go takes R~+~Rz and an-

ticommutes with ( —1) . We see that all the massive
states are appropriately paired, while the massless states
are the kernel of Go. Another example is

RR+RL +S+ M+e (6.27)

which for G+ of weight ( —,', —', ) is a massless fermion of
charge e =

—,'. The mass-shell condition is again (6.25),
with Fl =

—,', and R~ RI + at j=
—,'QL —

—,
' indeed gives a

massless state of multiplicity QI .

VII. THE NEUTRAL REMNANT: Q=0

A vanishing monopole field corresponds to Qz = 1,
QL =0. Since our construction assumes Qz (Ql, we
need to take the case QI = 1, Qz =0 and fiip:

SU(2)L XSU(2)~
Z(2)L

(7.1)

e ' (J'gp )(jx p ). (7.2)

Here, gL is the antianalytic field obtained by bosonizing
U(1)I, not the same as the earlier gL associated with
U(1)z. The fermion numbers are

(7.3)

where J3 is the left J3 value of the untwisted operator,
and J3 =J3+w3 is the left J3 value of the twisted opera-
tor. The spectrum runs over all operators of the form
(7.2) with half-integer F~ and FI .

The k =2 current algebra can be represented by a trip-
let of current algebra fermions, gii I . Note that the origi-
nal Xl are free, because they do not couple to the gauge
field, and one finds the simple result

It might seem strange that there is a neutral solution,
since the idea was to balance curvature against magnetic
field. In the bosonic form, the curvature is balanced by
torsion which arises from the spin connection, both one-
loop effects. In the original fermionic variables, a one-
loop curvature term is balanced by a two-loop curvature-
squared term. Obviously, we cannot be sure from the
semiclassical picture that this is possible, but the exact
construction shows that it is. The WZW model is known
to be conformally invariant, and the Z(2) modding does
not affect the P functions.

The vertex operators are then the parity transform of
the previous discussion:

(7.6)

the well-known fermionic supercurrent. In this case
there is no promotion to %=2: because Qr =0, the
nonanomalous U(1) acts only on A,l and commutes with
the supercurrent.

There are no left-moving supersymmetries. Candidates
+i&~~+2 —i i.+such as e j and gz gz QI are not of the form

(7.2). The SU(2) rotational symmetry is now on the
right-moving side. There is no SU(2)L symmetry. One
would have expected this to survive a Z(2) projection,
since this is in the center, but the GSO projection uses a
Z(4) twist and eliminates the SU(2)l generators.

Again there is no spacetime supersymmetry:
Lo=j(j+1)/4 cannot take the value —,'. Nor can it take
the value —,'„aswould be needed for a fermion zero mode;
this confirms the identification Q=0. The solution is
stable: other than the tachyon, the lowest weight in the
NSz spectrum is —,'.

There is a technical subtlety, though it presumably
does not affect the physics in the end. We believe that
this neutral remnant can join smoothly to an external
asymptotically Bat spacetime, although we cannot con-
struct the exact solution. We should expect, however, to
be able to identify the operators in the CFT correspond-
ing to the perturbative broadening of the throat, as in the
previous section. The vertex operator (6.19) from the
previous section reduces for k =2 to

(7.7)

There is only one independent operator, whereas we have
two radii. Moreover, this is not the operator we want. It
is not the top state in a world sheet superfield. Also, it
preserves the full SU(2)1 XSU(2)ii symmetry of the ac-
tion, whereas the super symmetric deformation affects
only rz, since the Thirring interaction vanishes when

Ql =0.
One might be tempted to assume that there is no vertex

operator for deformation of r2 (so that this neural throat
could not join to an asymptotic spacetime). This is surely
not the case. Over some finite region of (r, , r2) parame-
ter space, the (QL, Q~ ) =(0, 1) cr model must fiow to the
WZW fixed point. In particular, start near the
SU(2)XSU(2) line ri =r2 , this line is att'ractive, and on
the line we fIow to the WZW point. So the WZW theory
must have separate moduli for deformation of r& and r2.
The problem is that at small k, the identification of o.
model operators in the CFT becomes more complicated.
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For example, the wave function D~ .(g ) corresponds to
a primary only for k )2j. So we need to look for the
necessary vertex operator. It has several identifying
properties: a scalar under SU(2)rt, a tensor under SU(2)L,
independent of QL since these are always free, and in-
variant under world sheet supersymmetry. An operator
with these properties first appears at level (2,2):

3

V,'a, V,' y V;a,
a=1

This is globally supersymmetric (its world sheet integral
is annihilated by G»2) and becomes locally supersym-
metric and (1,1) with Liouville dressing.

(7.8)

VIII. THE DEGENERATE REMNANTS: Q =+I

5x =5eG""r)„4, (8.1)

so that the radius would approximate a classical Liouville
filed if the gradient were large. In the present case, the
derivative is of order one in string units, so we must hope
that the renormalization-group picture is a reasonable
qualitative guide. Similar ideas have recently been dis-
cussed by Polyakov [16], in a cosmological context, and
Banks [17],in the context of Schwarzchild black holes.

At very large radius, the complete theory can presum-
ably be analyzed in a o -model expansion in I/r2. This is
equivalent to perturbatively solving the low-energy field
equations. One finds that the geometry is asymptotically
Oat, and that to evolve to smaller rz one must specify as
initial data the mass M and the charge Q. Evolving in-

6We consider here theories for which the coefficient of 0+tB t
is independent of r&, this excludes nonextremal black holes, and
leads to the constraint M —2MD D+Q /2=0. More gen-—
erally, the dilaton charge D is required as additional initial data.
Our normalization of D is such that the force between two black
holes is proportional to (M, Mz+D, Dz —Q, Q2/2).

For QL
—Qz=1, the level k=2Q+Q vanishes. In

the bosonized form, there is no torsion due to the left-
right symmetry, and so no nontrivial fixed point. One
might conclude that there are no Q = 1 remnants of this
form. However, we would like to suggest a more interest-
ing possibility. Namely, that there is a throat, in which
the angular CFT has collapsed to the trivial k=c=O
theory, leaving only the xt theory and the internal theory.

One way to motivate this is via the renormalization
group. Roughly speaking, we would like to think about
the radial dependence as a renormalization-group Aow.
For example, in the solutions found thus far, if we have
an asymptotically fIat external spacetime connected to
the throat, then r2 fi.ows from ~ to the WZW fixed point
value. This identification of radius with world sheet scale
is quantitatively accurate near the WZW fixed point (i.e.,
in the throat region), because the radial "dressing" need-
ed to convert the kinetic term for the angular modes to a
(1,1) operator is near to the identity. However, near and
outside of the mouth is no longer the case. It would be
quantitatively accurate along the entire fIow if the dilaton
had a large (in string units) radial derivative. When the
dilaton has a radial gradient, the radial coordinate has a
classical scale transformation

which is nonanomalous: the instanton amplitude from

Sz ~Sz with unit winding is of the form kL kz. This
Z(2) is broken at strong coupling [15]:

&X,X, & +1 . (8.3)

At low energy, that is, in the throat, the characteristic
length scale of the o. model is large compared to the size
of the string. There are therefore two ground states. To
be precise, there are two such vacua, i+ &~rt [eigenstates
of the order parameter (8.3)], in the purely periodic
RI R~ sector. Both of these are supersymmetric, as we
will see explicitly below from an index theorem. Fermion
number acts on these as

( —1) "I+&„=rI+ &

( —1) 'I+&„=—r I+ &„. (8.4)

These are determined, up to redefinition, by the require-
ment that ( —1) ' square to —1 in the Ramond sector,

F~ +F
and by the requirement that (

—1),being part of a
continuous U(1) symmetry, leave the ground state invari-
ant. The fermion number eigenstates are

Fz F~I+ &,+I —
& „(—1) "=—(

—1) '=+r . (8.5)

In the Rl NS~ and NSLR~ sectors the order parameter
is antiperiodic. All such states must contain a

kink, and so are massive. In the NSL NS& sector, there
are again two ground states, ~+ &NsNs, with

F
( —1)'l+&NsNs=( —1) 'l+&NSNS

= ~+ &NsNs . (8.6)

ward, one eventually reaches the region where r2 is of or-
der one and (if Q is also order one) geometric curvatures
become of order one and o.-model perturbation theory
breaks down. For generic values of M and Q one expects
to encounter a singularity inside this region —one cer-
tainly hopes that there are no smooth, negative-mass
solutions of string theory. However by tuning M relative
to Q, it may be possible to fiow into a throat region, in
which the theory may be approximately analyzed in
terms of radial-renormalization-group Aows of the angu-
lar theory on S2. This is certainly the case for large Q,
and in the following we assume that it is also true for
Q= 1.

The Q= 1 monopole theory is a nonlinear o. model
without torsion. It is thus expected to fiow to strong cou-
pling and develop a mass gap, so the low-energy theory is
the trivial c=0 CFT. This is consistent with studies of
this particular model [15], which is also (in fermionic
form) the (2,2) supersymmetric O(3) nonlinear 0 model.
Applying this to the black hole, the o. model would be-
come strongly coupled in the mouth region, and in the
throat only the c =0 theory would survive, as suggested
above.

Let us consider the spectrum of the string theory in the
throat. The o model has a Z(2) chiral symmetry

(8.2)
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The fermion number eigenstates are

I
+ & Nsxs+ I & NsNs ~

(8.7)

The angular dimensions have effectively shrunk to zero
radius, leaving behind some massless states but no other
angular excitations at all. This is a counterexample to
the phenomenon of duality familiar from tori.

& ~z Rw+ I GO I 4R~ (8.8)

Precisely for QL =1 the instanton amplitude i(,L A, i, al-2QL —2

lows such a matrix element to be nonvanishing.
For completeness let us state the index argument in a

careful way. The index is

rriF~ IQ~ +i vrFR=tr z &
e

0 0'
(8.9)

the trace being taken in the supersymmetric R~ sector.
This is (

—1), restricted to a sector of given spin and
weighted by the U(1) charge FL modulo the anomaly.
Note that the operator in the trace is a nonanomalous
symmetry and anticommutes with Go. We will calculate
this in two limits. The first is r2 very large. Here, acting
on a state whose right-moving part is Rz+ and whose
left-moving part has fermion number FL, the Ramond
generator reduces to the Dirac operator for e =EL on the
two-sphere, and so this state should contribute

~iFL /Q~+ i 2QL I FL I
e to the trace. Thus, we have, from

the discussion in Sec. VI,

s=0: I=2QL sin(m j2Qi ),
s = —

—', : I=4QL sin(vr/QL ) .
(8.10)

Although supersymmetry is broken in this sector, the
effects are exponentially small (in the ratio of the string
size to the length scale of the o. model) due to the mass
gap. In the throat region the monopole CFT thus has the
four states (8.5) and (8.6), all of essentially zero weight.
One usually expects only a single zero-weight state, but
these states are distinguished by the massive degrees of
freedom.

From the index theorem for spacetime zero modes dis-
cussed in Sec. VI, we expect one state of weight (0,0) in
each of the sectors RL+Rz and RL R~+. These we
have found, so the throat theory is nontrivial: there are
massless fermions. The earlier discussion would also lead
us to expect two states of weight ( —,', 0) in each of the sec-
tors NSL Rz+. These cannot exist if there is a mass gap:
only zero weight is allowed in the trivial CFT. In fact,
these states get mass from instantons. The mass in the
effective xt Dirac equation for these two states is

IX. CONCLUSIONS

We have studied a string theory with right-moving su-
persymmetry fermions and left-moving current algebra
fermions. There are various generalizations of our con-
struction. For example, supersymmetric magnetic black
holes [2,18] are solutions of string theory when the U(1)
charge arises from toroidal compactification. At least in
some cases these can be described beginning from a su-
persymmetric version of (1.1). Recently there has been
some discussion [21] of non-Abelian black holes and
monopoles related to compactifications of the symmetric
fivebrane [9]. These may also be constructed with left-
right symmetric generalizations of our procedure. Final-
ly, by an electromagnetic duality rotation in the effective
field theory one may construct dyon solutions [22].
These solutions also have infinite throats like the purely
magnetic black holes. Although these nontrivially mix
the xt theory with the angular theory, one might hope to
describe them by a related construction.

Exact, modular invariant (0,2) CFT's have made only
rare appearances in the literature. The examples given
here might also be used for (0,2) compactifications of the
heterotic string. Indeed, one of the original motivations
of this work was a (thus far unsuccessful) search for mod-
els with small tree-level supersymmetry breaking.

Potentially the most interesting, and certainly the most
tenuous, result of this paper is the stringy resolution of
timelike grativational singularities by an infinitely mas-
sive two-dimensional field theory. While only one partic-
ular case has been discussed in detail, the idea is clearly
very general. We certainly feel that it merits further in-
vestigation.
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For QL
= 1, the second index vanishes, so there is no con-

tradiction with the spectrum we have found.
The theory is not spacetime supersymmetric; there are

no NSL R~ states at all in the throat. As before, it is un-
stable if embedded in a non-Abelian gauge group due to
low-lying NS& states, but becomes stable if the non-
Abelian bosons are sufficiently heavy, Eq. (6.16) giving

2~ 1

4

7Another curiosity: regarded as a bosonic compactification,
there are effectively two throats. Strings in different chiral va-
cua (8.3) cannot interact in the throat because the cost would be
prohibitive. There are even two noninteracting gravitational
fields, and so the picture of two throats appears to be a natural
interpretation. In the heterotic theory, the GSO projection al-
ways forces a particular linear combination of the two vacua.
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