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Generalized Einstein theory on solar and galactic scales
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We study a generalized Einstein theory with the following two criteria: (i) on the solar scale,
it must be consistent with the classical tests of general relativity, (ii) on the galactic scale, the
gravitational potential is a sum of Newtonian and Yukawa potentials so that it may explain the
Bat rotation curves of spiral galaxies. Under these criteria we find that such a generalized Einstein
action must include at least one scalar field and one vector field as well as the quadratic term of the
scalar curvature.
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I. INTRODUCTION

Recent astrophysical observations of distant galaxy
distributions [1,2] and the cosmic microwave background
[3] have revealed an astonishing picture of the Universe.
From the survey of relatively near galaxies, the void
structure (the great wall) was discovered [2], and from the
pencil-beam survey of galaxies, the quasiperiodic distri-
butions (of period about 130 Mpc) were inferred [1]. The
data from the Cosmic Background Explorer (COBE), on
the other hand, have revealed an extremely isotropic and
homogeneous distribution of the 2.7-K cosmic microwave
background with fluctuations of order 10 s [3]. In gen-
eral, it is very difficult to explain how these anistropic
and inhomogeneous large-scale structures of the Universe
have developed from such an isotropic and homogeneous
distribution of matter in the early stage of the Universe.
The standard solution to this difficulty relies on the exis-
tence of dark matter which accounts for more than 90% of
matter in the Universe. The evidence for dark matter was
first claimed in order to explain the flat rotation curves of
spiral galaxies. Since there is no established direct obser-
vation of dark matter, however, there are many attempts
to explain the rotation curves without dark matter by
modifying the Newtonian force [4] or by modifying New-
ton's second force law [5, 6]. Other people have tried
to derive such modified Newtonian force laws from the
framework of general relativity [7—10].

In a previous paper [10], we attempted to explain not
only the flat rotation curves of spiral galaxies but also
the large-scale structure of the Universe, starting from
a simple model with the addition of a quadratic scalar
curvature term to the Einstein action. Our generalized
action could qualitatively explain the flatness of the rota-
tion curves and the nearly periodic galaxy distributions.
However, it turned out that our theory does not imply
the unity of the coefficient p of the Robertson expansion
[ll] on the solar scale [10]. This constraint (p = 1) from
the classical tests of general relativity such as the obser-
vation of the radar echo delay is quite stringent, and it is
very difficult to satisfy this constraint in the generalized
Einstein action.

In this paper we construct the generalized Einstein ac-
tion under two criteria: (i) it must give p = 1 in the
post-Newtonian approximation, (ii) the gravitational po-
tential is a sum of Newtonian and Yukawa potentials.
The second criterion is the empirical gravitational po-
tential of Sanders [4] that successfully explains the flat
rotation curves of spiral galaxies. We then show that the
minimum ingredient of the theory that satisfies the above
criteria is the R term, a scalar field, and a vector field
in addition to the Einstein action.

II. GENERALIZED EINSTEIN ACTION
AND ITS POST-NEWTONIAN

APPROXIMATION
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The generalized Einstein action which contains
quadratic terms of the scalar curvature B2 and Ricci ten-
sor R& B" was introduced to regulate the ultraviolet
divergences of the Einstein theory [12]. It was applied
to cosmology to obtain the bounce universe to avoid the
singularity at the moment of the "big bang" [13]. The
structure and the properties of the theory were further
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elaborated in subsequent works [14].
In this section we consider a further generalization of

the theory by adding scalar and vector fields in addition
to R2 and R„R"~ terms and study its post-Newtonian
approximation. We will investigate such a theory with
two requirements: (i) on the solar scale it must conform
with the classical tests of general relativity, (ii) on the
galactic scale, the gravitational potential is modified to
give a sum of Newtonian and Yukawa potentials in order
to explain the rotational velocity curves of spiral galaxies.

We consider the following generalized action with the
scalar curvature R, the Ricci tensor R„,a scalar field o,
and a vector field A~:

while the coefficient gi has the dimension of mass and g2
is dimensionless.

In order to calculate the coefficient p in the Robertson
expansion [ll], we introduce the weak fields P and @
defined by

gpp = —1 —24» g'i = ~'g(1+ 20) (2)

Q—g = 1+/+3@, Rpp = —DP,

In the post-Newtonian approximation we must take into
account up to the quadratic term of the weak fields and
source in the action, and the necessary formulas to the
first order in the weak fields are

I = d y' cg{— — (R+ c,R + ccR"'R„,)

——0 crO"o ——o +gioR
1 p

P 2

m2
(D„A—,—)(D)'A") — A"A„

+g (D A")R+ L "'")
where G is the gravitational constant, p, and m are the
masses of the scalar and vector particles, D„ is the covari-
ant derivative, and L~~~t" is the matter Lagrangian. The
coefficients ci, cq, and G have the dimension of (mass)

R,, =8,8, (g+Q)+b;, h@, R=2&(P+2Q),
and the necessary formulas up to the second order in the
weak fields and source in the action are

gR = 2—h, (P+ 2@) + 4PDg+ 2@Kg,

gR""—R„„=2(DP) + 4DPZ@+ 6(EQ), (4)

gR = 4—(D(P+ 2Q)3, g gL ' "—= pP, —

where we have suppressed the total derivative terms [15].
We substitute the weak field expressions Eqs. (3) and (4)
into Eq. (1), and retain up to the quadratic terms of the
weak fields P, @,o, A„, and source p to obtain

I = d x — (2E(P+ 2Q) + 4PE@+2QE@+4ci[K(P+ 2@)] + 4c2(z(K([[)) + &PA@+ 2(E@) )

1 p2 1 m2 1 m'
2+—o'Eo — o+——AgEAg — A, ——ApEAp + Ap

2 2 2 ~ 2 ~ 2 2

+2gio&(P+ 2') + 2g2c), A, E($+ 2@) —pQ

Since the field Ap decouples from the other fields and source, we do not consider this field hereafter. It is convenient
to introduce the following variables P and Q:

4 =4'+20
which in turn gives

(6)

Substituting Eq. (7) into (5) we can rewrite the action as

I d c — gap+ $AQ — QBQ+dcg(dp) + [(Aqi) + ~(Ad) [)— —
16vrG 3 3

+—(TEo ——o + —A;EA, — A, + 2gio&P+ 2gzB, A;hP — +
1 p 2 1 m c4
2 2 2 2 3 3
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Taking the variation with respect to the weak fields

P, Q, A, , and o, we obtain the equation of motion of the
weak fields in the post-Newtonian approximation:

where

I = 1 —6cim'+ 48~G'g', . (21)

A (1 + (6ci + 2c2) D) ct —24vrG(g, Ecr + g2&c)),A, )
Therefore we obtain the gravitational potential of the
form

E(1 —c2Z)g = —SvrGp,

(E —m )A, —2g2&c)),$ = 0,

(E —p )cr + 2gi&P = 0 .

= —4~Gp, (9)

(12)

where

4k —1

3

GM &4k —Ii
r ( 3k )

GM /2k+1)
r ( 3k )

(22)

(23)

(24)
From Eqs. (11) and (12) we have

2gi&4
E —m2 ' 4 —p2 (13)

This leads to the following formula for p:
2k+1
4k —1

Substituting this expression into Eqs. (9) and (10) we
then obtain

g'Z g&Z2 &

11I1+(6vi + 2vv)Z5 —48vG —)ji2 A —m2 i
= —4vrGp, (14)

E(1 —c26,)g = —SvrGp .

In the next section we will consider the possibility that
the coeKcient of the Robertson expansion p is 1. In
order to obtain this result, it is necessary that both c)t1

and @ behave like 1/r in the limit r —+ 0. [ We remark
from Eq. (7): if P and @ behave like P const and

1jr in the limit r ~ 0, we obtain p = 1/2, while if
P and Q behave like P 1/r and Q const in the limit
r —+ 0, we obtain p = —1.] In the region r —+ 0, the
mass term is negligible, and the necessary condition to
have p = 1 is that the highest derivative terms (oc E )
on the left-hand sides of Eqs. (14) and (1S) must vanish
(for p = m = 0). This condition reads

IMorikawa d zg —g — (R —2A)4 1

16vrG
2

——c)) pc)) &p
——p + A&p

1 ~ P 2
P 2
2

P + + gmgvt t'eg
(26)

2

where we have added the cosmological term A and the
tadpole term Ap to the original Morikawa action, since
we consider the case that the scalar field p takes an ex-
pectation value e. We write p = v + o. and consider this
cr field as the weak field. We then obtain the weak field
approximation of the form

IM iM d zv g[ (1 8vG(v )16~G

Here, by taking the Morikawa model [16] as an example,
we demonstrate how it is difficult to satisfy the stringent
condition p = 1 in a modified Einstein theory in general.

The Morikawa model is a Brans-Dicke-type theory of
the form [16]

6cg + 2c2 —48+Gg2 ——0,
Near the origin we then have

c2 ——0. (16)

(1 —6cim + 48+Ggi)DP ——4m.Gp, (17)
+L matter (27)

Eg = —87rGp . (18) Here, we have tuned A and A in such a way that

p(r) = Mb(r) .

Using the formula 4vrGp/E = GM/r we then ob—tain

GM
kr

2GM

(19)

We assume that the density takes the pointlike distribu-
tion of the form

p, 'v'
+Av =0, A —p v=0,

2 )
for a given v. If we denote 1/G = (1 —SvrG(v2)/G, then
according to our formula Eq. (21) (with the replacements
m ~ 0, G ~ G, and gi ~ (v), we have the expression
k = 1 + 48nG(2v2, which gives

1 —87rG(( —4(2)v

1 —Svr G(( —8(s)v~
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In Morikawa's case [16] the scale factor of the Universe
oscillates with time, where the period is converted to the
scale of 130 Mpc through the velocity of light, and it is
unclear whether p here takes an expectation value on the
solar scale. We obtain p = 0.88 by using Morikawa's unit
1/G = 4m/3 and his values ( = 10 and v = 0.008, where
the value of v is assumed to be of the order of the initial
value of ]p . (Of course, if we set v = 0 in Morikawa
model, we have p = 1.)

Through this example we understand that the con-
struction of the generalized Einstein action with p = 1 is
nontrivial.

III. GENERALIZED EINSTEIN ACTION
ON SOLAR AND GALACTIC SCALES

In this section we show that the generalized Einstein
theory, in which the gravitational potential is a sum of
Newtonian and Yukawa potentials, must include at least
scalar and vector fields in addition to the quadratic term
of the scalar curvature in order that the condition p = 1
is satisfied.

The condition p = 1 implies k = 1 in Eq. (25), which
in turn implies cim2 = 8vrGgi [see Eq. (21)]. Taking into
account Eq. (16) also, the necessary conditions for p = 1
are summarized as

ci =8vrGgz, cz = 0,2

cim = 8%Ggi

(29)

(3o)

EP = —4~Gp, A@ = —8vrGp,

which in turn gives

8vrGp 2QM

(31)

These conditions are classified into the following pos-
sibilities:

(I) g2$0,
(a) gi =0 (ci $0, m=0),
(b) gi g 0 (ci g 0, m g 0),

(II) gz = 0 (ci ——0, gi = 0).

We first consider case (Ia), where the scalar decouples
from other fields. In this case Eqs. (14) and (15) become

We then define n and P by

n + ]9 = m + p + 48vr Ggi (m —p ),

nP=m p

(34)

(35)

and assume n ) ]9. We can also define constants ki, kz
and k3 by

4~G(E —m2) {A —p2)
E(E —n)(Z —P)

(36)

which gives the relations among ki, k2, and ks as

k&+ k2+ k3 ——1,
ki(n+ ]9) + kzP + ksn = m'+ p,', (37)
kinP=m p,

From Eqs. (35) and (37) we obtain ki = 1, so that k2
and k3 are related by k3 ———k2. Using this relation and
substituting Eq. (36) into (37) we obtain

48ir Ggi2 (mz —pz)
(38)k2 ——-k3 =

The modified gravitational potential in this case becomes

P = —4vrG~ —+ —
~ p

( 1 kz k2

—v kq —W 3gr
2GM

r
Therefore we have the gravitational potential of the de-
sired form

3
GM ( k2 ~„kz

(A —m2) {Z—p,z)

+48mGg, (m —p )] + m y2)P = —
4mGp .

(32)

Hence, we obtain the same result as the Newtonian ap-
proximation of the ordinary Einstein theory:

(33)

in which the desired Yukawa term is absent.
In case (II), the vector field decouples and there is no

higher derivative term such as Rz and R„„R". In this
case, Eq. (14) takes the same form as Eq. (31), and we
obtain the result of the Newtonian approximation again.

The final case (Ib) turns out the one that satisfies our
criteria. In this case, from the relation cpm = 8aGgz,
Eq. (14) becomes

We now examine the condition for this gravitational
potential to explain the flat rotation curves of spiral
galaxies. We know that the gravitational potential in
Sanders' form [4]

(41)

can account for the rotation curves in a satisfactory way
when n, = —0.9. For our potential Eq. (40) to have
a similar form on the galactic scale, it is necessary to
assume (for n & P & 0)

1vn=&
To)

n)&P & 0,
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where ro is a distance on galactic scale ( a few 10 kpc).
Note that these relations imply

exp( ~Pro) = 1. (44)

For the rotation curves to be Hatter than the Newtonian
results we need n, ( 0 in Eq. (41). In our potential
equation (40) this requirement together with Eqs. (43)
and (44) implies

k2&0.

By Eq. (38) this is equivalent to

m ) p

(45)

(46)

~=O(m'),
p=o(p'),

m =0/ —
2 /))tt

t' I l
ro

(47)

where rc is the galactic scale. In this case, from Eq. (36)
o, can be written as

n = m (1+48nGg2) . (48)

By defining x = 487rGgiz() 0) and neglecting p and p,
in Eq. (38) we have

so that k2 can change in the range

0& k2 & l. (50)

The coefficient n, of Eq. (41) in our theory is then written
as

Hence, the question is whether we can satisfy the above
conditions Eqs. (42), (43), and (45) [or (46)] in a consis-
tent way. From Eqs. (36) and (46) one obvious solution
1s

while Sanders takes o,, = —0.9 to fit the rotation curves.
In this way, starting from the generalized Einstein ac-

tion with additional scalar and vector fields, we can tune
the parameters so that we not only have p = 1 on the
solar scale but also obtain the empirical Sanders-type
gravitational potential on the galactic scale.

IV. SUMMARY AND DISCUSSION

In this paper we have examined the generalized Ein-
stein theory which contains higher derivative terms R2
and R R~„and satisfies following the criteria: (i) on the
solar scale, it must be consistent with the classical tests
of general relativity, (ii) on the galactic scale, the grav-
itational potential is a sum of Newtonian and Yukawa
potentials so that it may explain the flat rotation curves
of spiral galaxies. We have shown that it is nontrivial
to satisfy the above criteria and that at least additional
scalar and vector fields are required for a consistent the-
ory.

We have tuned the parameters of the theory so that
the coefficient n, of the Yukawa term ( in Sanders' grav-
itational potential) is negative, which is necessary to ex-
plain the fIatness of rotation curves of spiral galaxies. It
will be interesting to see how well our theory can fit the
rotation curves quantitatively. Numerical calculations in
this direction are now in progress.

In our generalized Einstein action, even after the tun-
ing of parameters, there are still two parameters, the vec-
tor mass m and the scalar p, to set the scale of interest.
We have chosen 1/m galaxy scale, and it may be possi-
ble to explain the "periodic" large-scale structure of the
Universe by choosing I/p, ~ 130 Mpc. Numerical calcula-
tions of distant galaxy distributions are also in progress.

Therefore, by taking the values of 1/rn and 1/p as
above, our generalized Einstein theory may be consistent
with observations over three different distance scales: the
solar, galactic, and beyond galactic scales of the Universe.

k2

3+ k2

Note that our a, takes a value in the range

—0.25 (n, &0,

(51)
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