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Information consumption by Reissner-Nordstrom black holes
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The low-energy scattering of charged fermions by extremal magnetic Reissner-Nordstrom black holes
is analyzed in the large-1V and S-wave approximations. It is shown that (in these approximations) infor-
mation is carried into a causally inaccessible region of spacetime, and thereby effectively lost. It is also
shown that there is an infinite degeneracy of quantum black hole ground states, or "remnants, " which
store, but will not reveal, the information. A notable feature of the analysis, not shared by recent analy-
ses of dilatonic black holes, is that the key physical questions can be answered within the weak coupling
domain. We regard these results as strong evidence that effective information loss occurs in our
Universe.

PACS number(s): 04.60.+n, 11.80.Fv, 97.60.Lf

I. INTRODUCTION

Extremal black holes provide a simple laboratory in
which to study quantum-mechanical aspects of black
holes. There are three general possibilities which have
been discussed for the outcome of a scattering experiment
in which a particle is sent into an extremal black hole and
Hawking reemitted: (I) The scattering is unitary, with a
finite number of quantum states for the black hole; (II)
the scattering is unitary with an infinite number of
asymptotic quantum states of the black hole, or "rem-
nants"; (III) the scattering is not unitary, and information
is destroyed.

Extensive analyses of extremal black holes in dilaton
gravity at large N over the last year [I] show no evidence
that possibility (I) might be realized, while recent work
[2] has shown that possibilities (II) and (III) are much less
distinct than previously suspected.

One feature of the large-X analysis of dilatonic black
holes has been in some ways disappointing: Gravitation-
al collapse inevitably leads to a singularity at which the
large-N approximation breaks down. Fortunately, some
key physical questions are not affected by this break-
down. For example, possibility (I) can still be ruled out
at large 1V. However, one cannot determine which of the
possibilities (II) or (III) is realized without solving a
strongly coupled quantum problem.

We were thus motivated to search for a model in which
possibility (II) is demonstrably realized at weak cou-
pling. ' After running around in several circles we real-
ized that such a model was under our noses: real-world
magnetic Reissner-Nordstrom black holes. Although the
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isee Ref. [3] for related efforts.

structure of their extremal ground state is much more
complex than that of their dilatonic cousins, they have
two big advantages: large X can tame their dynamics,
and they exist as solutions to the Einstein-Maxwell equa-
tions, without the introduction of unobserved fields such
as a dilaton.

We wish to study long-wavelength scattering of S-wave
charged fermions by an extremal Reissner-Nordstrom
black hole with a large magnetic charge and radius, both
given by Q (we take Q & 0). To render this problem tract-
able, we make the S-wave approximation in which all
higher angular modes are suppressed. Naively, one ex-
pects that, at wavelengths large relative to Q, this ap-
proximation is good. However, unlike the dilatonic case
studied in Ref. [l], there are several subtleties [4] which
have so far prevented a careful justification of the approx-
imation, and we cannot be sure that it is valid. For N+ 1

flavors of fermions, the effective two-dimensional S-wave

One subtlety is that incoming long-wavelength modes may
produce regions of high curvature either near the origin or the
inner Cauchy horizon. We shall argue later that these regions
are irrelevant to the issue of effective information loss. Another
subtlety has to do with the fact that the centrifugal barrier seen
by the higher partial waves turns off near the horizon. This
means firstly that there are an infinite number of short-distance
but low-energy modes near the horizon. We believe these
should not be present in a long-distance effective theory, but we
do not know how to define such a theory in a manner consistent
with Lorentz invariance and energy conservation. It also means
that there are long-distance low-energy higher angular momen-
tum modes near the horizon which might be excited as quantum
fluctuations. As was discussed in Ref. [5] the tidal forces seen
by these modes, unlike the S-wave, blow up at the horizon, thus
once excited they might have consequences which are unac-
counted for in the S-wave approximation.
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theory is described by

S= d 0&—g e ~R+2e ~(VP) +2 —2Q e ~= 1

2'
——g (Vf;)'

2 ]

The two-dimensional metric appearing in (1) is related to
the four-dimensional metric by

dS2=g dO dO-~+e 2&d2n,
aP

with a and P ranging over (r, t). The scalar field P mea-
sures the (logarithm of} the area of two spheres of con-
stant radius. The first four terms in (1) arise directly
from dimensional reduction of the four-dimensional
Einstein-Maxwell action. The last term arises from the
bosonization of fermion S-wave modes studied by Callan
and Rubakov [6] in grand unified theories (GUT). One
charged liner combination of the original N+1 flavors
acquires a mass from electromagnetic effects. The dy-
namics of this mode was studied for dilaton black holes in
Ref. [7], but because of its mass it deco uples at
sufficiently low energies. The two-dimensional relic of
the four-dimensional gauge field is suppressed in (1), as it
cannot be excited by the neutral fields and so may be con-
sistently neglected. Previous work on the model defined
in (1) and related models obtained by dimensional reduc-
tion can be found in Refs. [5,8].

One might hope that for large Q particle-hole scatter-
ing could be adequately analyzed in a semiclassical loop
expansion of the reduced theory, but, in fact, large N will
be needed in addition to the S-wave approximation for
several reasons. First, as pointed out in Ref. [9], the tem-
perature fluctuations of a near-extremal charged black
hole go as

II. CALCULATION

Previous analyses of large-N two-dimensional gravity
have been largely carried out in conformal gauge. This
gauge is somewhat awkward in the present context. For
example, even the classical solutions are known only im-
plicitly in this gauge. A more convenient choice is the
light-cone gauge, for which the two-dimensional metric
takes the form

ds = —h(dv) +2dr dv,

&—g =1 and the scalar curvature is R = —B„h. In this
gauge one can solve the classical equations and obtain an
analytic expression, known as the Vaidya metric, for arbi-
trary null infalling matter, characterized by a stress ten-
sor obeying T„,=0:

2M(v) Q
p r 2

(4)

expansion. The leading large-N equations, in which one-
loop quantum back reaction is included, have solutions
which are in a sense "near" to corresponding classical
solutions. In particular [5], there is an extremal, zero-
temperature ground-state solution with causal structure
identical to that of the classica1 solution. The large-N
geometry is near to its classical counterpart, but third
and higher derivatives of the fields are divergent near the
horizon. We shall see in this paper that divergences en-
countered in particle-hole scattering are also benign, al-
though the behavior of the stress tensor near the horizon
leads to an unexpected nonanalytic large-N mass-area re-
lationship, which differs from the classical result even at
large Q sufficiently near extremality.

1/2

(2)

where 2B„M=T„,. The large-N trace and dilaton equa-
tions may then be written in the form

so the leading semiclassical formula for the temperature
(and radiation rate) becomes unreliable very near ex-
tremality. But in the large-X limit, where fi +0 (while—
X—+ ~ keeping Kiri fixed) we see that

1 —ye'&

R= —3 h=
T'

where

2 (e ~—2Q e & —XB„P),
1 —ye'&

op=a r=r a U+ Q"""+~'")
1 —ye2&

(5)

(6)

so that near-extremal black holes are indeed character-
ized by a definite temperature.

A second problem with the loop expansion was dis-
cussed in Ref. [5]. For a nonextremal Reissner-
Nordstrom black hole, the one-loop contribution to the
expectation value of the stress tensor diverges on the
inner (but not the outer) horizon. This is related to the
classical instability of the inner horizon, as studied in
many papers [10]. This divergence persists, albeit in a
softened form, in the extremal limit in which the two hor-
izons coalesce. Since the one-loop corrections are diver-
gent, the loop expansion is clearly unreliable.

Although frightening at first, these divergences are, in
fact, rather benign and can be controlled within the 1/N

X—:2B,Q+h B„P,
U—:2P —

—,
' ln(l —ye ~),

and

y =Xiii/24 .

A future (past) apparent horizon is a zero of X (B„P),
which implies (VP) =0. One important linear combina-
tion of the constraint equations is 1ocal:

Previous light-cone gauge analyses of dilatonic black holes
can be found in Ref. [11].
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e &I'I Tg: ,'—y—e ~[ 'h—B h —
—,'(B„h ) +B,B„h]

=a r+ —ax ——x ——aha,h 1 2 12" 2 2" (9)

where the components of the null vector I are
(I",I")=(h /2, 1). Fortunately, the other linear combina-
tion, which is nonlocal, shall not be needed.

The extremal solutions were studied in Ref. [5] and
found to be of two kinds referred to therein as the even
and odd extensions. Here we shall focus on the odd ex-
tension, which reduces to the classical solution as A~O,
and denote it as $0(r ) and h 0(r ). This solution has a

~&0
timelike singularity at the "origin" where e '= y.
Near the horizon rH it was shown [5] that the fields have
the nonanalytic behavior

B„(e 5X)=0 . (19)

The integration constant is determined from the asymp-
totic boundary condition 5X~2p/r . One thereby ob-
tains

along Uo whose classical stress tensor obeys

I'I "Tfi, =2@5(v —vo) .

We wish to compute, following Ref. [12],P and h pertur-
batively in p in a Taylor expansion above the shock wave.

P is continuous across the shock wave, while h has a
discontinuity which is determined by the constraints and
is classically equal to 2p—/r X. [defined in (7)] also has a
discontinuity 5X across vo, which, according to (5), obeys

yo
—

yH =px lx I',
h, =a,x'+a,x'~x ~',

where PH
=P(rH ), x = r r—H, and——

1/2=35=—
2

8y

3(~ "—y)
—2PH

with

1++1+ 4y/Q'
e

2

5 tends to zero for large Q. To leading order in y/Q,

(12)

5X=2pe (20)

r+ =rH+Q 2p (22)

Near the horizon r~, Xo (the value of X below the shock
wave) has a higher-order zero:

Xo=a,P(1+5)x ix i
(21)

Since 5X is nonzero at rH, this zero is split into two sim-
ple zeros which are (by definition) the inner and outer ap-
parent horizons, as illustrated in Fig. ].. To leading order
in y/Q and p/Q one finds that the locations of the hor-
izons are given by

1/(2+ 6)

2
(13)

Comparing with (10) and recalling that the dilaton mea-
sures the area of the two spheres, we see that the area A~

2
(14)

"II Q (16)

and

H (17)

While for large Q one can safely use these approxima-
tions to a„az, p, rH, and pH, we do not omit terms sub-
leading in 1/Q in the expression for 5 because such an
approximation would break down very near the horizon
[at x less than of order Q exp( —Q /y)]. The nonanalyti-
city in (10) leads to divergences for example in the second
derivative of the curvature.

Let us now consider an incoming matter shock wave

I-
K

U
K
CO

4The even solutions are also interesting since they correspond
to spacetimes free from any malevolent singularities. But their
stability and response to perturbations cannot be studied in the
approximations used here.

5Note that there is an issue of orders of limits here: we take
X~~ before p~0.

Strictly speaking shock waves are not allowed in the long-
distance effective field theory, but the case of a smooth pulse is
qualitatively similar.

FICx. 1. A shock wave incident on an extremal Reissner-
Nordstrom black hole splits the apparent horizon rH into a pair
of apparent horizons r~, which then exponentially decays back
to rH. The event horizon is outside rH. The asymptotic space-
like surface X is positioned so that the shock wave intersects it
at large radius and weak coupling, and it avoids the Cauchy
horizon.
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of the outer horizon obeys
(1+6)/(2+6)

2p
AH —A o

——8vrQ (23)

a„r=—a„ra, r

Now (20) and (21) imply that
( 1+6) /(2+ 6)

B„X(r~) =+ 2

(24)

(25)

Similarly (9) implies that, at r+,

h,—"a„a+a.x= ~' ' a'„ah+ h
a'„h, ——'a„h, a, sh

+a, a„6h +e I'l "To,& . (26)

It turns out that the dominant contribution for small p is
given by the second term on the right-hand side, which
involves 5h with no derivatives. To evaluate this term we
need to know 6h just above the shock wave which, ac-
cording to (6) obeys

za„yes
a, 5h =

1 pe
(27)

so that

5h =4@f dr —1+—1 1
(28)

y &I—ye'~

(The integration constants are fixed by the requirement
that 5h asymptotically vanish. ) Furthermore, to leading
order, h B„Xvanishes so that (26) reduces to

B„X(r ) = —yp, /Q (29)

Equations (24) and (22) then imply that, just above the
shock wave,

(30)

To proceed further, we evoke the adiabatic approxima-
tion in which the black hole is taken to evolve slowly so
that its dynamic geometry may be approximated by a se-
quence of static ones. We expect the adiabatic approxi-
mation to be good for large Q, but have been unable to
carefully justify this. In this approximation (30) contin-
ues to hold everywhere along r+. Thus the inner horizon
moves out towards rH while the outer horizon moves in

where Ao is the extremal area. Thus the mass-area rela-
tion is nonanalytic. Notice that no matter how small 6 is,
there is always some value of p, (p- Qe '~

) below which
(23) is not well approximated by the classical relation

AH —Ao —8vr+2pQ .
The mass of the black hole will, of course, decrease due

to Hawking radiation and we expect it to settle back to
extremality. To study this, we first calculate the trajec-
tories of the two apparent horizons, denoted by r+. We
again work to leading order in y/Q and p/Q. Since X
vanishes along r+ one has

towards rH, and the black hole exponentially approaches
its extremal ground state. Note, however, that while the
black hole is excited, the trajectories of / =

AH and r = rH
are spacelike. The event horizon is therefore shifted out-
ward (relative to the original apparent horizon) by the
scattering process, as illustrated in Fig. 1.

Also, within the adiabatic approximation (22) relates
the position of the outer horizon r+ to p. Equation (30)
then implies that

VP — P,
2Q

(31)

so that the mass decays exponentially back to its extremal
value as

—y( V
—

V 0 )/2Q
p(U ) =pe (32)

III. DISCUSSION

We now argue that our results imply that an arbitrarily
large amount of information can be sent into the black
hole, and will never reemerge into the Universe from
which it was thrown in. The black hole relaxes to ex-
tremality with a characteristic time

t, =Q'/r (33)

Consider experiments in which an arbitrarily large num-
ber of wave packets are sent in from 2 spaced at inter-
vals of t, seconds. In the process, an arbitrarily large
amount of information is sent in. In order for no infor-
mation loss to occur, in the asymptotic future, all correla-
tions between the state inside and the state outside the
horizon should be destroyed. This can occur only if the

There are two regions in which the large-N equations
used here cannot be trusted. The first is near the origin
e ~ =y (denoted by r =0 in Fig. 1), where the curvature
becomes large and higher-dimension corrections to the
Einstein-Maxwell theory are important. The second is
the future Cauchy horizon, or the extension of 2+ inside
the event horizon. A timelike observer inside the black
hole crosses this Cauchy horizon in finite time, yet is able
to see all of the Universe outside the black hole before do-
ing so. There is therefore a large energy concentration
near this surface, the effects of which are subtle and have
been analyzed in many papers [10].

Fortunately, physics outside the horizon is insensitive
to the (intractable) behavior of the system in these re-
gions. To see this, consider a Hamiltonian H which
evolves along the series of spacelike slices asymptotic to
the slice X=Xz U 2+ where, as depicted in Fig. 1, Xz is a
spacelike surface inside the horizon. These slices can be
chosen to completely cover the spacetime outside the
horizon. Xz can be chosen so that it avoids the difficult
region near the future Cauchy horizon, and so that the
intersection of the shock wave with Xz- is in weak cou-
pling. Although X~ extends into the strong-coupling re-
gion near e ~ =y, this does not present any difficulties be-
cause the system is unexcited in that region. The non-
trivial dynamics are everywhere weakly coupled for all
time, and our approximations should be valid.
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state inside is unique and independent of the initial state
of the infalling matter. The preceding analysis shows
that nothing catastrophic happens to the infalling matter
as it crosses the apparent horizon so in the asymptotic fu-
ture the state inside the event horizon (on XT) will de-
pend heavily on the incoming scattering state. Indeed,
since the system is still weakly coupled on XT, the quan-
tum state of the left-moving conformal f matter will be
essentially the same as on 2 . Thus in the course of this
experiment an arbitrarily large amount of information
will be carried into the causally inaccessible region inside
the event horizon and will thereby be effectively lost.

It is also evident that, with respect to the time slicing
described above, this is a theory with an infinite number
of remnants. What we mean by this statement is that
there are an infinite number of solutions of the large-X
constraint equations on a spacelike slice which are identi-
cal outside the horizon, but have differing f-matter
configurations inside the horizon, corresponding to an
infinite degeneracy of large-X semiclassical quantum
states.

However, it is important to note that the interpretation
that the information is stored in these remnants may be
dependent on the slicing. For example, we might have
chosen the asymptotic interior surface XT so that the f
wave arrives at the singularity before intersecting XT. In
this case it is a logical possibility that the information is
destroyed when it arrives at the singularity, in which case
one would not conclude that the information is stored in-
side the black hole.

Of course, physics outside the event horizon cannot, by
causality, depend on the choice of slicing inside the event
horizon, which we are therefore free to choose for our
own convenience. Consequently, the observer outside the

7Actually, if we enforce the constraint that the incoming
matter excitations are long wavelength on 2, in accord with
our approximations, this would not be the case because the in-
coming matter excitations must be late enough so that they are
still in weak coupling when they arrive at X, yet early enough to
avoid a potential pile up of energy density near the future Cau-
chy horizon. There are only a finite number of states in this
finite interval above any given wavelength. This problem can be
avoided by choosing a different surface XH defined as the (space-
like or null) surface along which P takes the constant value PH
characterizing the horizon of an unperturbed extremal solution.
This is a geodesically complete surface which is everywhere in
weak coupling. Since any finite point on XII is an infinite dis-
tance from i+, there is clearly no pile up of energy density.
Furthermore, because the event horizon is moved out by each
scattering process, this surface is well behind the event horizon
if many f particles (and much information) are thrown into the
black hole. The potentially infinite amount of information on
XII is therefore unavailable to an observer on 2+.

Another possibility is that boundary conditions might be
specified at the timelike singularity to reAect the matter, and the
information, up to the future Cauchy horizon and possibly on to
the next universe. In this case all the information will be
present on XT no matter how it is chosen.

horizon cannot possibly distinguish between actual infor-
mation loss and storage by remnants. The choice of slic-
ing made in this paper was motivated by the desire to
avoid the dificult dynamics near the singularity, and it is
consistent with this choice to describe the theory as hav-
ing an infinite number of remnants.

We should note that although the calculations above
were carried out in the N~~ limit all the important
conclusions continue to hold when N (or Q) is sufficiently
large but finite. The distinction is important to make be-
cause when N ~~, A'~0, so that the Bekenstein-
Hawking entropy of the black hole, which goes as 1/fi,
goes to ~. Thus it might be claimed that our con-
clusions are simply a consequence of working in a limit
where the ground state is infinitely degenerate, and that
at finite X there would be an upper limit on the informa-
tion the black hole can carry and an finite number of
remnants. Finite X differs from N~ ~ in that we have
to keep track of the quantum fluctuations in the metric
and dilaton, and these might be potentially large close to
the horizon. But the larger X is, the closer one must ap-
proach the horizon in order for these effects to be
significant. Similarly, the adiabatic approximation would
break down for finite N su%ciently close to extremality.
But again for large enough X this occurs only very near
extremality. Thus by sending in energy at a judicious
rate, for X large but finite, one could keep the black hole
close enough to extremality (p/Q small enough) for our
approximations to hold, but far enough from extremality
for the finite X effects to be insignificant at the apparent
horizons. The black hole would then respond according
to the calculations above except for the first moments
after it departs from extremality and the last moments
before finally settling down. %'e would thus conclude
that even for finite N (when the entropy is finite) that the
black hole can consume an arbitrarily large amount of in-
formation and store it in an infinite number of remnant
states.

Finally, one may be concerned that this infinite degen-
eracy of states will lead to divergent black-hole pair pro-
duction rates. In fact, magnetic black-hole pair produc-
tion was computed semiclassically in Ref. [13] and found
to be finite. The reason for this was discussed at length in
Ref. [2]: extremal black holes do not behave quantum
mechanically like elementary particles.

Thus we have found a system which can be seen,
without resorting to speculations about strong-coupling
dynamics, to solve the information puzzle by storing it in
an infinite degeneracy of black-hole quantum states. Fur-
ther this two-dimensional system might be a good ap-
proximation to real-world long-wavelength fermion-
magnetic black-hole scattering.
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