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Geometric phase in vacuum instability: Applications in quantum cosmology
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Three different methods, viz. , (i) a perturbative analysis of the Schrodinger equation, (ii) an abstract
differential geometric method, and (iii) a semiclassical reduction of the Wheeler-Dewitt equation, relat-
ing the Pancharatnam phase to vacuum instability are discussed. An improved semiclassical reduction is
also shown to yield the correct zeroth-order semiclassical Einstein equations with back reaction. This
constitutes an extension of our earlier discussions on the topic.
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I. INTRODUCTION

The study of geometric phases [1—3] seems to offer im-
portant insights into having a better understanding for a
large class of physical problems. In quantum field theory,
for instance, the Berry phase appears to play a significant
role in elucidating several conceptual issues relating to
anomalies and associated problems. It is shown [4,5] that
various gauge anomalies can be interpreted as due to a
nontrivial holonomy on the second quantized (chiral) fer-
mion Hilbert bundle over background static gauge fields.
The nontrivial holonomy arises as a measure of topologi-
cal obstructions in projecting the Fock vacuum in the
physical sector of the gauge manifold (static gauge fields
mod local gauge group). This in turn implies a loss of
gauge invariance (global and non-Abelian anomalies)
and/or an induced symmetry breaking (axial anomaly).

Now the breakdown of the global U(1) axial symmetry
via an anomalous divergence of the axial-vector current
induces axial baryon-lepton nonconserving processes
through the production of massless fermion excitations
[6]. Nelson and Alvarez-Gaume [4] have further shown
that even the global and non-Abelian anomalies could be
explained in terms of pair productions. Although
nongeneric, the production occurs at the points of degen-
eracies of the background field-dependent Dirac Hamil-
tonian, inducing a twist in the pertinent Hilbert bundle.

Recently some applications of the Berry phase were
also discussed [7,8] in the semiclassical gravity in the
framework of a minisuperspace cosmological model. An
improved Born-Oppenheimer analysis in the Wheeler-
Dewitt (WD) equation is shown to yield the correct
zeroth-order semiclassical Einstein equations. The func-
tional Schrodinger equation describing quantized matter
fields in a background curved space is obtained at the
next order of approximation. Further, the semiclassical
back reaction of the matter fields is shown to be deter-
mined by the U(1) Berry connection on the gravitational
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sector of the minisuperspace. An interesting consequence
emerges in the Robertson-Walker (RW) minisuperspace
which is one-dimensional with a trivial R topology. The
relevant Hilbert bundle turns out to also be trivial, there-
by reducing the induced Berry connection essentially to
zero. As a consequence, the WD equation corresponding
to a gravitational action without a cosmological A term
yields at the semiclassical regime a matter Schrodinger
equation essentially in Minkowski space [8]. However,
for an action with a nonzero A, one gets a matter equa-
tion in the de Sitter (dS) universe, although a zeroth-
order analysis does not yield a suitable back reaction.
One, however, expects a finite rate of particle production
in the dS background. It is, therefore, of interest to see
how the semiclassical Einstein equations with a reason-
able back reaction can be obtained through some
modifications of the arguments in Refs. [7,8].

It is well known that the particle production in quan-
tum field theory (QFT) in the presence of a classical
external field is associated with the vacuum decay, which
is essentially a nonperturbative effect. Under the
inhuence of a time-varying external field the otherwise
stable initial vacuum evolves into an admixture of mul-
tiparticle states, thereby reducing the vacuum transition
probability amplitude to a value less than the initially
normalized value one.

Now one naturally feels tempted to see if there is some
intrinsic relationship between the particle production
through vacuum decay and the particle production via
symmetry breaking due to an anomaly. It is therefore of
interest to look for a description of particle creation
through vacuum decay in the language of the geometric
phase. This will also instill one with important insight as
to how the modifications in the Born-Oppenheimer
analysis are to be incorporated to get a consistent set of
semiclassical Einstein equations.

The motivation of the present paper is exactly this.
We discuss some well-known examples of vacuum insta-
bility and show how a geometric phase can be associated
with the decay width of the state. In Sec. II we show in
the context of a quantum-mechanical decay model that
the decay width I is related to the Pancharatnam phase
[3] between the initial and the final states. The Pan-

0556-2821/93/48(12)/5746(5)/$06. 00 5746 1993 The American Physical Society



48 GEOMETRIC PHASE IN VACUUM INSTABILITY: 5747

charatnam phase is a generalized geometric phase which
may be obtained even for a nonunitary noncycle evolu-
tion. In particular, the Pancharatnam phase may be
nonzero even for a case where the Berry phase is zero or
not sensible. Our method uses a perturbative argument
although the result is exact and nonperturbative. The re-
sult also agrees with more abstract formulations [5] of the
geometric phase (and anomaly). However, we discuss
this result here as a prelude to our main result (Sec. III).
(The author is, however, unaware of any prior explicit
discussion of this example in the literature. ) In Sec. III,
we present an extension of our earlier derivation [7,8] of
the semiclassical Einstein equations. This frees the ear-
lier discussions from the necessity of a cyclic evolution.
We show that for a noncyclic evolution the back reaction
can be related to the Pancharatnam phase. For topologi-
cally trivial minisuperspace where the Berry phase is
zero, this yields a set of semiclassical equations which de-
scribe gravity-induced instabilities in the matter Fock
vacuum. The method also offers another proof for the
formula relating the Pancharatnam phase and the vacu-
um decay width.

II. VACUUM INSTABILITY
IN QUANTUM MECHANICS

This potential has a "bounce" solution with a single nega-
tive mode in the Euclidean time tz= —it. The standard
instanton calculation [9] yields the vacuum-vacuum am-
plitude:

&f ~i )—:fXlx exp —i f —x —V dt =e
0 2

(2)

where

(3)

is the decay width of the state, So the Euclidean bounce
action, and E is a constant determinant factor. (By a
suitable redefinition we absorb the harmonic-oscillator
ground-state energy in the potential. ) The essential
feature of the expression (2) is that the ground-state ener-

gy of the corresponding Hamiltonian, which is defined
via a suitable analytic continuation —X~A,e ', picks
up a small imaginary part I signaling the instability. In
the instanton calculation this is taken care of by the nega-
tive mode in the bounce solution. Moreover, the basic
object being the transition probability amplitude, the in-
quiry into the existence of an extra phase was not neces-
sary in the standard discussion of the problem. However,
we are here primarily interested in calculating the non-
trival phase of (f ~i ), if any.

For this purpose we use an adiabatic perturbation
method to analyze the issue. Let us denote the relevant
Hamiltonian by H(A, ) and the corresponding ground
state f(A, ). Introduce a Euclidean parameter r periodic
in 0&v+2 and denote by A,,=A,(r) a slowly varying

We consider the quantum-mechanical decay of the
ground state in the hump potential

V=x —kx, A &0 .

periodic function so that A,(0)=0, A,(l)=A, . By slowly
varying we mean A,(r)=A, almost everywhere in [0,1].
We now write

in the real-time Schrodinger equation

(4)

i /=HE~ a
at

so that

H(A, )P(A, ) = i —I P(X) . (6)

As already stated the energy is purely imaginary due to
the analytic continuation —A, ~A,e+' . The important
fact to note is that Eq. (6) can be obtained as well by
treating A. perturbatively via the Euclidean equation

(7)

The ansatz

(8)

(10)

Although both the states are stable, the phase 21 carries
an imprint of the twists in the perturbed line bundle.
[The amplitude of g in Eq. (7) drops out since 1,~0 as
r~2.] Stretching the analogy too far, in field theory
language, the vacuum decays with associated particle
creation in the first half of the circuit 0 ~ ~ ~ 1. However,
in the other half 1~~~2 the annihilation of particles
occurs restoring the initial vacuum. The whole process,
however, leaves an imprint in the form of a nontrivial

The phase —I is dimensionless. The period of the Euclidean
parameter ~ is determined by the intrinsic time scale of the
problem fixed by the harmonic-oscillator ground-state energy.
We also set A'= 1.

then yields in the limit v~1, Eq. (6). The mechanism,
however, defines a parallel transport which generates a
phase I [for almost constant r dependence in I, for the
state P (—=P, )]. Equation (4) then gives the intended
phase relation'

e
—r~e —i r&

Note that the states f and y belong to different rays. The
perturbatively generated phase I between them is by
definition the Pancharatnam phase [3] which signals an
induced twist in the line bundle of states due to the per-
turbing potential kx .

Further insight into the phase relation (9) can be ob-
tained by letting ~ make a complete circuit in 0~~~2.
After a complete cycle through the classically forbidden
region the final oscillator ground state g(2) returns to the
initial oscillator ground state g(0) with, however, an irre-
ducible phase ( —2I ):
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y = (g~P) =exp ——J I (dz +dz)1

The unique holomorphic connection corresponding to the
metric (11) is given by

1 1 BI
W =y 'By= ——r ——

7T 7T Bz
(12)

The corresponding curvature E =By 'By vanishes iden-
tically because of the t independence of I . However, the
connection has a nonvanishing holonomy

phase shift indicating particle creation (annihilation) in
the intermediate stages. In most of the physical situa-
tions, though, the two way processes cannot be realized
leading to genuine particle production. In the case of
gauge theories with chiral fermions the above cyclic pro-
cess appears to occur; the final irreducible phase indicates
the absence of a global symmetry and/or gauge invari-
ance.

We also note that the introduction of the Euclidean pa-
rameter z along with the analytic continuation in the
Schrodinger equation (5) provides a complex structure [5]
in the quantum system. No such natural complex struc-
ture is available in the case of tunneling between degen-
erate vacua. So one does not expect a geometric phase in
this case.

It is comforting to see that the nontrivial phase in Eqs.
(9) and (10) can also be obtained from a more abstract
formalism [5]. The present quantum system actually cor-
responds to a Hermitian holomorphic bundle over the
punctured complex plane C —[0]: z =sr(t +is) Th. e
Hermitian metric on this bundle is defined by the norm of
the state g:

the symbol y. The WD equation assumes the form

V +MV(g)+H %(g, p) =0 .
1

(15)

In Refs. [7,8], it is shown that an improved Born-
Oppenheimer approximation [11]with the inclusion of a
nontrivial Berry phase yields the effective gravitational
equation

1
D,'+MV(g)+(Q~H ~P) P(g)=0, (16)

where

+(g, y)=p(g)g(g, q) . (17)

D =V —iA denotes the covariant derivative due to the
induced U(l) adiabatic connection

~ =i(y~v, y) . (18)

i g= H—d
dt

where the "WKB time" t is defined by

(19)

=VgS.Vg .
dt

(20)

Further, using standard semiclassical analysis [10]
around the expanding WKB state

P(g)-exp[ iS(g)]—

the curved space equation is obtained in the Schrodinger
picture at the 0 (M ):

fW dz= —fr ' ' f—J'—"„"dzdz. (13)
P,fr+MV(g)+(p H g) =0,1 2 (21)

The zeroth-order Einstein equation is retrieved to 0 (M):

The second integral vanishes for a suitable choice of I"(r)(= vanishing residue of BI /Bz at z =0). Again for al-
most constant I along the cycle we have the desired
phase (

—2I ).
We close this section with the following remark. The

general method of holomorphic line bundle can be ap-
plied to the QFT vacuum instabilities. As in the
quantum-mechanical model, the probability of pair
creations in a finite volume is equal to the Pancharatnam
phase between the out and in vacuum states. An applica-
tion of the phase in gravity is discussed in the next sec-
tion.

III. BACK REACTION
AND PARTICLE PRODUCTION IN GRAVITY

Hs = — Vs+MV(g),1
(14)

where H~ stands for the gravitational and H for the
matter Hamiltonian. We represent the matter fields by

We consider a minisuperspace gravity-matter system
described by the Hamiltonian [7,8, 10]

H=H +H

where J',ff is the effective gravitational momentum. We
also note the relation

V,S ~= —(q~H ~y). (22)

1

2M Pq„, +MV(g) =0 . (23)

Thus the zeroth-order back reaction cannot be obtained
from the above argument. For example, in a RW minisu-
perspace without a A term, V(g)=g (g =scale factor)
and a self-consistent solution of Eqs. (15) and (23) is a Sat
Minkowski space obtained via a Euclidean continuation
[8]. This means that the semiclassical reduction of WD
equation for a Friedmann-like model yields only a Min-
kowski space matter Schrodinger equation. However, for
a nonzero A term, the reduction yields a dS space as a
solution of Eq. (23). The matter equation (18) is therefore

It thus follows that the back reaction in the form of an
energy expectation value gets determined by the Berry
connection A. However, for a simply connected minisu-
perspace with Hat geometry the connection A can be
gauged away A =0, yielding instead of Eq. (21) the
source-free equation [8]
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a dS space Schrodinger equation. The exponential expan-
sion of the scale factor must therefore produce particles
through a dS vacuum instability which, it is expected,
should back react to gravity.

One must therefore look for this back reaction either at
a higher order of the semiclassical approximation or by a
modification of the Born-Oppenheimer scheme applied to
Eq. (15). We prefer the latter to get a zeroth-order back
reaction even for a simply connected Aat minisuperspace.

We again start from Eq. (17):

q'(g, 4») =0(g)f(g q» .

Choose two different values of g, g, and gf, correspond-
ing to two "instants" of quasiclassical evolution. Define,
for convenience, g; & =g(g;, y) the initial normalized
Fock vacuum: ( g, l g,. &

= 1. We also assume that all ex-
cited states in the initial Fock column are empty:
g; &(itt;l =I. Now, instead of projecting the whole WD

equation (15) on lg; & itself, we choose to project on a
final Fock state

I gf & it(gf,—q ):

(Vg i A) —+MV+ /=0, (25)

where 3 is given by

a =i(q, lv, y, & . (26)

VS A=i

Further using the Schrodinger equation (19) and the in-
verse of the time definition dg ldt =VgS, one obtains the
Pancharatnam phase [12] for the transition lf; & ~ lff &

in the form

f (flu li&J' w dg= —J'
l

dr. (28)

A comment is in order here.
(i) The unitarity condition lP&(gl =I asserts that the

parallel transport of states is to be done along the hor-
izontal subspace [2,3] only. The condition for such a hor-
izontal transport is

d 0 g 0

in the intermediate stage t; + t & tf. However, the condi-
tion of horizontal transport fails at t =tf. Consequently,
a mixing of the initial Fock states is allowed in the final
Fock vacuum yielding a nonzero value for the phase in-
tegral (28).

Continuing with the discussion of the phase integral
(28) we note that the instantaneous vacuum energy of the
Hamiltonian H in the presence of an induced instability

For an adiabatically evolving gravitational mode, A is
the Berry connection (18). However, the derivation of
Eq. (25) does not require the need of a cyclic evolution
and may be applied even to a noncyclic case. Using the
definition of time, Eq. (20), one gets

p2 (flII li&
+MV(g)+

( l &

=0, (30)

where Pz is the source-free gravitational momentum.
Note, however, that the gravitational component
P /2M+MV(g) in Eq. (30) is of O(M) whereas that of
the back reaction is one order less: O(M ). Thus a
reasonable set of Einstein equations obtained via a semi-
classical reduction must assume the iterative form

p2
O(M): +MV(go)=0,

2M
(31a)

(31b)O(M ): i g(go, y)= Hp(go, g), —p

dt
and the back reaction, Eq. (30), is obtained only as a
second-order iterated equation:

P& (fla li &,

zM (fli &,
+MV(g) = —Re (31c)

the imaginary part of the RHS, being exponentially
small, is neglected in the adiabatic approximation.

In the case of a closed RW minisuperspace with a pure
Einstein-matter action, Eq. (31a) does not have a reason-
able solution in the Lorentzian sector (because momen-
tum P becomes imaginary). However, the equation

Rp

yields a Oat Euclidean solution which via an analytic con-
tinuation implies in turn that the evolution of matter is
essentially described by a Minkowski space Schrodinger
equation. In this case, no gravitationally induced insta-
bility is possible and hence Eq. (3lc) reduces to Eq. (31a)

assumes a small imaginary part Ep+iI . Here Ep is a
possible nonzero energy due to vacuum polarization and
I is related to the vacuum decay width. The integral in
the right-hand side (RHS) of Eq. (28) has the formal ex-
pression J f(Eo+iI )dt T. o get a real value one must
evaluate the integral for I along the Euclidean time
~=it. Further, in the case of a simply connected Aat min-
isuperspace the integral fEodt can be safely gauged
away. Equation (28) together with the remark (i) there-
fore yield the Pancharatnam phase associated with an in-
stability:

A.dg = —If
(29)

I

which agrees with the phase obtained in Sec. II. In fact,
Eq. (29) is another derivation of the fact that the Pan-
charatnam phase, indicating an instability, has to be
pinned via a transport along a Euclidean time [13]. The
result is exact (modulo adiabatic condition) and appears
to have a general validity.

In the absence of an instability Eq. (29) yields a vanish-
ing Pancharatnam phase. This agrees with the result of
Ref. [8] that for a Lorentzian evolution emerging from a
Hat simply connected minisuperspace the corresponding
Berry phase (in fact, connection) is zero. [For a curved
minisuperspace the real-time energy integral (28) might
yield a meaningful geometric phase. This issue will be
taken up separately. ]

The semiclassical back-reaction equation correspond-
ing to Eq. (25) thus assumes the form
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[normal-ordered vacuum energy expectation value van-
ishes in Minkowski space].

However, for an action with a positive cosmological
term, Eq. (31a) yields a dS space as a solution. The
matter equation (31b) is thus a dS vacuum Schrodinger
equation which is supposed to produce particles (modulo
technicalities in defining appropriate Fock states) because
of an instability [14] induced by the exponential expan-
sion. Equation (31c) then describes a possible
modification in the dS metric by an appropriate back re-
action. Before closing the discussion we note that the
relevant phase integral in the presence of a Euclidean
wormhole structure assumes the form

J A dg l I
&

~
~

do (32)

IV. FINAL REMARKS

Three different methods are shown to yield the same
phase relation between the in and out vacua in the pres-
ence of an instability. It is clear that an instability occurs

Here ~ is a Euclidean time parametrizing the wormhole
handle and H denotes an appropriate matter Hamiltoni-
an. It is well known [15] that the occurrence of a
wormhole needs a complex matter field. The existence of
a nontrivial geometric phase along a noncontractible
wormhole handle now suggests that H must be realiz-
able as an anti-Hermitian operator on a Euclidean
Schrodinger energy eigenstate. (This particular point has
not been explicitly stated in Ref. [7].)

whenever the Hilbert bundle associated with a given
quantum system has a natural complex structure. In the
examples discussed here the complex structure arises
from the punctured complex plane of the analytically
continued physical time.

The present discussion also suggests a general unambi-
guous method of obtaining semiclassical Einstein equa-
tions from a fully quantized system. It is, however, un-
clear the precise sense of how the energy expectation
values capture the back reaction of the particles pro-
duced in the cosmological background. In any case, it is
of much interest to see how this argument applies to a
more general superspace. It is also of interest to substan-
tiate the general results discussed here by explicit calcula-
tions.

Note added in pvoof. The geometric "electric" field [M.
Berry and J. M. Robbins, Proc. R. Soc. London A442,
641 (1993) and G. Venturi, in Differential Geometric
Methods in Theoretical Physics, edited by L. L. Chau and
W. Nahm (Plenum, New York, 1990)], although of a
higher adiabatic order, seems to affect the back reaction
Eq. (31c) nontrivially. The study of its consequences in
semiclassical cosmology will be taken up separately.
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